
Closed-Form Expressions of Convex Combinations

Bastian Schürmann, Ahmed El-Guindy, and Matthias Althoff

Abstract— In this paper, the computation of closed-form con-
vex combinations is considered. In many control tasks, convex
combinations play a crucial role, thus requiring an efficient
computation. This is the case for online control of fast dynam-
ical systems, in which the control algorithms rely on convex
combinations, for example robust control of linear parameter-
varying systems. On the other hand, for formal verification, it
is necessary that the closed-loop behavior can be expressed in
closed-form, which is not possible if the convex combination
is expressed as constraints. In this paper, we provide closed-
form expressions for any kind of polytope with finitely many
extreme points. For special types of polytopes, such as simplices
and parallelotopes, we provide especially efficient, analytical
closed-form expressions. Numerical experiments show that the
closed-form expressions are significantly faster in all randomly-
generated cases and thus enable shorter sampling intervals of
control schemes involving convex combinations.

I. INTRODUCTION

Convex combinations are used in many different appli-

cations in which all points in a set must be expressed

as combinations of extreme points. For example, convex

combinations are very useful in the robust control of linear

parameter varying (LPV) systems. If an LPV system acts

in uncertain environments and is affected by external and

internal disturbances, the control algorithm must take those

uncertainties and disturbances into account. For example,

reusable launch vehicles, upon reentry, as discussed in [1],

have to deal with many disturbances due to wind and

electromagnetic interferences, as well as aerodynamic and

atmospheric parameter uncertainties.

For the aforementioned reasons, robust control methods

like H∞ or H2 control are introduced for LPV systems. For

a linear system with fixed parameters, a set of linear matrix

inequalities (LMIs) which depends on the system matrices is

solved, and robust control can be achieved. An LPV system,

however, does not have constant system matrices which can

be used for the LMI approach. Instead, there are infinitely

many matrices which depend on the parameters, which

makes the robust control task for LPV systems challenging.

However, there exists a promising gain-scheduling approach

[2], [3] for LPV where the system matrices depend affinely

on the parameter vector θ, where θ can be measured or

estimated in real time. The basic assumption of this approach

is that the parameters can vary in a given polytope described

by its extreme points. Instead of trying to find a fixed robust

controller for the whole parameter space, the authors in [2]

propose computing robust H∞ controllers for the extreme

The authors are with the Department of Informatics,
Technische Universität München, Boltzmannstr. 3, 85748
Garching, Germany. bastian.schuermann@tum.de,
ahmed.elguindy@tum.de, althoff@in.tum.de

points of the parameter polytope only. These controllers for

the extreme points are obtained by solving a set of LMIs

along the lines of typical robust controller design. One of

the novel parts of the approach is that the authors obtain the

controller for any parameter θ by using a convex combination

of the controllers of the extreme points.

This controller approach was proposed for various applica-

tions, including missile control [4], multi-propeller airships

[5], and the previously mentioned reusable launch vehicles

[1]. It was also proposed for several wind power applications,

including wind energy conversion systems [6], wind turbines

[7], and wind power generators [8]. Its applicability was

proven by several implementations on real hardware setups,

including electromagnetic actuators [9], robotic manipulators

[10], and winding systems for elastic webs [11]. In [12]

the applicability of the LPV approach was used for model

predictive control, where the nonlinear model was linearized

using LPV models. This control approach strongly depends

on the ability to express a point inside a polytope as a

convex combination of the extreme points. If this is done by

solving a linear program, the computation is time-consuming

and prevents the use of formal methods, as they rely on

the closed-form expressions of the closed-loop dynamics.

One can overcome these problems by expressing the convex

combination in closed-form.

In the literature, closed-form expressions are only men-

tioned for special cases, for example for two-dimensional,

axis-aligned boxes in [2], [10], [11], [7], and [12] or even

axis-aligned boxes of arbitrary dimension in [1] and [8].

However, none of these papers provide proofs of the for-

mulas. All of these sources, even [1] and [8], who provide

a formula for n−dimensional, axis-aligned boxes, discuss

their theory for general polytopes but are only able to

provide formulas for special forms of boxes. Other papers,

for example [13], circumvent the problem of obtaining

closed-form expressions by simply assuming that the convex

combinations can be obtained in real-time.

The purpose of this paper is to close this gap by providing

closed-form expressions of convex combinations for general

polytopes in order to reduce online computation times and

therefore enable the use of the previously discussed control

approaches for fast dynamical systems. At the same time, this

provides the required tools for formal verification in order to

prove safety and other properties before runtime by e.g. using

reachability analysis [14], [15]. In order to apply reachability

analysis to controllers using convex combinations, these

techniques need closed-form expressions of the closed-loop

dynamics, and therefore also of the convex combinations.

In this paper, we refer to an expression which can be

written as an explicit mathematical formula, i.e., without any

loops or iterations, as analytical closed-form expressions.

For general closed-form expressions, we allow that there

are finitely many case distinctions, but each case must only

consist of an analytical closed-form expression. While it is

not possible to provide an analytical closed-form expression

for every type of set, we discuss how such an expression is

possible for certain classes of sets, more precisely simplices

and parallelotopes. Moreover, we show how non-analytical

closed-form expressions can be obtained even for arbitrary

polytopes with finitely many extreme points. The latter case

involves solving point location problems, which makes it

non-analytical.

The remainder of this paper is organized as follows: We

begin with a motivating example in Sec. II. In Sec. III we

provide a summary of the notation and give some definitions

of important concepts. Sec. IV is the main section and

contains the closed-form expressions for simplices, paral-

lelotopes, and arbitrary polytopes. The usefulness of these

expressions is validated by randomly-generated numerical

examples in Sec. V, where our results are compared with

solving the convex decomposition problem using linear pro-

gramming. The paper concludes with a discussion of the

results in Sec. VI.

II. MOTIVATING EXAMPLE

To motivate the usefulness of closed-form expressions

of convex combinations, let us consider the robust, gain-

scheduled controller approach of [2] for LPV systems of

the form

ẋ = A(θ(t))x +B(θ(t))u,

y = C(θ(t))x +D(θ(t))u.

The proposed controller synthesis algorithm works as fol-

lows: First, the robust controllers for the p extreme points

θ̂(i), i ∈ {1, . . . , p}, of the parameter polytope are computed

offline and denoted by K(1), . . . ,K(p). When applying the

controller online, the current parameter θ is measured and the

coefficients λi(θ) of the convex combination of the extreme

points are computed such that

p
∑

i=1

λi(θ)θ̂
(i) = θ, λi(θ) ≥ 0,

p
∑

i=1

λi(θ) = 1. (1)

The same coefficients λi(θ) are then used to obtain the

corresponding controller K by computing it as a convex

combination of the extreme point controllers with the same

coefficients as before, i.e., K =
∑p

i=1 λi(θ)K
(i).

Using this technique, robust controllers for any of the

infinitely many parameters θ in the parameter polytope can

be obtained, while the robust controller synthesis has to

be performed for the finitely many extreme points only.

Although this shows the usefulness of this control approach,

it has one problem which limits its real-time application

for fast systems. Since the controllers are not known ex-

plicitly, but obtained using a convex combination, a convex

decomposition problem has to be solved online in every

time step. This means that every time we want to find the

combination λi(θ) for a given parameter θ, we have to solve

the system of inequalities in (1). These are n+ 1 equalities

and p inequalities for p unknowns. In particular for high-

dimensional polytopes with many extreme points, this leads

to a large system of inequalities, which is hard to solve.

Moreover, with the exception of simplices, this system of

inequalities might have non-unique solutions. If the convex

combinations are only written as (1), we do not have a

closed-form expression for every point.

III. BACKGROUND

In this section, we provide some definitions and recapture

some basics.

A. Notation

We denote by R the set of real numbers and by ∅ the

empty set. For two real numbers a, b ∈ R, with a ≤ b, we

denote by [a, b] and (a, b) the closed and open set between

a and b, respectively. For a vector x ∈ R
n we denote by

xT its transpose, and we refer to its elements with xi ∈ R.

We denote the identity matrix by I ∈ R
n×n and the unit

vectors by e(i), i.e., e(i) is the i−th column of I. The vector

containing all ones is denoted by 1, and the vector containing

only zeros is referred to as 0. The boundary of a set S ⊂ R
n

is denoted by B(S), and we write I(S) for the interior of

S, such that S = B(S) ∪ I(S).

B. Convexity

Let us recall some basics about convex combinations and

convex set [16]. A vector x ∈ R
n is a convex combination

of p given vectors x̂(1), . . . , x̂(p) ∈ R
n if x can be written

as

x =

p
∑

i=1

λi(x)x̂
(i), λi(x) ≥ 0,

p
∑

i=1

λi(x) = 1.

A set S ⊂ R
n is convex if any convex combination of two

points x(1), x(2) ∈ S lies inside the set, i.e., ∀λ ∈ [0, 1] :
λx(1) + (1− λ)x(2) ∈ S. If S is convex and compact1 then

we call a point x̂(0) ∈ S an extreme point of S if it cannot

be represented by a convex combination of any two points

x̂(1), x̂(2) ∈ S, x̂(1) 6= x̂(0), x̂(2) 6= x̂(0). For any set S ⊂ R
n,

its convex hull conv(S) is the set of all convex combinations

of points in S, i.e.

conv(S) =

{
p
∑

i=1

λix̂
(i)|x̂(i) ∈ S, λi ≥ 0,

p
∑

i=1

λi = 1

}

.

C. Special Forms of Convex Sets

A set is called a parallelotope if it can be written as

P = {x ∈ R
n|x = cP +GPα, αi ∈ [−1, 1]},

with α ∈ R
n. Therein cP ∈ R

n defines the center point of

the parallelotope, and the matrix GP ∈ R
n×n has full rank

and contains the n generators as its columns.

1A set is compact if it is closed and bounded.

The convex hull of p extreme points x̂(1), . . . , x̂(p) is called

a polytope P , i.e., it can be written as

P = conv({x̂(1), . . . , x̂(p)}).

We call a polytope P ⊂ R
n with n + 1 extreme points a

simplex, if n of those extreme points are linearly indepen-

dent.

IV. CLOSED-FORM EXPRESSION OF CONVEX

COMBINATIONS

As discussed in Sec. II, when using convex combinations

for control or other online computation tasks, we have to find

the parameters λi(x) which are used to express a point x in a

polytope P as a convex combination of the p extreme points

x̂(i) of P in real-time. If we do not want to solve the convex

decomposition problem (1) online in every time step, we

need closed-form expressions of the convex combinations.

In this section we provide such closed-form expressions. We

do this first for simplices and parallelotopes, for which we

can provide analytical closed-form expressions. After this we

present non-analytical closed-form expressions for arbitrary

polytopes.

A. Simplices

Simplices are polytopes with the least number of extreme-

points, which still span a full-dimensional subset in R
n. The

convex combination of the extreme points for a given point

inside a simplex is unique. We show that any simplex can

be transformed into the unit simplex, i.e., the simplex with

one extreme point equal to the origin and the others equal

to the unit vectors e(i). This is achieved using an affine

transformation, i.e., a linear transformation together with a

translation. Both operations do not change any convexity

properties [16]. We denote the affine transformation of a

point y by y′, i.e., y′ = G−1
(
y − x̂(n+1)

)
. The new

coordinates y′ are known as barycentric coordinates [17].

By subtracting x̂(n+1), we shift the simplex such that the

transformed extreme point x̂′(n+1) lies in the origin. By

multiplying
(
y − x̂(n+1)

)
with G−1, we transform the other

extreme points to the unit vectors, i.e., x̂′(i) = e(i) for

i ∈ {1, . . . , n}. Note that since x̂(i) are all extreme points,

the vectors x̂(i)−x̂(n+1), i ∈ {1, . . . , n}, are all linearly inde-

pendent and therefore G−1 exists. For this special simplex,

we show how a unique, analytical closed-form expression

can be obtained. The advantage of this result is that the

convex combination obtained in this way can be used for

the original, non-unit simplex. This is stated in the following

theorem and is illustrated in Fig. 1:

Theorem 1 We consider an arbitrary simplex S ⊂ R
n

described by its n + 1 extreme points x̂(1), . . . , x̂(n+1). Let

us define the matrix

G =
[

x̂(1) − x̂(n+1), . . . , x̂(n) − x̂(n+1)
]

.

x̂(1)

x̂(2)

x̂(3)

x

a1

a2

(a) Original simplex

x̂′(1)

x̂′(2)

x̂′(3)
x′

1

10 x′

1

x′

2

a1

a2

(b) Simplex after affine transfor-
mation

Fig. 1. Any simplex (a) can be transformed to the unit simplex (b), for
which the closed-form decomposition problem can easily be solved.

Given a point x ∈ S, this point can be expressed as a convex

combination of the extreme points as

x =

n+1∑

i=1

λi(x)x̂
(i), (2)

where the parameters λi(x) are given by the following

closed-form expression:

λi(x) =
(

G−1
(
x− x̂(n+1)

))

i
for i ∈ {1, . . . , n} (3)

λn+1(x) = 1−
n∑

i=1

λi(x). (4)

Proof: We have to show that the two statements of

the theorem hold: (2) is a convex combination and (2) with

λi(x) resulting from (3)-(4) actually describes the point x.

Since the transformed extreme points x̂′(i) are the unit

vectors e(i), any transformed x′, with x ∈ S, can be uniquely

written as

x′ =

n∑

i=1

x′

ie
(i) =

n∑

i=1

x′

ix̂
′(i),

see also Fig. 1. Adding the last transformed extreme point

x̂′(n+1) = 0 does not change the result, since it is the origin.

From the definition of the simplex as the convex hull of the

extreme points, it follows that for any x ∈ S,
∑n

i=1 λi(x
′) =

∑n

i=1 x
′
i ≤ 1, because λi(x

′) = x′
i, i ∈ {1, . . . , n} and

x′ is inside the unit simplex. Since
∑n

i=1 λi(x
′) ≤ 1 is

not necessarily a convex combination, as the sum might be

smaller than one, we define λn+1(x
′) = 1−

∑n

i=1 λi(x
′). We

use this weight to add x̂′(n+1) = 0, which does not change

the result of the original decomposition, i.e.,

x′ =

n+1∑

i=1

λi(x
′)x̂′(i) =

n∑

i=1

λi(x
′)x̂′(i) + λn+1(x

′)0

=

n∑

i=1

λi(x
′)x̂′(i).

However, this definition of λn+1(x
′) ensures that

∑n+1
i=1 λi(x

′) = 1.
Because x ∈ S and S is transformed to the unit simplex,

all points are mapped to a nonnegative set. Therefore it holds

that λi(x
′) = x′

i ≥ 0, i ∈ {1, . . . , n}. From
∑n

i=1 λi(x
′) =

∑n

i=1 x
′
i ≤ 1 it follows that λn+1(x

′) = 1−
∑n

i=1 λi(x
′) ≥

0. Therefore, the λi(x
′) are a convex combination and define

any point x′ ∈ S ′ in terms of the transformed extreme points

x̂′(i).

In the last step, we show that we can use the parameters

of the transformed states λi(x
′) for the original state x as

well, by transforming the point x′ back into the original

coordinates. Since x′ = G−1
(
x− x̂(n+1)

)
by definition, the

following holds:

x = Gx′ + x̂(n+1) = G

(
n+1∑

i=1

λi(x
′)x̂′(i)

)

+ x̂(n+1)
︸ ︷︷ ︸

=
n+1∑

i=1

λi(x′)x̂(n+1)

=

n+1∑

i=1

λi(x
′)
(

Gx̂′(i) + x̂(n+1)
)

=

n+1∑

i=1

λi(x
′)x̂(i), (5)

which is a direct result from the fact that the convexity prop-

erties are not changed by affine transformations. Therefore,

x can be written as a convex combination of the extreme

points of S, and it has the same parameters λi(x
′) as the

convex combination of x′.

B. Parallelotopes

In the previous subsection, our solution involved trans-

forming simplices to unit simplices, for which the analytical

closed-form expression is easy to obtain. In this section,

we present a similar approach for parallelotopes. We first

transform a general parallelotope to the unit hypercube

[0, 1] × [0, 1] × . . . [0, 1] and then present a way to obtain

a closed-form expression for this special class of parallelo-

topes. The advantage is that in the case of boxes whose edges

are parallel to the axes, we can consider each dimension

independently. Although there are infinitely many different

combinations for choosing λi(x), except for points on the

boundary, we reduce the degrees of freedom such that we

obtain a unique solution. We do this by defining for any

point x ∈ P

x′ =
1

2
G−1

P
(x− cP) +

1

2
1, (6)

where cP is the center point and GP is the generator matrix

of P . This affine transformation maps the parallelotope to

P ′ =
1

2
G−1

P
(P − cP) +

1

2
1

= {x′ ∈ R
n|x′ =

1

2
G−1

P
(cP − cP) +

1

2
G−1

P
GPα+

1

2
1,

αi ∈ [−1, 1]}

= {x′ ∈ R
n|x′ =

1

2
1+

1

2
Iα, αi ∈ [−1, 1]},

which is the unit hypercube. Note that G−1
P

always exists

since GP has full rank. The transformation for an example

in R
2 is visualized in Fig. 2.

Theorem 2 We consider an arbitrary parallelotope P ⊂ R
n

given by

P = {x ∈ R
n|x = cP +GPα(x), αi(x) ∈ [−1, 1]},

x̂(1)

x̂(2)

x̂(4)

x̂(3)

x

a1

a2

(a) Original parallelotope

x̂′(1) x̂′(2)

x̂′(3)
x̂′(4)

x′

1

1

0 x′

1

x′

2

a1

a2

(b) Parallelotope after affine
transformation

Fig. 2. Any parallelotope (a) can be transformed to the unit hypercube (b),
for which the closed-form decomposition problem can easily be solved.

with 2n extreme points x̂(1), . . . , x̂(2n). Given a point x ∈ P ,
this point can be expressed as a convex combination of the

extreme points as

x =

2n∑

i=1

λi(x)x̂
(i), (7)

where the parameters λi(x) are given by the following

closed-form expression

λi(x) =

n∏

j=1

µi,j ,

where

µi,j =

{
x′
j if αj(x̂

(i)) = 1

1− x′
j if αj(x̂

(i)) = −1.
(8)

Thereby, x′ is the transformed point of x under the affine

transformation (6).

Note that for a point x̂(i) ∈ P to be an extreme point, the

entries in the corresponding parameter vector α(x̂(i)) must

all be ±1; therefore one of the cases in (8) is always satisfied.

Proof: We first prove by induction that (7) is a convex

combination. We then show that this convex combination (7)

actually results in the point x.

Since P ′ is the unit hypercube, it follows that for any

x′ ∈ P ′, x′
i ∈ [0, 1], ∀i. Because λi(x) is a product of the

entries x′
j or (1−x′

j), i.e., a product of n numbers between 0

and 1, its value must be between 0 and 1, too, which proves

the first of the two statements.

Let us now show the second part by induction over the

number of states n. We state that

2n∑

i=1

λi =

2n∑

i=1

n∏

j=1

µi,j = 1. (9)

Before we begin, note that it follows from the fact that

the α(x̂(i)) consist of all 2n possible combinations of ±1

entries, i.e., α(x̂(1)) =
[
−1 −1 . . . −1

]T
, α(x̂(2)) =

[
1 −1 . . . −1

]T
, . . . , α(x̂(2n)) =

[
1 1 . . . 1

]T
,

that we can find for any given λi(x) and an arbitrary l ∈
{1, . . . , n} another λk(x) for which µi,j = µk,j , ∀j 6= l

and µi,l = 1 − µk,l. For an easier notation, we order the

extreme points such that µ1,n = µ2,n = · · · = µ2n−1,n and

µ2n−1+1,n = µ2n−1+2,n = · · · = µ2n,n = 1− µ1,n.

Let us now begin by showing that (9) holds for n = 1 :

21∑

i=1

1∏

j=1

µi,j = µ1,1 + µ2,1 = µ1,1 + (1− µ1,1) = 1,

which follows from (8) and from the fact that we have only

two extreme points in the one-dimensional case.

The induction step is done by showing that we can reduce

(9) from n = N + 1 to n = N, for any N ≥ 1 :

2N+1
∑

i=1

N+1∏

j=1

µi,j =

2N+1
∑

i=1

µi,N+1

N∏

j=1

µi,j (10)

= µ1,N+1

2N∑

i=1

N∏

j=1

µi,j + µ2N+1,N+1
︸ ︷︷ ︸

=(1−µ1,N+1)

2N∑

i=1

N∏

j=1

µi,j (11)

=

2N∑

i=1

N∏

j=1

µi,j . (12)

Since we can order the λi(x) such that the same is possible

for the µi,j for n = N, we can reduce this sum down to

n = 1, for which we know that
∑21

i=1

∏1
j=1 µi,j = 1. This

shows that
∑n

i=1 λi(x) = 1.
The only remaining part to show is that (7)-(8) actu-

ally describes x correctly. We can do so by using the

previous results from the induction proof. First note that

because of the transformation (6), the extreme points of P ′

are the corner points of the unit hypercube, i.e., x̂′(1) =
[
0 0 . . . 0

]T
, x̂′(2) =

[
1 0 . . . 0

]T
, . . . , x̂′(2n) =

[
1 1 . . . 1

]T
, and that x̂

′(i)
j = 1 if and only if

αj(x̂
(i)) = 1, ∀i, j, see also Fig. 2. From this structure

it follows that λi(x) contains the factor x′
j if and only if

x̂
′(i)
j = 1. Let us now consider the k−th entry of x′ if

computed by (7)-(8). For an easier notation and without loss

of generality, we assume that we ordered the extreme points

such that x̂
′(1)
k = · · · = x̂

′(2n−1)
k = 1 and x̂

′(2n−1+1)
k = · · · =

x̂
′(2n)
k = 0. Then the following holds:

2n∑

i=1

λi(x)x̂
′(i)
k =

2n∑

i=1

n∏

j=1

µi,j x̂
′(i)
k (13)

=

2n∑

i=1

µi,k

k−1∏

j=1

µi,j

n∏

j=k+1

µi,j x̂
′(i)
k (14)

= x′

k

2n−1
∑

i=1

k−1∏

j=1

µi,j

n∏

j=k+1

µi,j

︸ ︷︷ ︸

=1 (see explanation below)

1 (15)

+ (1− x′

k)
2n∑

i=2n−1+1

k−1∏

j=1

µi,j

n∏

j=k+1

µi,j0 (16)

= x′

k1 = x′

k, (17)

where the sum over the remaining n − 1 factors in (15)

is equal to one because of the same arguments as in the

x̂(1)

x̂(2)

x̂(3)

x̂(4)

x̂(5)

x̂(6)

x̂(7)

x̂(8)

(a) Original polytope

x̂(1)

x̂(2)

x̂(3)

x̂(4)

x̂(5)

x̂(6)

x̂(7)

x̂(8)

x

x(c)

S
(4)
2

(b) Point inside Polytope

Fig. 3. (a) Given is a general polytope P ⊂ R
2 defined as the convex

hull of its p = 8 extreme points x̂(i). (b) The boundary B(P) is divided

into q = 8 simplices S
(i)
1 of dimension n − 1 (here: line segments).

Together with a center point x(c), the boundary simplices define q simplices

S
(i)
2 of dimension n (here: triangles). Any point x inside the polytope can

be expressed by the closed-form convex combination of the simplex it is
contained.

induction proof (10)-(12). Since this holds for every k ∈
{1, . . . , n}, this convex combination actually results in x′.

The affine transformation (6) does not change any convex-

ity properties [16]. Therefore, analogous to (5), the state x

can be represented by the convex combination of the extreme

points x̂(i) by using the parameters for the transformed state

λi(x
′), which concludes the proof.

For the special case of axis-aligned boxes, the presented

approach can be simplified to the closed-form expression

which was stated without a proof in [1] and [8].

Note that while we describe the approaches for full-

dimensional simplices and parallelotopes only, they can be

adapted for lower-dimensional simplices and parallelotopes.

One simply has to project the points on a lower-dimensional

subspace in which they become full-dimensional simplices or

parallelotopes. Then our presented techniques can be applied

again.

C. General Polytopes

In the previous two subsections, we discussed how to

find analytical closed-form expressions for simplices and

parallelotopes. In the case of simplices, the resulting convex

combination is unique. This is not necessarily the case with

parallelotopes and general polytopes. For parallelotopes, we

presented an approach which always results in the same

convex combination. This is possible since we are able

to uniquely transform simplices and parallelotopes to axis-

aligned simplices and axis-aligned boxes. Since the corre-

sponding mapping matrices are square, they are invertible.

For other shapes like general polytopes, it is not possible to

find such a map.

While it is not possible to provide an analytical closed-

form expression for general polytopes, we are nevertheless

always able to obtain a closed-form expression which can be

solved without using any iterations. Therefore, this approach

can be used online in real-time without the disadvantages of

using linear programming approaches.

The basic idea for the general polytope is the fact that any

polytope with finitely many extreme points can be expressed

by the union of finitely many non-overlapping simplices

[18]. For each of these simplices an analytical closed-form

expression can be found. This process is summarized in

Algorithm 1 and visualized in Fig. 3.

Algorithm 1 Convex Decomposition Algorithm for General

Polytopes

1: Given: Polytope P with p extreme points x̂(1), . . . , x̂(p)

⊲ offline

2: Connect each extreme point with its neighboring extreme

points along the edges of the polytope → results in q

simplices S
(1)
n−1, . . . ,S

(q)
n−1 in R

n−1

3: Define x(c) ←
∑p

i=1
1
p
x̂(i)

4: Connect x(c) with all extreme points x̂(i) → results in q

simplices S
(1)
n , . . . ,S

(q)
n in R

n

5: for i = 1, . . . , q do

6: Use Theorem 1 to obtain the closed-form for the

convex combination of all points inside simplex S
(i)
n

and store them
7: end for

8: Given x ∈ P ⊲ online

9: Find i, such that x ∈ S
(i)
n

10: Use the closed-form convex expression of simplex S
(i)
n

to describe x as convex combination of its extreme points

The boundary of the polytope P ⊂ R
n, denoted by

B(P), defines an n − 1 dimensional subspace of R
n. We

divide this space into q simplices S
(i)
n−1, i ∈ {1, . . . , q},

each of them defined by n extreme points of P such that
⋃q

i=1 S
(i)
n−1 = B(P), and ∀i, j : S

(i)
n−1 ∩ S

(j)
n−1 = ∅. We

use this division of the boundary of P to divide P itself

into q simplices. We use the fact that if we choose any

point x̃ ∈ I(P) in the interior of P and compute the

convex hull of this x̃ and the extreme points of a simplex

S
(i)
n−1 on the boundary of P, we obtain an n−dimensional

simplex S
(i)
n ⊂ P. By doing this for every simplex on the

boundary, we obtain q simplices S
(1)
n , . . . ,S

(q)
n such that

⋃q

i=1 S
(i)
n = P and ∀i, j : S

(i)
n ∩ S

(j)
n = ∅. Note that

this works with any point in the interior of P. However, we

choose x̃ = x(c) =
∑p

i=1
1
p
x̂(i) because we then immediately

know that λi(x
(c)) = 1

p
are the corresponding parameters of

the convex combination for x(c). Since x(c) is in many cases

around the center, the simplices will have similar sizes.

When this approach is used to obtain the convex combina-

tion for a given point x ∈ P online, we check which simplex

contains x. We then simply have to use the offline-computed

closed-form expression for the convex combinations in this

simplex in the same way as in Subsection IV-A. Checking

which simplex contains x is a point location problem, for

which efficient solutions exist, e.g., [19]. As we show in the

next section, it is even feasible to check all simplices.

V. NUMERICAL RESULTS

In this section, we compare the previously presented

closed-form approaches to obtain convex combinations with

existing approaches which solve (1) using linear program-

ming. All computations are performed using MATLAB on a

TABLE I

AVERAGE RUN TIMES FOR SIMPLICES AND PARALLELOTOPES (IN MS)

Dimension Simplices Parallelotopes

Cl.-Form Lin. Progr. Cl.-Form Lin. Progr.

2 0.0052 7.3922 0.0049 8.3247

3 0.0053 7.8886 0.0052 9.7929

5 0.0053 8.4302 0.0071 10.5306

8 0.0055 8.5203 0.0438 16.9912

10 0.0057 8.5928 0.1243 30.3809

12 0.0058 8.6812 0.4810 77.1852

15 0.0058 8.9057 3.5609 666.9693

50 0.0077 11.4315 – –

100 0.0123 20.5933 – –

200 0.0254 75.5463 – –

1,000 0.5471 10,902 – –

computer with a 3.1 GHz dual-core i7 processor and without

using parallel computing. We performed all pre-computations

which do not depend on the actual point inside the polytope

offline in advance.

A. Simplices and Parallelotopes

We randomly generate 100 simplices and 100 parallelo-

topes each in 2, 3, 5, 8, 10, 12, and 15 dimensions. We

also generate 100 simplices in 50, 100, 200, and 1,000

dimensions. Then we randomly generate points inside these

parallelotopes and solve the convex decomposition problem

first with our approach and then by solving a linear program

using the linprog function with the default settings and

the solution space bounded to [0, 1]. The results are presented

in Table I.

We see that our approach is significantly faster in any

of the presented dimensions for both simplices and par-

allelotopes. For simplices we are faster with factors be-

tween 1,400 and up to almost 20,000. The computation

times for parallelotopes are between 160 and 1,900 times

faster than using linear programming. We can compute the

simplices for much higher dimensions than parallelotopes,

since the number of extreme points increases linearly with

the dimensions for simplices, while the number of extreme

points for parallelotopes increases exponentially. Therefore,

the computation times almost do not increase for small

dimensions for simplices. For high dimensions, the closed-

form expressions for parallelotopes become quite large,

which takes a significant time to load the functions in Matlab

before the online computations can begin.

B. General Polytopes

In this subsection, we compare our closed-form approach

to the linear programming approach for general polytopes.

During the implementation of our closed-form algorithm,

we must decide how to check in which simplex the point

is contained. There are many ways which can reduce the

amount of simplices checked, for example the techniques in

[19], or by computing the distance of the point to the center

points of the q simplices S
(i)
Rn and starting the computation

with the nearest simplex. We choose the simplest strategy,

TABLE II

AVERAGE RUN TIMES FOR GENERAL POLYTOPES (IN MS)

Extreme Points Closed-Form Approach Linear Programming

Dimension n = 3

20 0.1585 9.5866

50 0.3234 10.1925

100 0.5317 11.9193

150 0.8613 13.2450

Dimension n = 4

20 0.2888 9.9935

50 0.6673 10.1101

100 1.3337 11.2544

150 2.1542 12.7434

Dimension n = 5

20 0.5205 10.1305

50 1.6159 10.2715

100 4.0592 11.2688

150 5.4805 12.0558

which is to check all simplices. Since it is also the worst-

case scenario, it provides a lower bound for the performance

of our approach. Checking all simplices is feasible, since for

each simplex only a few operations have to be performed.

We compute polytopes in 3, 4, and 5 dimensions with 20,

50, 100, and 150 vertices. For each of these combinations we

randomly compute 10 polytopes, and for each polytope we

randomly choose 10 points for which we solve the convex

decomposition problem. The results are summarized in Table

II. We see that our approach is faster in all of these cases,

even though we used the easiest method of checking all

simplices. The results can be further improved by either using

better heuristics for choosing the order in which the simplices

are checked or by using multi-core processors, as these tests

can be performed in parallel without overhead since each

computation is independent.

Note that we consider only the online computation times,

since these are the critical times in control. This is of course

only feasible if the polytopes are known in advance. For

simplices and parallelotopes, our approach is still signifi-

cantly faster than the linear programming approach, even if

everything has to be computed online (i.e., mainly matrix

inverses).

VI. CONCLUSION

Convex combinations are used for many applications

in control, such as for robust gain-scheduling control ap-

proaches for polytopic LPV systems. In many cases it is

necessary to have closed-form expressions of convex combi-

nations, for example for formal verification of safety or for

faster online computation times for fast dynamical systems.

We provide analytical closed-form expressions for simplices

and polytopes and prove their validity. Furthermore, we

present a technique for obtaining closed-form expressions

for general polytopes. We compare the computation times of

our approaches to linear programming algorithms and show

that our approaches provide significantly faster computation

times, therefore making them suitable for the control of fast

dynamical systems.

ACKNOWLEDGMENTS

The author gratefully acknowledges financial support by

the European Commission project UnCoVerCPS under grant

number 643921 and the German Research Foundation (DFG)

under grant number AL 1185/2-1.

REFERENCES

[1] H. Chaofan, Y. Lingyu, W. Zhenchao, S. Bin, and Z. Jing, “Linear
parameter-varying attitude controller design for a reusable launch
vehicle during reentry,” in IEEE Chinese Guidance, Navigation and

Control Conference, 2014, pp. 2723–2728.
[2] P. Apkarian, P. Gahinet, and G. Becker, “Self-scheduled H-infinity

control of linear parameter-varying systems: a design example,” Au-

tomatica, vol. 31, no. 9, pp. 1251–1261, 1995.
[3] P. Apkarian and R. J. Adams, “Advanced gain-scheduling techniques

for uncertain systems,” IEEE Transactions on Control Systems Tech-

nology, vol. 6, no. 1, pp. 21–32, 1998.
[4] P. Apkarian, J.-M. Biannic, and P. Gahinet, “Self-scheduled H-infinity

control of missile via linear matrix inequalities,” Journal of Guidance,

Control, and Dynamics, vol. 18, no. 3, pp. 532–538, 1995.
[5] L. Chen and D. Duan, “Polytopic LPV system based control design

for multi-propeller airship,” in Chinese Control Conference, 2014, pp.
4273–4276.

[6] E. B. Muhando, T. Senjyu, A. Uehara, and T. Funabashi, “Gain-
scheduled control for wecs via LMI techniques and parametrically
dependent feedback part ii: Controller design and implementation,”
IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 57–
65, 2011.

[7] X.-J. Yao, C.-C. Guo, and Y. Li, “LPV H-infinity controller design
for variable-pitch variable-speed wind turbine,” in IEEE International

Power Electronics and Motion Control Conference, 2009, pp. 2222–
2227.

[8] Dengying and Zhoujie, “LPV H-infinity controller design for a wind
power generator,” in IEEE Conference on Robotics, Automation and

Mechatronics, 2008, pp. 873–878.
[9] A. Forrai, T. Ueda, and T. Yumura, “Electromagnetic actuator control:

A linear parameter-varying (LPV) approach,” IEEE Transactions on

Industrial Electronics, vol. 54, no. 3, pp. 1430–1441, 2007.
[10] Z. Yu, H. Chen, and P.-y. Woo, “Gain scheduled LPV H-infinity control

based on LMI approach for a robotic manipulator,” Journal of Robotic

Systems, vol. 19, no. 12, pp. 585–593, 2002.
[11] H. Koc, D. Knittel, M. De Mathelin, and G. Abba, “Modeling and

robust control of winding systems for elastic webs,” IEEE Transactions

on Control Systems Technology, vol. 10, no. 2, pp. 197–208, 2002.
[12] Z. Liu, Q. Zhu, and L. Wang, “Predictive control for multi-joint

manipulator with polytopic model,” in IEEE International Conference

on Robotics and Biomimetics, 2009, pp. 2130–2133.
[13] V. F. Montagner, R. C. L. F. Oliveira, V. J. S. Leite, and P. L. D. Peres,

“Gain scheduled state feedback control of discrete-time systems with
time-varying uncertainties: an LMI approach,” in IEEE Conference

on Decision and Control and European Control Conference, 2005,
pp. 4305–4310.

[14] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler,
“Recent progress in continuous and hybrid reachability analysis,” in
IEEE Conference on Computer Aided Control Systems Design, 2006,
pp. 1582–1587.

[15] M. Althoff and B. H. Krogh, “Reachability analysis of nonlinear
differential-algebraic systems,” IEEE Transactions on Automatic Con-

trol, vol. 59, no. 2, pp. 371–383, 2014.
[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.
[17] A. F. Möbius, Der barycentrische Calcul. Verlag von Johann

Ambrosius Barth, 1827.
[18] C. W. Lee, “Subdivisions and triangulations of polytopes,” in Hand-

book of Discrete and Computational Geometry, 2nd ed., J. E. Good-
man and J. O’Rourke, Eds. Chapman and Hall/CRC, 2004.

[19] P. Tøndel, T. A. Johansen, and A. Bemporad, “Evaluation of piecewise
affine control via binary search tree,” Automatica, vol. 39, no. 5, pp.
945–950, 2003.

