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ABSTRACT

A new control method for nonlinear systems is presented
which solves reach-avoid problems by interpolating optimal
solutions using convex combinations. It also provides for-
mal guarantees for constraint satisfaction and safety. Reach-
avoid problems are important control tasks, which arise in
many modern cyber-physical systems, including autonomous
driving and robotic path planning. We obtain our con-
trol policy by computing the optimal input trajectories for
finitely many extreme states only and combining them us-
ing convex combinations for all states in a continuous set.
Our approach has very low online computation complexity,
making it applicable for fast dynamical systems. Iterating
through our approach leads to a new form of feedback con-
trol with formal guarantees in the presence of disturbances.
We demonstrate the new control method for a control prob-
lem in automated driving and show the advantages com-
pared to a classical control method.
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1. INTRODUCTION
Reach-avoid problems are important problems in cyber-

physical systems and arise in many different application
fields. For instance, autonomous cars should reach a de-
sired position while avoiding other traffic participants and
staying on the road. Another example is robot manipulators
whose end-effector must reach a desired position without col-
liding with surrounding persons or objects. The goal is to
always find a controller which steers all states from a given
initial set into a set around a target state. Until reaching
the final set, the system trajectories must avoid unsafe sets,
such as obstacles, and satisfy constraints, for example input
limitations. The task becomes even harder if the final set
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must be reached at a given point in time. For a single initial
state, this can be achieved by solving a constraint optimiza-
tion problem. The difficulty arises if one wants to control
all states of a given initial set, which is required when the
exact initial state is not known before runtime. The tradi-
tional approach would lead to infinitely many optimization
problems and would therefore be infeasible.

Our goal is to provide a solution to this problem by ex-
tending the control inputs for finitely many states to a whole
set of infinitely many states, while still ensuring that the fi-
nal set is reached and that the constraints are satisfied. To
do so, we present a novel control approach which utilizes op-
timal input trajectories for the extreme states of the initial
set and uses convex combinations of these inputs to con-
trol the current state. By iterating this process over several
steps, we obtain a feedback policy which ensures stability
and robustness against disturbances, thereby combining the
advantages of optimal (open-loop) control and feedback con-
trol. This idea provides a new way of viewing control theory:
instead of looking for a feedback control law, which offers a
stable closed-loop behavior, we directly use finitely many op-
timal open-loop inputs to control the system. Because of the
way we compute the inputs for arbitrary states from finitely
many optimal input trajectories, we achieve formal guaran-
tees for the whole set of controlled states. Since the on-
line complexity is low, fast sampling times can be achieved.
At the same time, the basic idea of our approach is rather
simple, both to understand as well as to implement, which
facilitates its applicability in industry.

We apply our technique to maneuver automata, resulting
in hybrid dynamics. Maneuver automata [13, 22] are used
for online path planning tasks, where it is not possible to
solve reach-avoid problems for fast and complex dynamical
systems online. Instead, the overall path planning task is
split into smaller reach-avoid problems, which can be solved
offline (Fig. 1, ➀). The solutions, so-called motion primitives
[13], are stored as states in a maneuver automaton. Therein,
two maneuvers can be safely connected if the reachable set
of the previous motion primitive is completely contained in
the initial set of the succeeding one (Fig. 1, ➁). The maneu-
ver automaton can then be used for online path-planning
by simply connecting the pre-computed motion primitives
along the transitions of the maneuver automaton and check-
ing whether the possible plans do not enter unsafe regions
(Fig. 1, ➂-➅). [22, 14] improve the applicability of maneu-
ver automata for real systems by making them safe in un-
certain environments through tools from formal verification
(see e.g., [4, 1] and references therein). While this is a big



advantage, the authors in [14] faced the challenge of ensur-
ing that the reachable set of a motion primitive ends in the
initial set of the next one in order to increase the number
of transitions in the automaton. Our new control approach
offers a solution to this problem.

Besides the hybrid dynamics of the maneuver automaton,
the dynamics of the system without a controller could be
hybrid as well. Our new method is based on combining op-
timal control with reachability analysis. Since approaches
which deal with hybrid dynamics exist for both methods
(e.g. [20, 4, 1]), we can also extend our approach to the case
that the uncontrolled system is hybrid. Due to space limi-
tations, however, we focus in this paper only on continuous
dynamics of the uncontrolled system so that we are able to
describe this new approach in detail.
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Figure 1: Overview of robust maneuver automata
(MA) design for an example in automated driving
using our convex control approach.

Related Literature. The idea of interpolating between
finitely many offline computed solutions in order to obtain
fast, near-optimal online control has been discussed in [31],
although without providing guarantees or considering dis-
turbances. Controlling all states around a single trajectory
is achieved by exploiting the so-called trajectory robustness
in [16]. This method is restricted to feedback-linearizable
and differentially flat systems, and it also does not take dis-
turbances into account. One way to obtain optimal con-
trol inputs which satisfy input and state constraints is to
solve the Hamilton-Jacobi-Bellman (HJB) equation or use
dynamic programming [5, 7, 21, 18]. However, an analytic
solution of the HJB equation is only possible for relatively
simple and small dimensional systems, and it becomes dif-
ficult to use for more complex and disturbed systems. For
linear systems in particular, there exist several methods [8,

9] for systematically computing the optimal feedback con-
trol law for different regions in the state space depending on
the goal region and the convex state and input constraints.
These techniques are often used for explicit model predictive
control (MPC) [8, 9]. However, since they have to divide
the state space into different regions, this can become easily
computationally intractable if the number of dimensions and
constraints grows, especially if disturbance effects have to be
taken into account. This curse of dimensionality is a com-
mon problem for techniques which rely on discretizing the
state and input spaces, such as most abstraction-based con-
trol approaches [19, 17, 34], which are able to take complex
specifications into account. Some recent approaches [33, 12]
avoid computing complete abstractions of the state space,
while still being able to consider complex specifications, by
solving reachability problems in a similar way as for maneu-
ver automata. A different approach is used in [30, 22], where
the authors use sums-of-squares techniques to find special
LQR tracking controllers. These controllers are then used
to compute so-called LQR trees. However, these methods
also suffer from the curse of dimensionality, as the complex-
ity of sum-of-squares techniques grows very fast with the
dimension. Less affected by the curse of dimensionality is
implicit MPC, where tube-based approaches [23, 26] use an
additional feedback controller to keep the system along an
optimized trajectory despite disturbances. However, tube-
based MPC loses optimality by using a fixed feedback con-
troller, which is not optimized further, even though some
approaches allow adapting the tube size during optimiza-
tion [27]. Also, most efficient tube-based MPC approaches
are restricted to linear systems, as they depend on the su-
perposition principle.

Organization. The remainder of the paper is organized as
follows: We begin with a formal problem statement in Sec. 2.
In Sec. 3, we describe the convex control approach. For
faster online computation, we discuss closed-form expres-
sions of convex combinations in Sec. 4. Sec. 5 shows a linear
approximation of the convex control approach for compu-
tational reasons. We demonstrate the applicability of our
approach in a numerical example in Sec. 6. In Sec. 7 we dis-
cuss the complexity and optimality of our approach, before
we conclude with a summary and an outlook in Sec. 8.

2. PROBLEM FORMULATION
In this paper, we consider a disturbed, nonlinear, time-

continuous system of the form

ẋ(t) = f(x(t), u(t), w(t)), (1)

with states x(t) ∈ R
n, inputs u(t) ∈ R

m, and disturbances
w(t) ∈ W ⊂ R

d (W is compact, i.e., closed and bounded).
We do not require any stochastic properties for w(·); we only
assume that any possible disturbance trajectory is bounded
at any point in time in the compact setW.We denote this by
w(·) ∈ W, which is a shorthand for w(t) ∈ W,∀t ∈ [0, tf ],
where tf ∈ R

+
0 is the final time. The same shorthand is

also used for states and inputs throughout the paper. We
denote the solution of (1) with initial state x(0), input u(·),
and disturbance w(·) at time t as ξ(x(0), u(·), w(·), t). The
solution satisfies the following two properties:

1. ξ(x(0), u(·), w(·), 0) = x(0)



2. ξ̇(x(0), u(·), w(·), t) = f
(

ξ(x(0), u(·), w(·), t), u(t), w(t)
)

,

∀t ∈ R
+
0 .

Sometimes, when we consider the undisturbed nominal sys-
tem, we use ξ(x(0), u(·), 0, ·) to denote the solution without
disturbances, i.e., W = 0.

The task is to find a control algorithm ucontrol(x, t) for
system (1) which guarantees that all states in an initial set
Sinit ⊂ R

n are steered into a final set Sf ⊂ R
n around an

end state x(f) after time tf , despite the disturbance set W.
We minimize the size of the final set by solving

min
ucontrol

ρ(Sf , x
(f)), (2)

where ρ(Sf , xf )→ R
+
0 is a cost function measuring the dis-

tance of the states in Sf to x(f). Furthermore, we consider
convex constraints on the states and inputs, i.e.,

ξ(x(0), u(·), w(·), ·) ∈ X , (3)

u(·) ∈ U , (4)

where X and U are both convex sets in R
n and R

m, respec-
tively. The distance function ρ(Sf , x

(f)) can have different
possible forms. One example would be

ρ(Sf , x
(f)) = max{‖x− x

(f)‖2|x ∈ Sf}.

Note that during offline computation, the locations of
most non-convex constraints, such as other traffic partici-
pants in automated driving or human workers surrounding
robots, are not known. Therefore, we use this approach to
compute the motion primitives offline in advance, while tak-
ing convex input constraints, e.g., maximum acceleration or
steering, and convex state constraints, e.g., maximum ve-
locity, into account. The non-convex dynamical constraints
are handled during the online planning using the maneuver
automaton as described in the introduction, see Fig. 1.

For the majority of this paper, we want to find a final set
Sf which is as small as possible. If the task is instead to steer
all states into a given final set, then we would have to adapt
the algorithms by adding this as an additional constraint.
In this case, however, it might be possible that no solution
can be found, depending on the choice of constraints, final
time, and final set.

3. CONVEX CONTROL
In order to solve the previously-stated problem, we pro-

pose a convex control approach: The basic idea is to use a
convex combination of control inputs computed for the ex-
treme states of an initial set Sinit in order to ensure that all
trajectories starting in this initial set will end in a desired set
Sf . A very similar idea has been used in parametrized tube
MPC [26], where control inputs are also computed as convex
combinations of extreme input values. This approach, how-
ever, is only used for linear systems and not for disturbed,
nonlinear systems, as considered in this paper. Computing
convex combinations of extreme inputs has also been used
for reachability analysis of linear systems, see e.g. [11]. The
focus in this case is on the reachable sets rather than optimal
control inputs, however.

For our convex control approach, we consider the initial
set Sinit to be given by a polytope P, defined by its p extreme
states x̂(i), i = 1, . . . , p. We assume to know for each of
the extreme states x̂(i) a piecewise-continuous control input

û(i)(·), i = 1, . . . , p, which steers this state into the desired
set Sf . To obtain the control input which steers an arbitrary
state x(0) ∈ P into the desired set Sf , we express x(0) as a

convex combination of the extreme states x̂(i) by choosing
λi(x(0)) such that

x(0) =

p
∑

i=1

λi(x(0))x̂
(i)
, (5)

with λi(x(0)) ≥ 0,
∑p

i=1 λi(x(0)) = 1. We then use the same
parameters λi(x(0)) to compute the corresponding control
input uconv(x(0), ·) for the state x(0) as a convex combina-

tion of the control inputs û(i)(·) of the extreme states x̂(i),
i.e.,

uconv(x(0), ·) =

p
∑

i=1

λi(x(0))û
(i)(·). (6)

This is illustrated in Fig. 2. Note that the controller
uconv(x(0), ·) provides an open loop control input. Feedback
is realized by iteratively applying (6). As we see in Sec. 4,
it is even possible to obtain closed-form expressions of the
convex combinations, such that the system of inequalities in
(5) does not to have to be solved online.

Sinit

Sf

x(f)

x̂(1) x̂(2)

x̂(3)

x̂(4)

(a) Extreme Trajectories

x(0)

x̂(1)

x̂(2)

x̂(3)

x̂(4)

(b) State Space

uconv(x(0), ·)

û(1)(·)

û(2)(·)

û(3)(·)

û(4)(·)

(c) Input Space

Figure 2: Basic idea of the convex control approach:
Compute input trajectories which control the ex-
treme states x̂(i) of the initial set Sinit close to the
desired final state x(f) (a). Express state x(0) ∈ Sinit

as a convex combination of extreme states x̂(i) (b).
Use the same convex combination to compute the
corresponding control input uconv(x(0), ·) using the

control inputs û(i)(·) of the extreme states (c).

3.1 Convex Control for Linear Systems
Before we consider disturbed, nonlinear systems, we illus-

trate first how our approach works for undisturbed, linear
systems of the form

ẋ(t) = Ax(t) +Bu(t), (7)

with x(t) ∈ R
n, u(t) ∈ R

m, A ∈ R
n×n, and B ∈ R

n×m. In
order to solve the control problem, we perform the following
two steps:



Step 1: For each of the extreme states x̂(i), i = 1, . . . , p, of
the initial set, we solve a constrained optimization problem
of the form

∀x̂(i) : min
û(i)(·)

Jlinear(‖ξ(x̂
(i)
, û

(i)(·), 0, tf )− x
(f)‖),

w.r.t. (3), (4),

to find an input sequence which returns a solution that ends
as close as possible to x(f) while satisfying the state and
input constraints (3)-(4). The norm and the exact form
of the cost function can be freely chosen depending on the
specific problem.

Step 2: For a given state in the initial set: express it as a
convex combination of the extreme states by solving (5) (or
using a closed-form expression from Sec. 4) and use the same
convex combination of the corresponding input sequences (6)
to control it to the final set.

By applying these two steps, we obtain for each extreme
state x̂(i) an input sequence û(i), such that the correspond-
ing state trajectory ends close (see (2)) to the desired final

state x(f) after a fixed time tf . If all input sequences û
(i)(·)

and corresponding state trajectories ξ(x̂(i), û(i)(·), 0, ·) sat-
isfy the input and state constraints, respectively, then, all
trajectories starting in the initial set Sinit under the convex
control law (6) end in the a priori known compact set

Sf = conv(ξ(x̂(1)
, û

(1)(·), 0, tf ), . . . , ξ(x̂
(p)

, û
(p)(·), 0, tf )),

where conv(·) denotes the convex hull. Moreover, all trajec-
tories satisfy the state constraints (3) and input constraints
(4) at all times.

This directly results from the way we compute the control
law and from the convexity of linear systems. Using (5)
and (6) it follows from the superposition principle that ∀t ∈
[0, tf ] :

ξ(x(0), uconv(x(0), ·), 0, t)

= ξ

(

p
∑

i=1

λi(x(0))x̂
(i)
,

p
∑

i=1

λi(x(0))û
(i)(·), 0, t

)

=

p
∑

i=1

λi(x(0))ξ(x̂
(i)
, û

(i)(·), 0, t),

i.e., any trajectory starting in the initial set lies inside the
convex set of the extreme trajectories. Since the extreme
trajectories satisfy the convex state constraints, any inner
trajectory satisfies the state constraints as well. The control
inputs are convex combinations of the extreme inputs, which
are contained in the convex input constraint U . Therefore,
it follows from convexity that the control inputs are in the
set U as well.

3.2 Convex Control for Nonlinear Systems with
Disturbances

Before we extend this idea to nonlinear systems with dis-
turbances (1), let us first define reachable sets and zono-
topes, as they are important for the rest of the paper.

Definition 1 (Reachable Set). For a system (1), the
reachable set Rt,u,W(S) ⊂ R

n for a time t, an input func-

tion u : R+
0 → R

m, disturbances w(·) ∈ W, and an initial

set S ⊂ R
n is the set of end states of trajectories starting in

S after time t, i.e.,

Rt,u,W(S) = {x(t) ∈ R
n|∃x(0) ∈ S ,∃w(·) ∈ W :

ξ(x(0), u(·), w(·), t) = x(t)}.

The reachable set over a time interval [t1, t2] is the union of

all reachable sets for these time points, i.e.,

R[t1,t2],u,W(S) =
⋃

t∈[t1,t2]

Rt,u,W(S).

If we consider the reachable set for a system with feed-
back ufb(x(t)), then we denote by Rt,ufb,W(S) the reach-
able set obtained if we consider the closed-loop dynamics
ẋ(t) = f(x(t), ufb(x(t)), w(t)) and no open-loop inputs.

All methods used in the reachablility analysis are over-
approximative, i.e., the real reachable set is guaranteed to
lie inside the computed reachable set. We have to compute
over-approximations, as it is impossible to compute exact
reachable sets for most systems [24]. Since we guarantee the
constraint satisfaction for the over-approximated reachable
set, the real reachable set satisfies the constraints as well,
i.e., our algorithm is sound. Because we cannot compute
the exact reachable set, we are also unable to provide error
bounds for the approximations. Simulations indicate how-
ever, that over-approximations can be tightly computed [1].
In this work, we apply the reachability algorithms from [1],
which use zonotopes as a set representation:

Definition 2 (Zonotope). A set is called a zonotope

if it can be written as

Z = {x ∈ R
n|x = cZ +GZα, αi ∈ [−1, 1]},

with α ∈ R
q and αi denoting the i−th entry of the vector

α. Therein cZ ∈ R
n defines the center of the zonotope, and

the matrix GZ ∈ R
n×q contains the q = o n generators as

its columns, with o denoting the order of the zonotope. A

zonotope with n linearly independent generators is called a

parallelotope.

Since nonlinear dynamics in general do not preserve con-
vexity [32], convex control cannot be applied in the same
way as in the linear case. Instead, we divide the control
problem into intermediate steps and iteratively apply the
convex control law to steer the system along a reference tra-
jectory. For each time step, we compute the reachable set
using techniques from formal verification [1], thereby ensur-
ing that the constraints are always satisfied despite distur-
bances and nonlinear dynamics. By recomputing the con-
vex control inputs in each time step, we realize feedback and
counteract the effects from disturbances. Through the use of
reachability analysis, we have a separation of concerns: the
optimization provides performance, while the reachability
analysis provides guarantees for the satisfaction of all con-
straints. Therefore, the guarantees still hold if we cannot
find optimal solutions for the optimal control problems as
long as we find solutions which satisfy the constraints. The
new control approach is presented in Alg. 1 and is illustrated
in Fig. 3. It consists of three major steps:

Step 1: We first solve a constrained, nonlinear opti-
mization problem in center optimal control (Alg. 1, line 1)

for the nominal system in order to find a trajectory x(c)(·)

which starts in x(c)(0), the center of Sinit, and ends as

close as possible to x(f). To solve this control problem ef-
ficiently, piecewise-continuous control inputs are computed



Algorithm 1 Offline Part of the Convex Control Algorithm
for Nonlinear Systems with Disturbances

1: (x(c)(·), u(c)(·)) ← center optimal control(x(c)(0), x(f),
tf , N, X̄ ,U)

2: Initialize: Sreach,1 ← Sinit

3: for k = 1, . . . , N do
4: P̄k ← compute parallelotope approx(Sreach,k)

5: (x̂(1,k), . . . , x̂(2n,k))← comp extreme pts(P̄k)
6: for i = 1, . . . , 2n do
7: û(i,k)(·) ← optimal corner control(x̂(i,k),

x(c)(tk+1), X̄ ,U)
8: end for
9: Sreach,k+1 ← comp reach set(Sreach,k, û

(1,k)(·), . . . ,

û(2n,k)(·),W)
10: end for

Sinit

x(f)
x(c)(0)

(a)
P̄1

(b)

Sreach,2

(c)

Sreach,3
Sreach,4

(d)

Figure 3: Convex control for nonlinear systems:
Compute a reference trajectory x(c)(·) from the cen-

ter x(c)(0) of the initial set Sinit to the final state

x(f) (a). Over-approximate the initial set by a par-
allelotope P̄1, and compute optimal trajectories for
the extreme states (b). Compute the reachable set
Sreach,2 for one time step under the convex control
law while taking all possible disturbance effects into
account (c). Repeat the procedure (d).

for N time steps of length ∆t =
tf
N
. For an easier notation,

we introduce ti = i∆t.
Since we solve the optimization problem for the undis-

turbed system, we have to tighten the nominal state con-
straints such that the disturbed system still satisfies the orig-
inal state constraints. We therefore define tightened state
constraints as

ξ(x(0), u(·), 0, ·) ∈ X̄ ⊆ X . (8)

We discuss how to compute them at the end of this section.
The cost function of the optimization problem is chosen

as

min
u(c)(·)

Jcenter(‖ξ(x
(c)(0), u(c)(·), 0, tf )− x

(f)‖, ‖u(c)(·)‖),

w.r.t. (8), (4).

Therein, ‖u(c)(·)‖ denotes some norm on the input trajec-
tory. We aim for a center trajectory which ends close to the
desired end state and whose control inputs are not too large,

such that we have some input capacities left for the inputs
of the extreme states, which are explained in the next step.
The resulting center trajectory is denoted by

x
(c)(·) = ξ(x(c)(0), u(c)(·), 0, ·).

Step 2: While step 1 is performed only once, we per-
form steps 2 and 3 for each time step k, k = 1, . . . , N (see
Alg. 1). At time step k, we over-approximate the reach-
able set Sreach,k of the previous time step by a parallelo-
tope P̄k in compute parallelotope approx (Alg. 1, line 4),
i.e., Sreach,k ⊆ P̄k. At the first time step k = 1, we over-
approximate the initial set Sinit (line 2). There exist ef-
ficient algorithms to formally compute parallelotope over-
approximations for zonotopes, see e.g., [1] and the refer-
ences therein. We use parallelotopes, since they offer a good
combination of a small number of extreme states and en-
closed volume, and since analytical, closed-form expressions
for convex combinations in parallelotopes exist (see Sec. 4).

For the parallelotope P̄k, we compute the 2n extreme
states x̂(1,k), . . . , x̂(2n,k) in comp extreme pts (line 5). Com-
puting the extreme states of a parallelotope P with center
cP and generator matrix GP can be done in a numerically
stable way by adding all 2n combinations of the generators,
i.e.,

{x̂(1)
, . . . , x̂

(2n)} = cP ± g
(1)
P
± · · · ± g

(n)
P

, (9)

where g
(i)
P

denotes the i−th column of GP . This is an ad-
vantage over general polytopes in half-space representation,
for which it is much harder and numerically less reliable to
compute the extreme states. We use the extreme states for
the convex control strategy by solving a nonlinear optimal
control problem with the nominal system dynamics for one
time step. This is done in optimal corner control (lines 6-8)

by solving for each extreme state x̂(i,k) :

min
û(i,k)(·)

Jcorner(‖ξ(x̂
(i,k)

, û
(i,k)(·), 0,∆t)− x

(c)(tk+1)‖),

w.r.t. (8), (4). (10)

This steers all extreme states as close as possible to the
optimal center trajectory.

Step 3: In the third step, we use the control in-
puts of the extreme states of the parallelotope P̄k to
obtain the convex control law in (6) for each state in-
side the reachable set of the last step Sreach,k. Af-
ter computing the convex control law uconv(x, ·), we use
formal reachability analysis tools [1] in comp reach set
(line 9) to obtain an over-approximation of the reachable
sets R̄∆t,uconv,W(Sreach,k) ⊇ R∆t,uconv,W(Sreach,k) and
R̄[0,∆t],uconv,W(Sreach,k) ⊇ R[0,∆t],uconv,W(Sreach,k). We
require the reachable sets for time intervals to ensure the
satisfaction of state constraints for all points in time. In
addition, we use the reachable sets at times tk to compute
the parallelotope over-approximations and to initialize the
reachability analysis for the next time step. Therefore, we
compute reachable sets for time intervals and time points.

The over-approximation of the reachable set is the initial
set for the next time step k + 1, i.e.,

Sreach,k+1 = R̄∆t,uconv,W(Sreach,k),

and we use this to continue with Step 2. By iterating Steps
2 and 3 for all N time steps, we obtain with Sf = Sreach,N+1



the over-approximation of the final reachable set of all states
starting in the initial set Sinit despite disturbances.

After the controller is computed offline using Alg. 1, we
save the computed extreme states x̂(i,k) together with the
corresponding input trajectories û(i,k)(·) in a look-up table.
In each time step during the online application of the con-
vex controller, the current state x(tk) is expressed as a con-

vex combination of the corresponding extreme states x̂(i,k).
The control input uconv(x(tk), ·) is obtained from the convex

combination of the extreme inputs û(i,k)(·) using the same
parameters λi,k(x(tk)) as described at the beginning of this
section in (5) and (6).

The results of the convex control approach for nonlinear
systems are summarized in the following theorem, which is
the main result of this paper:

Theorem 1. We consider a nonlinear system with dis-

turbances (1) and with state and input constraints (3)-(4).
We assume that we have found a convex controller for this

system using Algorithm 1. If

R̄[0,tf ],uconv,W(Sinit) ⊆ X , (11)

then any trajectory ξ(x(0), uconv(x(0), ·), w(·), ·) which

starts in the initial set will end after time tf in

Sf = Sreach,N+1, i.e., ξ(x(0), uconv(x(0), ·), w(·), tf ) ∈
Sf ,∀x(0) ∈ Sinit,∀w(·) ∈ W. Moreover, every trajectory

satisfies the state constraints and the applied inputs satisfy

the input constraints despite the presence of disturbances,

i.e., ∀x(0) ∈ Sinit,∀w(·) ∈ W,∀t ∈ [0, tf ] :

ξ(x(0), uconv(x(0), ·), w(·), t) ∈ X ∧ uconv(x(0), t) ∈ U .

Proof. From the definition of the reachable set and the
way we compute Sf as the over-approximation of the final
reachable set, it follows that ∀x(0) ∈ Sinit,∀w(·) ∈ W :

ξ(x(0), uconv(x(0), ·), w(·), tf ) ∈ Rtf ,uconv,W(Sinit)

⊆ R̄tf ,uconv,W(Sinit) = Sf .

In the same way, it follows from assumption (11) that

R[0,tf ],uconv,W(Sinit) ⊆ R̄[0,tf ],uconv,W(Sinit) ⊆ X ,

and therefore, the state constraint is satisfied for any trajec-
tory starting in the initial set.

When computing the control inputs û(i,k)(·) of the ex-

treme states x̂(i,k) in (10), we restrict them to lie in the
input set U at all times. Since the input set is convex, and
since any convex combination of points in a convex set lies
again in the convex set [10], it follows that any convex combi-
nation of these inputs, and therefore any control input from
our convex controller, satisfies the input constraints.

Tightened State Constraints. In general it is hard to know
in advance how much tighter the new state constraints have
to be, and there exists no general solution for this problem
in literature for disturbed, nonlinear systems. Since we com-
bine controller synthesis with reachable set computation, we
can check offline if the controller satisfies all constraints,
and if not, adapt the tightened state constraints. Since we
know which state constraints have been violated, we can
adapt exactly these constraints. By iteratively tightening
the nominal state constraints offline in advance until all con-
straints are satisfied by the real system, we obtain a formally

correct controller for the online application. The reacha-
bility analysis in [1] relies on linearizing the dynamics and
over-approximating the linearization errors and disturbance.
Therefore, we are able to use these over-approximations to
obtain good initial estimates of how much we have to tighten
the state constraints.

4. CLOSED-FORM EXPRESSION OF CON-

VEX COMBINATIONS
When applying the proposed convex control law (6), at

each new time step, we have to find the parameters λi(x)
to express a state x as a convex combination of the extreme
states x̂(i). Utilizing solvers for this problem is computation-
ally expensive, especially for higher dimensional systems,
and they would only provide an implicit solution. The com-
putation time would restrict the sampling times of our con-
troller, and the implicit solutions would prohibit the appli-
cation of reachability analysis, which relies on an explicit,
closed-form expression of the closed-loop dynamics.

To overcome these problems, closed-form expressions of
convex combinations of simplices, parallelotopes, and gen-
eral polytopes are presented in [28]. As mentioned before,
parallelotopes offer a good combination of enclosed volume
and a small number of extreme states. While simplices for
example have the advantage that they have only n + 1 ex-
treme states, the enclosed volume is smaller and has an “im-
practical” shape for our application purposes. On the other
hand, objects like higher-order zonotopes or general poly-
topes may better describe certain shapes, but when applied,
the number of vertices increases significantly. Therefore we
use parallelotopes to over-approximate the reachable set for
the convex control computation in Step 2 in Sec. 3.2. We use
these parallelotope over-approximations only to obtain the
input combination and use the actual high-order zonotope
for reachability analysis. In doing so, we avoid the error due
to this over-approximation such that it has no significant
impact on the reachability analysis.

The following theorem shows how to obtain closed-form
expressions of convex combinations for parallelotopes:

Theorem 2 ([28]). We consider a parallelotope P ⊂
R

n given by

P = {x ∈ R
n|x = cP +GPα(x), αi(x) ∈ [−1, 1]},

with 2n extreme states x̂(1), . . . , x̂(2n), see (9). Given a state

x ∈ P , this state can be expressed as a convex combination of

the extreme states as x =
∑2n

i=1 λi(x)x̂
(i), where the param-

eters λi(x) are given by the following closed-form expression

λi(x) =

n
∏

j=1

µi,j , (12)

where

µi,j =

{

x′
j if αj(x̂

(i)) = 1

1− x′
j if αj(x̂

(i)) = −1.
(13)

Thereby, x′ is the transformed state of x under the affine

transformation

x
′ =

1

2
G

−1
P (x− cP ) +

1

2
1 (14)

and x′
j denotes its j−th entry.



The proof as well as results for sets other than parallelo-
topes can be found in [28]. Note that for a point x̂(i) ∈ P
to be an extreme point, the entries in the corresponding pa-
rameter vector α(x̂(i)) must all be ±1; therefore, one of the
cases in (13) is always satisfied. Also, G−1

P
always exists

since GP has full rank.
With this theorem, we are able to pre-compute the con-

vex combinations for the parallelotopes at different points in
time. Since we know the parallelotopes in advance, we can
compute all matrices and matrix inverses of Thm. 2 offline.
During the online computation, we simply plug in the cur-
rent state in (14) and use the result to compute the λi(x).
The computation of all λi(x) for a ten-dimensional paral-
lelotope can be performed in around 0.1ms which is over
200 times faster than using linear programming solvers [28].

5. LINEAR APPROXIMATION OF THE

CONVEX CONTROL APPROACH
The convex controller described in Sec. 3 is a nonlinear

controller as can be seen by looking at the closed-form ex-
pressions of λi(x) in (12), where the different entries x′

j are
multiplied with each other. Although a convex combination
is a linear combination of the extreme states, the parame-
ters λi(x) have a nonlinear dependency on the initial state
for systems with dimensions greater than one. This increases
the nonlinearity of the whole closed-loop system, which leads
to larger computation errors during the reachability compu-
tation, as well as to a higher computational complexity of
the reachability computation itself [1].

In order to overcome these problems, we present an al-
ternative approach where we use a linear approximation of
the convex control approach. To do so, we take advantage of
the fact that efficient techniques for reachability analysis use
zonotopes as set representation [3, 1]. We use the zonotope
representation of the state set to compute a corresponding
zonotope representation for the inputs. We modify only the
third step in Sec. 3.2 by adding the input approximation, as
shown in Alg. 2. For simpler computations, we restrict our
considerations to piecewise-constant inputs, and we use the
constant value u to also denote the constant input trajectory
u(·), with u(t) = u, ∀t.

Algorithm 2 Convex Control Algorithm for Nonlinear Sys-
tems with Disturbances Using Linear Input Combinations

1: . . . (Lines 1 to 8 as in Alg. 1)

2: ZU,k ← opt input zonotope(P̄k, û
(1,k), . . . , û(2n,k))

3: Sreach,k+1 ← compute reachable set(Sreach,k,ZU,k,W)
4: end for (from last line of Alg. 1)

Any state x in a parallelotope P is uniquely defined by
the parameters α(x), i.e., x = cP + GPα(x), and therefore
α(x) can be obtained by

α(x) = G
−1
P (x− cP), (15)

where G−1
P

exists since P is a parallelotope.
In every time step k = 1, . . . , N , we want to find an input

zonotope ZU,k with center cZU,k
and generator matrix GZU,k

such that we obtain the corresponding control input for any
state x(tk) ∈ P̄k by just using α(x(tk)) in

uzono(x(tk)) = cZU,k
+GZU,k

α(x(tk)). (16)

By plugging (15) into (16), we obtain

uzono(x(tk)) = cZU,k
+GZU,k

G
−1
P̄k

(x(tk)− cP̄k
), (17)

which is linear in x(tk) as desired.
We now have to choose the center cZU,k

and generator
matrix GZU,k

of ZU,k, which best match the desired inputs.
Clearly, as this is a linear approximation of the nonlinear
convex input combinations, we cannot match the input for
every state in P̄k exactly. We choose cZU,k

and GZU,k
in

opt input zonotope (Alg. 2, line 2) by solving an optimiza-
tion problem such that the difference between the optimal
inputs for the extreme states û(i,k) and the inputs from the
input zonotope ZU,k for the corresponding α(x̂(i)) is mini-
mized:

min
cZU,k

,GZU,k

2n
∑

i=1

∥

∥

∥
û
(i,k) − (cZU,k

+GZU,k
α(x̂(i,k)))

∥

∥

∥

w.r.t. cZU,k
+GZU,k

α(x̂(i,k)) ∈ U ,∀i ∈ {1, . . . , 2n}. (18)

Now, we have the desired linear control law uzono(·) for any
state in P̄k with (17). Using Alg. 2 and therefore replacing
uconv by uzono in Thm. 1 ensures that the results of Thm. 1
also hold in the case of the new control law. We do not
change anything about the reachability computation, with
the exception of considering the new control law uzono, in
compute reachable set (line 3). Therefore, our algorithm is
still sound and we have guarantees for satisfaction of the
state constraints. Because of (18) and since U is convex it
holds that ∀k

ZU,k = conv
(

uzono(x̂
(1,k)), . . . , uzono(x̂

(2n,k))
)

⊆ U ,

and therefore the input constraints are satisfied as well.

6. NUMERICAL EXAMPLE
In this section, we provide a numerical example to show

the applicability of the proposed control approach for a con-
strained, nonlinear system. We choose a kinematic model of
a vehicle, which is broadly used to model the most important
dynamics of a car [25]:

v̇ = a+ w1, Ψ̇ = b+ w2, ẋ = v cos(Ψ), ẏ = v sin(Ψ), (19)

where the states v,Ψ, x, and y are the velocity, the ori-
entation, and the positions in x and in y directions, re-
spectively. The acceleration a and the normalized steer-
ing angle b are the inputs, and w1 and w2 are additive
disturbances. They are constrained to lie in the intervals
a ∈ [−9.81, 9.81]m

s2
, b ∈ [−0.4, 0.4] rad

s
, w1 ∈ [−0.5, 0.5]m

s2
,

and w2 ∈ [−0.02, 0.02] rad
s
.

We use our convex control approach to compute a ma-
neuver automaton for this model. Due to space limitations,
we present the maneuver automaton only for the three dis-
crete states “drive straight”, “turn left”, and “turn right”,
at velocities around 20m

s
. However, we can add additional

maneuvers simply by repeating the procedure for other final
states. Following the techniques introduced in [14], we can
only connect two motion primitives if the reachable set of
the first one lies completely in the initial set of the second
one, see Fig. 1, ➁. Since the car dynamics are independent of
the absolute position and orientation, it suffices if we end in
a set with the same size as the initial set, but which can be
shifted in position and orientation. However, in the velocity
dimension, we have to end in the initial set again. Therefore,



it must hold that Sreach,N+1−
[

0,Ψ(f), x(f), y(f)
]T

⊆ Sinit.

We choose for all maneuvers the initial set as the box
[19.8, 20.2]m

s
× [−0.02, 0.02]rad× [−0.2, 0.2]m× [−0.2, 0.2]m.

We apply our convex control approach three times for differ-
ent final states, corresponding to the three maneuvers. The
final states are given for the “drive straight” maneuver by
[

20 m
s
, 0 rad, 20m, 0m

]T
and for the “turn left” and “turn

right” maneuvers by
[

20 m
s
,±0.2 rad, 19.87m,±1.99m

]T
.

Each final state must be reached in one second. We divide
the main trajectory into 10 sections and apply four differ-
ent piece-wise constant control values for each section of the
reference trajectory. For the local controllers, we choose the
cost function as

Jcorner = (x̂(i,k+1) − x
(c)(tk+1))

T
Q(x̂(i,k+1) − x

(c)(tk+1)),

with x̂(i,k+1) = ξ(x̂(i,k), û(i,k)(·), 0,∆t) and Q being a diag-
onal matrix with [2, 5, 1, 1] on the diagonal.

6.1 Computational Results
We implement our approach in MATLAB and use the

ACADO toolbox [15] to solve the optimal control problems
with a multiple shooting algorithm. For the reachability
computation, we use the CORA toolbox [2], where the dis-
turbances are handled as an uncontrollable input. Since the
CORA toolbox works with zonotopes, we use the techniques
presented in Sec. 5 to obtain a parallelotope approximating
the inputs.

The computation of each maneuver takes around 10 sec-
onds, which can be performed offline. The computations
are performed on a computer with a 3.1 GHz dual-core i7
processor and 16 GB memory and without using parallel
computing. The online computation of the input values can
be performed in around 0.01ms, making it applicable to fast
systems.
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Figure 4: Reachable sets for the “turn left” maneu-
ver with the convex controller. The initial set is
plotted in black, the final set in blue, and the reach-
able set for all times between in gray. The black line
shows the center trajectory x(c)(·).

The whole reachable set is shown for the “turn left” ma-
neuver in Fig. 4. In Fig. 5, the initial sets (black) and
(shifted) final sets for all motion primitives are plotted. For
the convex controller, all final sets (blue) lie around the fi-
nal states and are completely contained in the desired set,
i.e., the shifted initial set. Therefore, we are able to connect
all maneuvers with each other and obtain a fully connected
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Figure 5: Initial (black) and shifted final sets (blue)
for the convex controller, projected to the (v,Ψ) and
the (x, y) planes, for the “turn left” (top), “drive
straight” (center), and “turn right” (bottom) ma-
neuvers. For comparison the final sets of two LQR
controllers (red).

maneuver automaton. The controller satisfies the input con-
straints at all times due to the way we computed it.

6.2 Comparison with LQR Controller
For comparison, we have also implemented an LQR-

tracking controller (red, solid in Fig. 5). It uses the same
center-trajectory as a reference trajectory. In each step, we
linearize the system around the corresponding state on the
center trajectory and compute an LQR controller. We use
the same Q matrix as for the corner trajectories. To weight
the inputs we choose the R matrix for the Ricatti equation
to be the identity matrix. As we see in Fig. 5, the shifted
reachable sets exceed the initial sets, making it impossible
to combine the maneuver with other maneuvers. Moreover,
since the LQR controller does not take input constraints into
account, it uses inputs for b in (19) up to 0.54 rad

s
, which

is more than the maximally allowed value. By decreasing
the weights of the inputs, we can move the final sets inside
the initial sets; however, the input constraints violation in-
creases even more in this case. If we increase the weights



on the inputs to R = 4I , we obtain a maximal b = 0.40 rad
s
,

which barely satisfies the constraint. However, the reachable
sets (red, dashed in Fig. 5) are very large and not suitable for
a maneuver automaton at all. Therefore, we cannot achieve
both a good final set and input satisfaction with LQR con-
trollers. This shows the advantage of the convex control
approach, which optimizes the reachable set while ensuring
the satisfaction of the constraints.

7. DISCUSSION OF THE ALGORITHM
Let us now discuss the complexity and optimality of the

proposed algorithms.

7.1 Optimality
Finding optimal solutions for a nonlinear, disturbed sys-

tem is a hard task, and in most cases it is not possible to
obtain globally optimal solutions. This is also true for the
nonlinear programming algorithms which we use to obtain
the solutions for the reference trajectory and the corner tra-
jectories.

While we have no guarantees that our overall dynamics
results in a globally optimal solution, numerical solvers for
optimizing open-loop trajectories work very efficiently and
converge for many initial states to (locally) optimal solu-
tions. Direct optimization methods in particular have shown
very good performance in recent years [6]. With our method
we are able to transfer the good results from optimizing
single, open-loop trajectories to a whole set of trajectories.
Through the iterative application, we obtain therefore a ro-
bust, closed-loop algorithm. It is a general problem to ef-
ficiently obtain globally optimal solutions for nonlinear dis-
turbed systems [29, 5].

While this general problem is still unsolved and even
though we have no guarantees for optimality (which no ef-
ficient approach can provide for disturbed, nonlinear sys-
tems), we have guarantees that the computed final set is
reached and all constraints are satisfied despite disturbances.
As we see in Sec. 6, the optimized solution performs much
better than other methods using standard LQR tracking
controllers. Since the computation is done offline, one can
make changes in the parameters (e.g., weighting matrices in
the cost functions or number of time steps) or the desired
final state if the results are not satisfying. This is of course
also the case if the shifted final set is not in the initial set,
as desired for maneuver automata. In this case we have to
change parameters or know that these maneuvers cannot be
combined.

7.2 Complexity
In order to discuss the complexity for our algorithm, we

have to distinguish between offline and online complexity,
where online complexity is more important, as it restricts
sampling times and therefore control performance. For of-
fline complexity, we are not able to provide an exact bound,
since nonlinear programming algorithms have no conver-
gence guarantees. As mentioned before, even though they
have no guarantees, they are often quite fast, especially for
short time horizons, as needed for the corner trajectories.
We can argue that if the optimal control problem is hardly
solvable for undisturbed open-loop trajectories, then we can-
not expect it to be solved more easily for a set of initial
states and disturbances. If we can solve the optimal control
problems for the extreme states, then the complexity of our

algorithm grows with 2n, with n denoting the dimension of
the state space, since a parallelotope has 2n extreme states
for which we have to compute the optimal input trajecto-
ries. While this is exponential, it is much better than other
comparable algorithms, which rely on discretizing the state
space (like explicit MPC or abstraction-based control) and
have exponential complexity with a larger base: kn, where k
denotes the number of discretized states in each dimension.
Therein, k can easily be 30 or 100. The reachability analysis
which we use has a complexity of O(n3), which is therefore
negligible for the overall complexity.

The online complexity of our approach is very low, as it
consists only of matrix vector multiplications and in the case
of closed-form expression of the convex combinations, plug-
ging the current state into a closed-form formula. Clearly,
since we have 2n extreme points, we have to compute 2n

weights, but each computation can be done very fast (around
0.1ms for all weights of a ten-dimensional system [28]). If
we use the linear approximation of the inputs as presented
in Sec. 5, the computation simplifies to a matrix vector mul-
tiplication only and has complexity O(n2). Therefore, we
can have high sampling times, as high as we could achieve
with piecewise-constant feedback matrices. The efficiency of
our approach can also be seen in the fast computation times
of around 10 seconds for the offline part and around 0.01
milliseconds for the online part, see Sec. 6.

8. CONCLUSION
In this paper, we present a novel control approach which

solves reach-avoid problems and can be used to generate ro-
bust maneuver automata. The approach allows us to steer
all states from an initial set to a final set by only computing
optimal input trajectories for the extreme states. By inter-
polating between these extreme state inputs using convex
combinations, we obtain fast online controllers with very
low computational complexity, as most computation tasks
can be performed offline in advance. The use of tools from
formal verification allows us to achieve provable safety and
formal guarantees. The approach works for linear and non-
linear systems even in the presence of disturbances.

The presented control approach is a novel way of view-
ing closed-loop control by combining the optimized solutions
from open-loop control with the stability and robustness of
feedback control. By using closed-form expressions for the
convex combinations and linear approximations for the con-
trol inputs, we provide two ways to make the convex con-
trollers even more efficient and faster, so that the online
complexity is only O(n2). The applicability is shown in the
numerical example, where we are able to obtain a completely
connected maneuver automaton for an autonomous vehicle.

We believe that the convex control approach is a very
useful tool in control theory which can be used for many ap-
plications. Therefore, there are many future extensions pos-
sible. The next steps include computing of larger maneuver
automata and testing them on real autonomous cars, as well
as applying our approach to other application areas.
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