
Guaranteeing Constraints of Disturbed

Nonlinear Systems Using Set-Based

Optimal Control in Generator Space

Bastian Schürmann and Matthias Althoff

Department of Informatics, Technische Universität München,
Boltzmannstr. 3, 85748 Garching, Germany (e-mail:

bastian.schuermann@tum.de, althoff@tum.de).

Abstract: We address the problem of finding an optimal solution for a nonlinear system for a set
of initial states rather than just for a single initial state. In addition, we consider state and input
constraints as well as a set of possible disturbances. While previous optimal control techniques
typically ignore the fact that the current state of a system is not exactly known, future safety-
critical systems demand that all uncertainties including the initial state are considered; this is
required for e.g. automated vehicles, surgical robots, or human-robot interaction. We present
a new method that obtains optimal control inputs by finding optimal weights for generators
that span the space reachable by the considered system. This solution routine can be used not
only for a single initial state but also for a set of initial states – this is not possible using
classical optimization techniques. We ensure that all constraints are met by using reachability
analysis, which provides formal bounds for all possible system trajectories. We demonstrate the
applicability of our approach with an example from automated driving; for this example, the
result is obtained within a few seconds and outperforms a classical LQR approach.

Keywords: Control of Constrained Systems, Optimal Control, Nonlinear Control, Robust
Control, Reach-Avoid Problems, Reachability Analysis, Zonotopes

1. INTRODUCTION

In many control problems, a system has to be controlled
from a given initial state as close as possible to a desired
final state in a fixed time while satisfying input constraints
and avoiding forbidden regions in the state space. Such
reach avoid-problems appear in many applications, e.g., in
autonomous driving, where a car has to be steered from
its initial position to a desired final position while obeying
traffic rules and avoiding other traffic participants. For sin-
gle initial states, these problems can be solved efficiently by
using classical optimization techniques. In many scenarios,
however, it is not enough to have a solution for a single
initial state only: one needs solutions for a set of initial
states, for example if the exact initial state is not known
beforehand or if sensors are not accurate. If one deals with
an initial set, efficient methods which work for single initial
states no longer work, as they would have to be applied
for all infinitely-many states of a continuous set.

Many optimal control techniques which are developed to
deal with initial sets rely on dividing and discretizing
the state space as discussed at the end of this section.
Since this becomes computationally intractable for higher-
dimensional systems, we present a novel optimal control
approach, which combines the optimal control problem of
a set of initial states into a single linear program that can
be solved efficiently. By iteratively applying the open-loop
optimal control in combination with reachability analysis,
we find a novel way of obtaining feedback controllers
which provide formal guarantees for the satisfaction of

state and input constraints despite nonlinear dynamics
and disturbances. This has the additional advantage that
we do not need to prove stability of our controller, as safety
is guaranteed by the included reachability analysis.

Our approach is not restricted to planning single maneu-
vers; it is also particularly useful in combination with safe
maneuver automata as presented in Heß et al. (2014).
Therein, reach-avoid problems are solved for different ini-
tial and final states and the resulting maneuvers are stored
as states in a so-called maneuver automaton. There exists
a transition between two states, i.e., two maneuvers can
be combined, if the final reachable set of the first ma-
neuver is completely contained in the initial set of the
second maneuver. This allows one to compute and to verify
maneuvers offline in advance. During the online control,
path planning simplifies to combining the pre-computed
maneuvers in a discrete search. To be able to follow each
maneuver with as many other maneuvers as possible, it
is important to obtain small reachable sets at the end of
each maneuver primitive. Since this is hard for many clas-
sical control methods when dealing with constraints and
disturbances, our novel control approach offers a solution
to this problem.

There also exist other approaches for computing con-
trollers for sets of initial states; however, as explained
subsequently, most of them are either not able to pro-
vide guarantees for disturbed, nonlinear systems or their
computational effort grows very fast with the number of
dimensions. One way to systematically solve optimal con-

trol problems is by solving the Hamilton-Jacobi-Bellmann
(HJB) equations or by using dynamic programming [Bert-
sekas (2005); Blanchini and Miani (2008); Lygeros et al.
(1999); Kurzhanski et al. (2006)]. However, the analytic
solution of the HJB equation is only possible for simple and
small-dimensional systems. For higher-dimensional sys-
tems, especially with disturbances, the computation easily
becomes too complex. Borrelli et al. (2015) use similar
methods for explicit model predictive control (MPC), in
particular for linear systems. In explicit MPC, the state
space is divided into different parts, and an optimal con-
trol law is computed for each. Since the computational
costs for this partitioning grow exponentially with the
number of dimensions, this approach is also restricted
to low-dimensional systems. This curse of dimensionality,
and therefore the restriction to low-dimensional systems,
is a common problem for all approaches which rely on
discretizing the state space, including most abstraction-
based control methods [Liu et al. (2012); Kloetzer and
Belta (2008); Zamani et al. (2012)]. There, these discretiza-
tions are used to compute controllers which take complex
specifications into account.

Other approaches compute funnels or tubes around trajec-
tories and use different methods to provide guarantees. In
Julius and Winn (2012), so-called trajectory robustness is
used to steer an initial set around a trajectory; however,
this only works for undisturbed and feedback-linearizable
systems. A method which works for disturbed systems
is tube-based MPC [Mayne et al. (2005); Rakovic et al.
(2012)], where an additional feedback controller is used to
keep all states in a tube around the optimized center tra-
jectory despite disturbances. These methods work mainly
for linear systems, though, and most approaches use a
fixed feedback controller without further optimization of
the tube size. Another way to compute tracking controllers
around trajectories is presented in Tedrake et al. (2010)
where sums-of-squares (SOS) programming techniques are
used to compute LQR controllers to keep the states around
a trajectory. This method is also successfully used to com-
pute maneuver automata [Majumdar and Tedrake (2013)];
however, the computational effort of SOS methods grows
very fast with the dimension of the system.

We have already considered the problem at hand in two
previous works: In Schürmann and Althoff (2017a), we
obtain control inputs for all states of an initial set by inter-
polating optimal open-loop inputs of the extreme points
of a set, using convex combinations. Since the number
of extreme points grows exponentially with the number
of dimensions, we use generators in this work instead,
which scale linearly with the dimension. In Schürmann and
Althoff (2017b), we are able to obtain continuous feedback
by directly optimizing the closed-loop dynamics, though
only for linear dynamics.

The remainder of this paper is organized as follows: After
a formal problem formulation in Sec. 2, we present our
new algorithm in Sec. 3. Its applicability is shown in a
numerical example in Sec. 4. We conclude with a discussion
of the algorithm in Sec. 5 and a summary in Sec. 6.

2. PROBLEM FORMULATION

We consider a disturbed, nonlinear, time-continuous sys-
tem of the form

ẋ(t) = f(x(t), u(t), w(t)), (1)

with states x(t) ∈ R
n, inputs u(t) ∈ R

m, and disturbances
w(t) ∈ W ⊂ R

d (W is compact, i.e., closed and bounded).
We do not require any stochastic properties for w(·); we
only assume that any possible disturbance trajectory is
bounded at any point in time in the compact set W .
We denote this by w(·) ∈ W , which is a shorthand for
w(t) ∈ W , ∀t ∈ [0, tf], where tf ∈ R

+
0 is the final time. The

same shorthand is also used for state and input trajectories
throughout the paper. We denote the solution of (1) with
initial state x(0), input u(·), and disturbance w(·) at time
t as ξ(x(0), u(·), w(·), t). If we consider an undisturbed
system, we use ξ(x(0), u(·), 0, t) to denote the solution
without disturbances, i.e., W = 0.

The task is to find a control law ucontrol(x, t) for system (1)
which guarantees that all states in an initial set X0 ⊂ R

n

are steered into a final set Sf ⊂ R
n around an end state

x(f) after time tf , despite the disturbance set W . We
minimize the size of the final set by solving

min
ucontrol

max{‖x− x(f)‖1|x ∈ Sf}. (2)

Furthermore, we consider convex constraints on the states
and inputs, i.e.,

ξ(x(0), u(·), w(·), ·) ∈ X , (3)

u(·) ∈ U , (4)

where X and U are both convex sets in R
n and R

m,
respectively.

Note that during offline computation, the locations of most
non-convex constraints, such as other traffic participants in
automated driving, are not known. Therefore, we use this
approach to compute the maneuvers offline in advance,
while taking convex input constraints, e.g., maximum ac-
celeration or steering, and convex state constraints, e.g.,
maximum velocity, into account. The non-convex dynam-
ical constraints are handled during the online planning
using the maneuver automaton (see Fig. 1).

x(f)

X0

obstacles

final reachable
set of first
maneuver

initial set
of subsequent
maneuver

Fig. 1. Using maneuvers (gray) to steer all states from
X0 to x(f) while avoiding nonconvex obstacles (red).
The final set (blue box) of one maneuver is always
contained inside the initial set (black box) of the
following maneuver.

For most of the paper, we want to find a final set Sf which
is as small as possible. If instead the task is to steer all
states into a given final set, then we would have to adapt
our algorithms by adding this as an additional constraint.
In this case, however, it might be possible that no solution
exists, depending on the choice of constraints, final time,
and final set.

3. OPTIMAL CONTROL IN STATE SPACE

To prove safety and other important properties of continu-
ous systems, formal verification in the form of reachability
analysis [Althoff (2010), Asarin et al. (2006)] has proven to
be useful. Therein, reachable sets are computed, and it is
checked whether these sets satisfy certain properties, such
as not intersecting with forbidden sets. The reachable set
of a system is defined as:

Definition 1. (Reachable Set). For a system (1), the reach-
able set Rt,U ,W(S) ⊂ R

n for a time t, inputs u(·) ∈ U ⊂
R

m, disturbances w(·) ∈ W ⊂ R
d, and an initial set

S ⊂ R
n is the set of end states of trajectories starting

in S after time t, i.e.,

Rt,U ,W(S) = {x(t) ∈ R
n|∃x(0) ∈ S, u(·) ∈ U , w(·) ∈ W :

ξ(x(0), u(·), w(·), t) = x(t)}.

The reachable set over a time interval [t1, t2] is the union
of all reachable sets for these time points, i.e.,

R[t1,t2],U ,W(S) =
⋃

t∈[t1,t2]

Rt,U ,W(S).

If we consider the reachable set for a system with feed-
back ufb(x), then we denote by Rt,ufb,W(S) the reach-
able set obtained if we consider the closed-loop dynamics
ẋ(t) = f(x(t), ufb(x(t)), w(t)) and no open-loop inputs.
If we consider systems without disturbances, then we use
Rt,U (S) as a shorthand for Rt,U ,0(S), i.e., W = 0. Since
it is not possible to compute exact reachable sets for most
systems [Platzer and Clarke (2007)], we compute over-
approximations instead.

Zonotopes are an efficient set representation for reachabil-
ity analysis, as used for example by Althoff (2010):

Definition 2. (Zonotope). A set is called a zonotope if it
can be written as

Z =
{

x ∈ R
n
∣
∣
∣x = c+

p
∑

i=1

αig
(i), αi ∈ [−1, 1]

}

. (5)

Therein c ∈ R
n defines the center of the zonotope, and

g(i) ∈ R
n, i ∈ {1, . . . , p}, are p = o n generators, with

o denoting the order of the zonotope. The generators can
also be combined in the generator matrix G ∈ R

n×p, which
contains the generators as its columns. We use < c,G > as
a more concise notation of Z. A zonotope with n linearly
independent generators is called a parallelotope.

An overview of our main idea is illustrated in Fig. 2:
In classical optimization of continuous dynamic systems,
the cost function of a continuous trajectory is minimized
in state space for a single initial state (Fig. 2 top-left).
Currently, it is unknown how to solve a corresponding
optimization problem when the possible set of initial states
is provided (Fig. 2 top-right). Our idea is to reformulate
the classical optimization problem as a problem of finding
optimal weights of generators that span the reachable set
of a system (Fig. 2 bottom-left). We refer to this problem
space as the generator space; details of this transforma-
tion are presented in the following section. Based on the
changed problem formulation, we can generalize the prob-
lem in a straightforward way to sets of initial states (Fig. 2
bottom-right). Thereby, we separately consider the partial
reachable sets originating from the homogeneous solution
and from the input solution. After obtaining the solution

Single Initial State

0 1 2

-0.8

-0.4

0

0.4

0.8

t

x
,
u

inputs

states

Set of Initial States

0 1 2

-1

-0.5

0

0.5

t

x
,
u
,
K

inputs

controllers

states

initial state

reachable
set

generators

initial
set

input solution

homogeneous

solution

?

extends

Fig. 2. Overview of solving optimal control problems.

in the generator space, we can map it back to the original
state space to obtain the optimal solution. In the following,
we discuss these steps in detail for different system classes.

3.1 Linear Systems with Single Initial State

Let us start with a single initial state and an undisturbed,
continuous-time, linear time-invariant (LTI) dynamic of
the form

ẋ(t) = Acx(t) +Bcu(t),

with x(t) ∈ R
n, u(t) ∈ R

m, Ac ∈ R
n×n, and Bc ∈ R

n×m.
To obtain a simple representation of the reachable set, let
us first note that any continuous-time LTI system can be
transformed into a discrete-time system of the form

x(tk+1) = Ax(tk) +Bu(tk), (6)

with A = eActs and B =
∫ ts

0
eAcτdτBc. Therein, ts =

tf
N
, N ∈ N, denotes the sampling time, and we use

tk as a shorthand for kts, k ∈ {0, . . . , N}. We assume
that the control inputs are constant during each sampling
period. For the discrete-time system (6), the solution can
be expressed as

ξ(x(0), u(·), 0, tN) =ANx(0) +AN−1Bu(t0)

+ · · ·+Bu(tN−1).

If we assume that the input set is given as a zonotope
U = Zu =< cu, Gu >, then the solution can be written as

ξ(x(0), u(·), 0, tN) = ANx(0) + (AN−1B + · · ·+B)cu

+AN−1BGuα(t0) + · · ·+BGuα(tN−1) (7)

= cRtN ,Zu
+GRtN ,Zu

α.

Therein cRtN ,Zu
= ANx(0) + (AN−1B + · · · + B)cu and

GRtN ,Zu
=

[
AN−1BGu, . . . , BGu

]
are the center and gen-

erator matrix of the reachable set RtN ,Zu
(x(0)), respec-

tively. We illustrate how GRtN ,Zu
consists of the input

effects of different time steps in Fig. 3. The reachable set
itself is shown in Fig. 4(b) as the combination of GRtN ,Zu

and the homogeneous solution shown in Fig. 4(a). Since
the set reachable by the system is spanned by GRtN ,Zu

,

finding an input trajectory which steers x(0) as close as
possible to x(f) simplifies to finding weights α, which
express the closest state to x(f) inside the generator space
(see Fig. 4(c)). This is done in the following linear program

min
α

‖ cRtN ,Zu
+GRtN ,Zu

α
︸ ︷︷ ︸

ξ(x(0),u(·),0,tN), see (7)

−x(f)‖1 (8)

s.t.|α| ≤ 1,

where 1 denotes a vector containing only ones. Therein,
absolute value and less or equal operators are both per-
formed element-wise. The optimal input at any time tk is
then given as u(tk) = cu +Guα(tk).

g
(1)
u

g
(2)
u

(a) BGu

g
(3)
u

g
(4)
u

(b) ABGu

g
(5)
u

g
(6)
u

(c) A2 BGu

g
(1)
u

g
(2)
u

g
(3)
u

g
(4)
u

g
(5)
u

g
(6)
u

(d) GRt3,Zu

Fig. 3. We combine the effects from the inputs of the
current step (a) and the previous time-steps (b,c) into
a single zonotope (d).

ANx(0)

x(0)

(a) cRt3,Zu

x(0)

(b) Rt3,Zu
(x(0))

x(0)

x(f)

(c) ξ(x(0), u(·), 0, t3)

Fig. 4. Illustration of our approach for a single initial state,
N = 3 and cu = 0.

The standard form of a linear program is maxy c
T y subject

to Dx = e, y ≥ 0, with c, y ∈ R
n, D ∈ R

n×m, and
e ∈ R

m [Dantzig and Thapa (2006)]. As shown in (Dantzig
and Thapa, 2006, Ch. 6) and Grant et al. (2006), any
optimization problem of the form (8) can be transformed
into a linear program, which is not shown due to space
restrictions.

For discrete-time LTI systems, the batch approach (Bor-
relli et al., 2015, Sec. 9.2) is well known and often used
for MPC. It is similar to our approach and also uses an
explicit expression for future states, but encloses inputs
in boxes or polytopes. However, it does not extend to the
case of initial sets.

3.2 Linear Systems with Initial Sets

Let us now apply the idea from the previous section to
initial sets X0 =< cx, Gx > instead of to a single initial
state x(0). Introducing the Minkowski sum (A⊕B = {a+
b|a ∈ A, b ∈ B}) allows us to express the reachable set
similarly to (7):

RtN ,U (X0) = ANX0 ⊕AN−1BZu ⊕ · · · ⊕BZu.

As for the single initial state case, we have a part which
we cannot influence with our controller and another part
which results from our control inputs. Let us denote by
R̃ =< c̃, G̃ > the resulting reachable set, which we want
to minimize in (2). Since R̃ is a zonotope, minimizing (2)
is equivalent to minimizing

max ‖c̃− x(f) +

p
⊕

i=1

{−g̃(i), g̃(i)}‖1, (9)

with
⊕

denoting the sum symbol for Minkowski sum,
which we use to refer to all 2p possible extreme points.
This means we want to minimize the maximum distance
of any extreme point and x(f). While this optimization
problem becomes too complex, we are able to obtain

‖c̃− x(f)‖1 +

p
∑

i=1

‖g̃(i)‖1 (10)

as an upper bound for (9), where (9) ≤ (10) follows from
the triangular inequality. This is also one reason why we
use the 1-norm, as this inequality does not hold for the
2-norm. This shows that by steering the center as close
as possible to x(f) and by minimizing the length of the
generators, we minimize an upper bound for (2). After
introducing cx = x(0), steering cx as close as possible to
x(f) results in the same optimization problem (8) as for the
single initial state. Equivalently, we minimize the length of
the generators in

min
α

‖ANg(i)x +GRtN ,Zu
α‖1, ∀i ∈ {1, . . . , p}, (11)

which we obtain by replacing cRtN ,Zu
in (8) with the

homogeneous solution of the generator ANg
(i)
x and the

desired final state x(f) with the origin 0, which therefore
can be neglected. This is illustrated in Fig. 5, where we use
the input solutions (shown as concatenated arrows in red,
green, and blue) to steer the center and the generators of
the homogeneous solution as close as possible to x(f) and
the origin, respectively.

ANg
(1)
x

ANg
(2)
x

cx

g
(2)
xg

(1)
x

X0

ANX0

input

solution
for cx

input solutions

for g
(1)
x and g

(2)
x

x(f)

AN cx

Fig. 5. The approach from Fig. 4 extended to initial sets.

Since any state x ∈ X0 is a superposition of cx and

g
(i)
x , we cannot compute the α weights in (8) and (11)
independently of each other. Otherwise, the superposed
inputs might violate the input constraints. Instead, we use

the fact that

∥
∥
∥
∥

[
a
b

]∥
∥
∥
∥
1

= ‖a‖1 + ‖b‖1 to combine (8) and

(11) in a single linear program which minimizes (10) while
taking the coupled inputs into account:

min
α(cx),α(g

(1)
x),

...,α(g(p)
x)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

cRtN ,Zu
+GRtN ,Zu

α(cx)− x(f)

ANg(1)x +GRtN ,Zu
α(g(1)x)

...

ANg(p)x +GRtN ,Zu
α(g(p)x)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
1

(12)

s.t. |α(cx)|+

p
∑

i=1

|α(g(i)x)| ≤ 1, (13)

where α(cx) denotes the vector containing the correspond-

ing α(cx, t0), . . . , α(cx, tN−1) and analogously for α(g
(i)
x).

Therefore, the corresponding input for any state x = cx +
p∑

i=1

g
(i)
x β(x) ∈ X0 is simply given as u(x, tk) = cu +

Guα(cx, tk) +
p∑

i=1

Guα(g
(i)
x , tk)βi(x).

3.3 Nonlinear Dynamics and Disturbances

In order to extend the approach developed for linear sys-
tems to nonlinear systems with disturbances, we first com-
pute a reference trajectory and linearize the system along
this trajectory. To fully consider the disturbances and the
linearization errors, we apply the control law iteratively
for short time horizons and compute the reachable set for
the times in between. This way, we obtain feedback and
guarantee that it satisfies the constraints at all points in
time. The approach for nonlinear systems consists of the
following three steps:

X0

x(f)
x(c)(0)

(a)

P̄1

(b)

Sreach,2

(c)

Sreach,3 Sreach,4

(d)

Fig. 6. Illustration of our control approach extended to
disturbed, nonlinear systems.

Step 1: We first compute a reference trajectory steering
the center cx of the initial set X0 as close as possible to
the desired final state x(f) (see Fig. 6(a)) by solving the
following nonlinear optimization problem:

min
u(c)(·)

‖ξ(cx, u
(c)(·), 0, tf)− x(f)‖1 + γ‖u(c)(·)‖1, (14)

s.t. u(c)(·) ∈ U

where γ ∈ R
+ denotes a weighting factor for the input

costs.

We use the center trajectory x(c)(·) = ξ(cx, u
(c)(·), 0, ·) as

a reference for our system and divide it into N parts of
length ts. Since our linear programming approach requires
discrete-time, linear dynamics for each time step, we
first linearize the system dynamics along the reference
trajectory, i.e., ∀k ∈ {1, . . . , N}

Ac,k =
∂f(x, u, 0)

∂x

∣
∣
∣
∣x=x(c)(t′k),

u=u(c)(t′k)

, Bc,k =
∂f(x, u, 0)

∂u
|
x=x(c)(t′k),

u=u(c)(t′k)

,

with t′k = tk−1 +
1
2 ts, and then time-discretize (Ac,k, Bc,k)

to obtain (Ak, Bk), as done for linear systems.

Step 2: We consider a time horizon of h time steps,
with N = Mh and M,h ∈ N. At each iteration step
l ∈ {1, . . . ,M}, we apply the set-based optimal control
approach using the linearized dynamics. As the initial

set, we use the reachable set Sreach,l from the last time
step and over-approximate it by a parallelotope P̄l, i.e.,
Sreach,l ⊆ P̄l. We initialize our approach with Sreach,1 =
X0. The initial set is over-approximated by a parallelotope
to reduce the number of generators which are considered
in the optimization problem and to have unique control
inputs when applying the controller online, as discussed
later. There exist efficient ways to formally compute par-
allelotope over-approximations of zonotopes, see e.g. Al-
thoff (2010). Since we compute over-approximations, our
approach is still sound, and we ensure the satisfaction of
the input constraints for all states.

At each step, we use the previously described set-based
optimal control approach for linear dynamics to control P̄l

as close as possible to x(c)(tlh) (see Fig. 6(b)) by solving
(12) with (13), wherein we replace x(f) with x(c)(tlh) and
AN with Alh . . . A(l−1)h+1 since the linearized dynamics
are time-varying.

Step 3: We then compute an over-approximation of the
reachable set R̄ for the original nonlinear system with
disturbances if controlled with the previously computed
control inputs ucontrol(·) (see Fig. 6(c)). We use the over-
approximated reachable set as the initial set of the next
iteration step Sreach,l+1 = R̄th,ucontrol,W(Sreach,l) and
continue with Step 2.

By iterating Steps 2 and 3 for all M time steps, we
obtain with Sf = Sreach,M+1 the over-approximation of
the final reachable set of all states starting in the initial
set X0 despite disturbances (see Fig. 6(d)). We store the
generators of the parallelotope over-approximations P̄l and
the input zonotopes at sampling times in a look-up table.

Online Use of the Controller In order to apply the
controller online, we have to compute the corresponding
control input for a given state. If the initial set is a
parallelotope, then the control input is unique. Given a
state x(t(l−1)h) ∈ P̄reach,l =< cx,l, Gx,l >, any state can
be uniquely expressed by the parameter vector β as

x(t(l−1)h) = cx,l +Gx,lβ(x(t(l−1)h))

⇒ β(x(t(l−1)h)) = G−1
x,l (x(t(l−1)h)− cx,l).

Therefore, the corresponding input for the time interval
[t(l−1)h, tlh) can be computed as

ucontrol(x, tk) = cu +Guα(cu, tk) (15)

+Gu[α(g
(1)
x , tk), . . . , α(g

(n)
x , tk)]G

−1
x,l (x(t(l−1)h)− cx,l),

for all k ∈ {(l−1)h, . . . , lh−1}. Since our controller is open-
loop during each iteration step [t(l−1)h, tlh), we compute
h piecewise-constant control inputs with one measurement
x(t(l−1)h), as can be seen in (15). Note that all the matrices
and their inverses can be computed offline, as they do
not depend on the current state x(t(l−1)h). The inverse

G−1
x,l always exists since Gx,l has full rank, as P̄reach,l is a

parallelotope.

3.4 Further Extensions

During the presentation of the approach, we have focused
on the main idea. Depending on the practical application

some additional goals or constraints might be relevant as
well. In the following, we discuss four of them.

State Constraints: Since state constraints can be simply
included as additional constraints to the linear program,
they do not change the basic approach. In order to have
finitely many constraints, we want to ensure the satisfac-
tion of the state constraints for all time points despite
checking them only at the sampling times. For linear
systems, this is possible by using some tighter state con-
straints X̂ ⊆ X , which are computed to take the maximal
curvature of trajectories between the sampling times into
account, see e.g. Darup (2015). To check the satisfaction of
the state constraints, we simply check if ∀k ∈ {1, . . . , N} :

ξ(x(0), u(·), 0, tk) ∈ X̂ or Rtk,Zu
(X0) ⊆ X̂ , respectively.

To check if the reachable set in the form of a zonotope
Z =< c,G > is inside a polytope P = {x|Cx ≤ d}, we
check if Cc+

∑p
i=1 |Cg(i)| ≤ d.

For nonlinear dynamics, we check the state constraints
similarly. We compute the reachable set using the time-
varying, linearized dynamics and check the satisfaction
of the state constraints at sampling times again. For
undisturbed, nonlinear systems, this can be done using
the results from (Magni and Scattolini, 2004, Thm. 3).
To ensure that the disturbed, nonlinear dynamics will
satisfy the real state constraints, we have to tighten the
state constraints even more. Since no general closed-
formula exists for disturbed, nonlinear systems, we can
use the tightened constraints based on the disturbance
effects on the linearized dynamics as an initial guess.
As we compute everything offline, we can check if the
actual constraints are satisfied, and if not, adapt the
tightened state constraints. By iterating this offline until
all constraints are satisfied, we obtain a formally correct
controller for the online use.

Input Costs: So far, we did not consider any input costs,
since we are looking for a minimal reachable set which
satisfies the input constraints. In the maneuver automata
scenario, this maximizes the number of maneuvers which
can follow a given maneuver. If the input costs do matter,
we can take them into account by adding a term ‖ĉ+ α‖1
to the cost function (possibly with a weighting factor).
Therein the vector ĉ is used if cu 6= 0 to translate the
input costs, such that αi = −ĉi corresponds to an input
ui = 0 and therefore has no costs.

Weighting Matrices: Depending on the physical meaning
of the states, the size of the resulting reachable set in
certain dimensions might be more critical than others. We
can consider this by using a weighting matrix Q by which
we multiply the cost function, analogously to the weighting
matrices for LQR controllers.

Center Inputs: Depending on the dynamics and distur-
bances, it might be better in the nonlinear case to use
the inputs computed for the reference trajectory directly
as the inputs for the center. In this case, only the inputs
for the generators are computed in each iteration step to
counteract the disturbances. Therefore, we remove the first
line of (12) but still consider the fixed α(cx) in (13) to
take the center inputs into account when optimizing the
generator inputs.

4. NUMERICAL EXAMPLE

We demonstrate our new controller for an autonomous
vehicle example. As a model, we choose a kinematic car
model, which covers the most important dynamics of a car:

v̇ = a+ w1, Ψ̇ = b+ w2, ẋ = v cos(Ψ), ẏ = v sin(Ψ),

where the states v,Ψ, x, and y are the velocity, the ori-
entation, and the positions in x and in y directions, re-
spectively. The acceleration a and the normalized steer-
ing angle b are the inputs, and w1 and w2 are additive
disturbances. They are constrained to lie in the intervals
a ∈ [−9.81, 9.81]m

s2
, b ∈ [−0.4, 0.4] rad

s
, w1 ∈ [−0.5, 0.5]m

s2
,

and w2 ∈ [−0.02, 0.02] rad
s
.

We construct a maneuver automaton for this car, where we
restrict ourselves for space limitation to three maneuvers:
“turn left”, “drive straight”, and “turn right”. For all
maneuvers, we consider the initial set X0 = [19.8, 20.2]m

s
×

[−0.02, 0.02]rad× [−0.2, 0.2]m× [−0.2, 0.2]m. We want to
steer all states from X0 after 1s as close as possible to the

final states x(f) =
[
20 m

s
,±0.2 rad, 19.87m,±1.99m

]T
,

for the “turn left” and “turn right” maneuvers and
[
20 m

s
, 0 rad, 20m, 0m

]T
for the “drive straight” maneu-

ver. To be able to use this approach to obtain a maneuver
automaton, the final set has to be completely contained in
the initial set, see Fig. 1 and [Heß et al. (2014)]. Thereby,
we can shift the final state in the Ψ, x, and y coordinates,
since the car dynamics are independent of the absolute
orientation and position. We divide the one second time
horizon into N = 40 time steps and consider M = 10
time intervals of horizon h = 4 time steps. As described in
Sec. 3.4, we apply the reference input u(c)(·) directly as in-
put for the center and also use weights for the states. While
we do not consider input weights, the input constraints are
still satisfied by the way we construct the controller.

4.1 Results

We implement the nonlinear control approach in MAT-
LAB, where we use CVX to specify and solve the lin-
ear program [Grant and Boyd (2014)]. The reachability
analysis is computed using the CORA toolbox [Althoff
(2015)]. The computations are performed on a computer
with a 3.1 GHz dual-core i7 processor and 16 GB memory.
The offline computation of the controller for each ma-
neuver takes around ten seconds without using parallel
computing. Since the online computation consists only of
multiplying precomputed matrices with vectors, it can be
performed very fast in around 0.01 milliseconds.

We show the resulting reachable sets in Fig. 7. In addition,
we show the initial set (black) and the final reachable set
(blue) in Fig. 8, where we shift the final sets by the desired
final states x(f) to have a better comparison. We see that
the (shifted) reachable sets are completely contained inside
the initial set for all maneuvers. Therefore, we are able to
connect all maneuvers with each other and obtain a fully
connected maneuver automaton.

4.2 Comparison with LQR Tracking Controller

For comparison, we also implement an LQR tracking con-
troller. To do so, we use the same reference trajectory and

19.6 20 20.4

0

0.05

0.1

0.15

0.2

v[m
s
]

Ψ
[r
a
d
]

final set

initial set

(a) Turn Left, (v,Ψ) plane

0 5 10 15 20

0

0.5

1

1.5

2

x[m]
y
[m

]

final set

initial set

(b) Turn Left, (x, y) plane

Fig. 7. Resulting reachable set for the turnleft maneuver
with our controller.

19.6 20 20.4

-0.02

0

0.02

v[m
s
]

Ψ
[r
a
d
]

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

x[m]

y
[m

]

19.6 20 20.4

-0.02

0

0.02

v[m
s
]

Ψ
[r
a
d
]

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

x[m]

y
[m

]

19.6 20 20.4

-0.02

0

0.02

v[m
s
]

Ψ
[r
a
d
]

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

x[m]

y
[m

]

Fig. 8. Initial (black) and shifted final sets (blue) for
our controller, projected to the (v,Ψ) and the (x, y)
planes, for the “turn left” (top), “drive straight”
(center), and “turn right” (bottom) maneuvers. For
comparison the final sets of two LQR controllers (red).

linearizations at the sampling times as for our controller.
For each linearization, we compute an LQR controller to
track the system along the reference trajectory. First, we
simply use the same state weights as for our controller and
weight the inputs with the identity matrix. The resulting
reachable set is plotted in Fig. 8 (red, solid), and it is not
completely inside the initial set. Moreover, it uses inputs
of b = 1.53 rad

s
, which is more than 3.5 times the allowed

inputs. If we increase the input weights until the input
constraints are satisfied, we obtain the reachable set which
is plotted with a red, dashed line in Fig. 8, and which is
much larger than the initial set. We see that we cannot

achieve both a small final set and input satisfaction with
LQR controllers. This shows the advantage of our new
control approach, which minimizes the reachable set while
ensuring the satisfaction of the constraints.

5. DISCUSSION OF THE ALGORITHM

Let us now discuss the complexity and optimality of our
algorithm.

5.1 Complexity

Reachability Analysis: The reachability analysis from Al-
thoff (2010) which we use in our algorithm has a complex-
ity of O(n3), where n denotes the number of states.

Linear Programs: The complexity of solving linear pro-
grams depends on the exact implementation and the num-
ber and type of constraints. There exist algorithms with
polynomial time complexity in the number of optimization
variables and constraints. If we consider zonotopes of a
fixed order, then the number of optimization variables
and number of constraints grows polynomial as well (with
O(n2), if n > m). Therefore, the whole optimization
algorithm has a polynomial complexity.

Center Trajectory: The center trajectory is computed
using nonlinear programming. Since this is a nonlinear and
nonconvex optimization problem, one cannot give bounds
on the computational complexity. However, there exist
very efficient implementations using direct optimization
which solve the problem fast and converge for many initial
states [Betts (2010)]. Since we have to compute this center
trajectory only a single time for a single state, and we
are not dependent on an optimal solution, we can neglect
the complexity of the center trajectory for the overall
approach.

Overall Approach: If we neglect the computation of the
center trajectory, then the overall complexity is polyno-
mial as well. This is better than many other optimal
control approaches which provide guarantees for sets of
initial states and whose complexities are exponential with
the number of states as discussed in the literature review.

5.2 Optimality

Linear programs are convex optimization problems, for
which the solutions converge to the global optimal solu-
tion. Therefore, for linear systems, we obtain the global op-
timal solution under the restriction of piecewise-constant
inputs. Since we solve the linear programs based on the lin-
earized dynamics, we cannot guarantee global optimality
for the nonlinear case. However, for disturbed, nonlinear
systems, no efficient method exists which can guarantee
global optimality [Schütze (2004); Bertsekas (2005)]. We
are, however, able to provide a very efficient way to control
all states based on the linearized dynamics in an optimized
manner. Since we only have to consider the control inputs
for n generators, we are able to obtain fast solutions.
Moreover, we are able to compute the reachable set offline,
and if the solution does not satisfy our expectations, then
we can introduce weights for the different dimensions and
reiterate the algorithm to find a better controller. We only
apply the controller online after we are satisfied with the
offline computations.

6. CONCLUSION

We have presented a novel approach to control all states
of an initial set as close as possible to a desired final state.
We are able to provide formal guarantees for constraint
satisfaction even for disturbed nonlinear systems. The first
novelty is that we are able to transform the optimal control
problem into a search problem in generator space. Thus,
we directly know the set of reachable states and optimize
the solutions in this fixed set. By using zonotopes as an
efficient set representation, we are able to leverage similar,
efficient approaches for single initial states to a set of
initial states. The second novelty is that we are able to
obtain a robust feedback controller for disturbed nonlinear
systems by iteratively applying the open-loop control
approach in combination with reachability analysis, which
leads to formal guarantees. As we see in the numerical
example, we are able to compute the controllers very
fast offline, and the approach scales polynomial with the
number of dimensions. This is much better than most other
approaches which control sets of solutions. Moreover, the
online complexity is the same as for time-variant feedback
matrices and therefore allows for fast sampling times.

ACKNOWLEDGEMENTS

The author gratefully acknowledges financial support from
the European Commission project UnCoVerCPS under
grant number 643921.

REFERENCES

Althoff, M. (2015). An introduction to CORA 2015.
In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, 120–151.

Althoff, M. (2010). Reachability Analysis and its Appli-
cation to the Safety Assessment of Autonomous Cars.
Ph.D. thesis, Technische Universität München.

Asarin, E., Dang, T., Frehse, G., Girard, A., Le Guernic,
C., and Maler, O. (2006). Recent progress in continuous
and hybrid reachability analysis. In Proc. of the IEEE
Conference on Computer Aided Control Systems Design,
1582–1587.

Bertsekas, D.P. (2005). Dynamic Programming and Op-
timal Control. Athena Scientific Belmont, MA, 3rd
edition.

Betts, J.T. (2010). Practical Methods for Optimal Control
and Estimation Using Nonlinear Programming. Siam.

Blanchini, F. and Miani, S. (2008). Set-Theoretic Methods
in Control. Springer.

Borrelli, F., Bemporad, A., and Morari, M.
(2015). Predictive Control for linear and hybrid
systems. Cambridge University Press. URL
http://www.mpc.berkeley.edu/mpc-course-material.

Dantzig, G.B. and Thapa, M.N. (2006). Linear Program-
ming 1: Introduction. Springer.

Darup, M.S. (2015). Efficient constraint adaptation for
sampled linear systems. In IEEE Conference on Deci-
sion and Control, 1402–1408.

Grant, M. and Boyd, S. (2014). CVX: Matlab soft-
ware for disciplined convex programming, version 2.1.
http://cvxr.com/cvx.

Grant, M., Boyd, S., and Ye, Y. (2006). Disciplined convex
programming. In Global Optimization: from Theory to
Implementation, 155–210. Springer.

Heß, D., Althoff, M., and Sattel, T. (2014). Formal verifi-
cation of maneuver automata for parameterized motion
primitives. In Proc. of the International Conference on
Intelligent Robots and Systems, 1474–1481.

Julius, A.A. and Winn, A.K. (2012). Safety controller
synthesis using human generated trajectories: Nonlinear
dynamics with feedback linearization and differential
flatness. In Proc. of the American Control Conference,
709–714.

Kloetzer, M. and Belta, C. (2008). A fully automated
framework for control of linear systems from temporal
logic specifications. IEEE Transactions on Automatic
Control, 53(1), 287–297.

Kurzhanski, A.B., Mitchell, I.M., and Varaiya, P. (2006).
Optimization techniques for state-constrained control
and obstacle problems. Journal of Optimization Theory
and Applications, 128(3), 499–521.

Liu, J., Topcu, U., Ozay, N., and Murray, R.M. (2012).
Reactive controllers for differentially flat systems with
temporal logic constraints. In Proc. of the Conference
on Decision and Control, 7664–7670.

Lygeros, J., Tomlin, C., and Sastry, S. (1999). Controllers
for reachability specifications for hybrid systems. Auto-
matica, 35(3), 349–370.

Magni, L. and Scattolini, R. (2004). Model predictive
control of continuous-time nonlinear systems with piece-
wise constant control. IEEE Transactions on Automatic
Control, 49(6), 900–906.

Majumdar, A. and Tedrake, R. (2013). Robust online
motion planning with regions of finite time invariance.
In Algorithmic Foundations of Robotics X, 543–558.
Springer.

Mayne, D.Q., Seron, M.M., and Raković, S.V. (2005).
Robust model predictive control of constrained linear
systems with bounded disturbances. Automatica, 41(2),
219 – 224.

Platzer, A. and Clarke, E.M. (2007). The image compu-
tation problem in hybrid systems model checking. In
International Workshop on Hybrid Systems: Computa-
tion and Control, 473–486.

Rakovic, S.V., Kouvaritakis, B., Cannon, M., Panos, C.,
and Findeisen, R. (2012). Parameterized tube model
predictive control. IEEE Transactions on Automatic
Control, 57(11), 2746–2761.

Schürmann, B. and Althoff, M. (2017a). Convex inter-
polation control with formal guarantees for disturbed
and constrained nonlinear systems. In Proc. of Hybrid
Systems: Computation and Control.

Schürmann, B. and Althoff, M. (2017b). Optimal control
of sets of solutions to formally guarantee constraints
of disturbed linear systems. In Proc. of the American
Control Conference.

Schütze, O. (2004). Set Oriented Methods for Global
Optimization. Ph.D. thesis, Univ. Paderborn.

Tedrake, R., Manchester, I.R., Tobenkin, M., and Roberts,
J.W. (2010). LQR-trees: Feedback motion planning via
sums-of-squares verification. The International Journal
of Robotics Research, 29(8), 1038–1052.

Zamani, M., Pola, G., Mazo Jr., M., and Tabuada, P.
(2012). Symbolic models for nonlinear control systems
without stability assumptions. IEEE Transactions on
Automatic Control, 57(7), 1804–1809.

