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Abstract. So-called Physical Unclonable Functions are an emerging,
new cryptographic and security primitive. They can potentially replace
secret binary keys in vulnerable hardware systems and have other se-
curity advantages. In this paper, we deal with the cryptanalysis of this
new primitive by use of machine learning methods. In particular, we in-
vestigate to what extent the security of circuit-based PUFs can be chal-
lenged by a new machine learning technique named Policy Gradients with
Parameter-based Exploration. Our findings show that this technique has
several important advantages in cryptanalysis of Physical Unclonable
Functions compared to other machine learning fields and to other policy
gradient methods.

1 Introduction

Background on Physical Unclonable Functions. Physical Unclonable Func-
tions (PUFs) are emerging recently as a powerful alternative to standard, math-
ematically based cryptography and security [1], [2]. In a nutshell, a PUF is a
physical system S with a unique, partly disordered fine structure that depends
on uncontrollable manufacturing variations. The system can be exposed to ex-
ternal stimuli or “challenges”. It reacts by returning so-called “responses”, whose
value depends on said manufacturing variations.

Two typical applications of (Strong) PUFs are identification and key ex-
change scenarios. In these settings, PUFs have two advantages: (i) They avoid
the storage of secret binary keys in vulnerable hardware systems, from which
the keys can potentially be extracted by invasive attacks or viruses. (ii) They
avoid the usual, unproven number theoretic assumptions that plague mathe-
matical cryptography (albeit they rest on other assumptions). In other words,
secure PUFs can create a new, advantageous form of cryptography in several
application scenarios [1],[3],[4].

Machine Learning Attacks on PUFs. It has been realized relatively early
in the history of PUFs [5] that Machine Learning (ML) techniques are a natural
and also a very powerful tool to challenge the security of strong PUFs. In typ-
ical PUF applications, an adversary will be able to obtain a significant number
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of challenges and corresponding responses (so-called challenge-response-pairs or
CRPs) of the PUF. He can obtain the CRPs either by eavesdropping on commu-
nication protocols, or by gaining physical access to the PUF for a limited time
period and measuring many CRPs himself. He can then feed these CRPs into
an ML algorithm, interpreting the challenges as input and the responses as out-
put of an unknown, to-be-learned function. If successfully trained, the algorithm
will later predict the PUF’s responses with high probability, thereby breaking
the security of the PUF, and of all protocols derived from it.

Our Contributions. This paper investigates to which extent the currently
published electrical PUFs are susceptible to recent Policy Gradient (PG) meth-
ods. We show that small or medium size instances of almost all candidates of
electrical Strong PUFs can be attacked well by a recent PG method called Pol-
icy Gradients with Parameter-based Exploration (PGPE) [6]. Our investigations
show that PGPE is a particularly general and an efficient ML method for the
cryptanalysis of electrical Strong PUFs. First of all, they merely require a para-
metric model of the attacked PUF, which is usually easy to identify. Contrary
to that, the ML methods from the Reinforcement Learning (RL) or Supervised
Learning domain that were applied to PUF cryptanalysis so far [7] all required
differentiable models. Such models are much harder to find, and sometimes may
not even exist.

Secondly, PGPE is faster and more reliable in attacking PUFs than popu-
lation based heuristics (Evolution Strategies (ES) [8]), which were applied for
cryptanalysis in a recent other publication of our group [7]. ES is the only other
known ML strategy capable of attacking PUFs via a merely parametric model.

Organization of the Paper. The paper is organized as follows. In section 2 we
define the investigated Arbiter PUF architectures. In section 3 we describe the
population based heuristic used, namely Evolution Strategies (ES) and PGPE.
Section 4 gives the results we obtained, in particular the obtained prediction
rates plus the required CRPs and computation times for each ML method on
each examined PUF. Section 5 summarizes the paper and discusses conclusions
of our work.

2 Physical Unclonable Functions and Arbiter PUFs

As mentioned briefly in the introduction, a PUF is a physical system S with a
unique, partly disordered fine structure that depends on uncontrollable manu-
facturing variations. The special security features of a (Strong) PUF S are the
following: (i) Due to the partly random fine-structure of S, which should be be-
yond the control of its manufacturer, it must be impossible to fabricate a second
physical system S′ which has the same challenge-response behavior as S. (ii) Due
to the complicated internal interactions of S, it must be impossible to devise a
computer program that correctly predicts the response to a given challenge with
high probability. This should hold even if many challenge-response pairs (CRPs)
of S were known.
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Fig. 1. Illustration of the architectures of a Standard Arbiter PUF (a), XOR Arbiter
PUF (b) and Feed Forward Arbiter PUF (c). The challenge bits bi at each stage
decide if the two incoming signals propagate in parallel through the stage, or if their
paths are crossed. All signal paths have slightly different run time properties due to
uncontrollable, small fabrication variations. An arbiter element depicted as yellow at
the end of the Standard Arbiter PUF (a) decides which of the two signals arrived first,
and correspondingly outputs 0 or 1. In an XOR Arbiter PUF (b), the output of several
Standard Arbiter PUFs is XORed. In FF Arbiter PUFs, signals at earlier stages of the
circuit are fed into an arbiter element, whose output is applied as external bit at later
stages of the circuit.

Together, the two conditions imply that the responses of S can be evaluated
correctly only by someone who has got direct physical access to the single, unique
system S. The validity of this assertion is essential for the security of all PUF-
based protocols and schemes. But exactly this assertion can be challenged by ML
techniques: A successfully trained ML algorithm can imitate a PUF’s responses
numerically, and can be copied and distributed at will.

All electrical PUFs analyzed in this paper have some common characteristics
(see figure 1): The state of some switches is configured by a challenge vector C

(with the ith component encoding the state of the ith switch), leading to pairs
of unique propagation paths for an electric signal. The resulting propagation
delay difference ∆ between the pairs of paths is then further transformed by an
arbiter gate (respectively combined arbiter and Xor gates) to a binary response
t. Assuming that the overall propagation delay of a path is just the sum of
the constant propagation delays of its constituent sub paths, Gassend et al.
established a parametric linear model for the propagation delay difference [9]. In
a compact notation the model is given by

∆ = w
T
Φ (1)

where w and Φ are of dimension k + 1. The parameter vector w encodes the
delays for the subcomponents in the stages, whereas the feature vector Φ is solely
a function of the applied k−bit challenge C [5] [10] [11].

As shown in [5], the set of all possible linear propagation difference delay
models (eq. 1) covers the characteristic of real PUF instances sufficiently well,
such that each PUF instance can be assigned a model instance with its response
prediction error in the range of the PUFs real-world stability. Therefore in this
paper algorithms are presented which determine the suitable parameters w pro-
vided that an adequate solution is contained in the set of linear propagation
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delay models. That is, the algorithms are evaluated by applying them to data
generated by the linear model itself with the sub delays drawn from a Gaussian
distribution [11]. The detailed models for each PUF variant are explained in the
subsections of section 4.

3 Employed Machine Learning Methods

Evolution Strategies. We chose Evolution Strategies as a benchmark for
PGPE because they have been used in earlier publications by our group [7].
Up to now, they were the only ML method that was, at least in principle, ap-
plicable to all known electrical PUFs, since they merely required a parametric
model of the PUF.

To attack PUFs with ES, an individual in the ES-population is given by
a concrete instantiation of the runtime delays in a PUF (or by the vector w

from equation (1)). The environmental fitness is determined by how well this
individual (re-)produces the correct CRPs of the target PUF as output. The
outputs of the individual are computed by a linear additive delay model from
its subdelays (or from w), and are compared to several known outputs of the
target PUF structure. We used a standard implementation of ES with the ES
standard meta-parameters [12]: Population size of (6,36), comma-best-selection,
and a global mutation operator with τ = 1√

(n)
.

Policy Gradients with Parameter-based Exploration. In what follows,
we briefly summarize [6] and [13], outlining the derivation that leads to PGPE.
We give a short summary of the algorithm as far as it is needed for the rest
of the paper. We assume that every executed episode or role out produces a
scalar reward r. In this setting, the goal of reinforcement learning is to find the
parameters θ that maximize the agent’s expected reward

J(θ) =

∫
H

p(h|θ)r(h)dh (2)

An obvious way to maximize J(θ) is to find ∇θJ and use it to carry out gradient
ascent. Noting that the reward for a particular history is independent of θ, and
using the standard identity ∇xy(x) = y(x)∇x log y(x), we can write

∇θJ(θ) =

∫
H

∇θp(h|θ)r(h)dh =

∫
H

p(h|θ)∇θ log p(h|θ)r(h)dh (3)

PGPE explores the search space by a probability distribution over the param-
eters θ, where ρ are the parameters determining the distribution over θ. The
parameter gradient is therefore estimated by direct parameter perturbations,
without having to backpropagate any derivatives, which allows the use of non-
differentiable controllers or models (unlike standard PG methods). The expected
reward with a given ρ is

J(ρ) =

∫
Θ

∫
H

p(h, θ|ρ)r(h)dhdθ. (4)
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Under the notion of several conditional independencies (given the details from
[6]) and by refering to sampling methods, we get:

∇ρJ(ρ) ≈ 1

N

N∑
n=1

∇ρ log p(θ|ρ)r(hn) (5)

Sampling is done by first choosing θ from p(θ|ρ), then running the agent to
generate h from p(h|θ). We assume that ρ consists of a set of means {µi} and
standard deviations {σi} that determine an independent normal distribution for
each parameter θi in θ. In this case this assumption is especially useful because
the fabrication variances of the Arbiter PUFs are around a known µ with an
also known σ and are very well normal distributed and the delays in the PUF
architecture are independent.

Some rearrangement gives the following forms for the derivative of log p(θ|ρ)
with respect to µi and σi:

∇µi
log p(θ|ρ) =

(θi − µi)

σ2
i

∇σi
log p(θ|ρ) =

(θi − µi)
2 − σ2

i

σ3
i

, (6)

which can then be substituted into (5) to approximate the µ and σ gradients.
We used the standard implementation of PGPE with the PGPE standard

meta-parameters [6]: 2-Sample Symmetric Sampling, starting standard deviation
for exploration as the standard deviation assumed for the PUFs and step sizes of
0.2 and 0.1 for the parameter and the sigma update. We also applied the usual
reward normalization for PGPE.

4 Results

We will now discuss the results that we achieved in the application of the above
machine learning techniques to the currently known electrical PUFs. If not stated
differently, as the training data underlying the experiments we used a set of
50,000 CRPs with random subsets of 2,000 CRPs for the evaluation step of the
individuals. These CRPs where generated on the basis of a linear additive delay
model. The subdelays in the stages were drawn standard normal distributed.

4.1 Standard Arbiter PUF

Model. If we take the linear delay model from section 2 into account with
respect to eq. 1, the output t of this basic type of suggested electrical PUFs, the
Standard Arbiter PUF (Arb-PUF), is determined by the sign of the propagation
delay difference ∆.

Results. In all cases we have been able to learn the PUFs with prediction rates
above 99% in 20,000 evaluations. Table 1 shows that the need of evaluations
seems to grow only linearly with the number of bits. When comparing PGPE
and ES, we observe that PGPE after the same number of evaluations achieves
a remaining prediction error that is smaller by a factor of 5. Further, PGPE
performs computationally about 4 times faster on this type of Arbiter PUF.
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ES on Arb-PUFs

90% 95%
Bit E E/Bit E E/Bit

16 446 27.88 720 45.00
32 878 27.44 1530 47.81
64 1879 29.36 3589 56.08
128 4230 33.05 9480 74.06

PGPE on Arb-PUFs

90% 95%
Bit E E/Bit E E/Bit

16 118 7.38 190 11.88
32 219 6.84 384 12.00
64 467 7.30 834 13.03
128 1080 8.44 1890 14.77

Table 1. The evaluations needed to achieve an average prediction rate of 90% and
95% with ES and PGPE. ”E” marks the columns with the average evaluations, while
”E/Bit” marks the columns that shows the evaluations needed per number of bits.

4.2 XOR Arbiter PUF

In this experiments we used random subsets of 8,000 CRPs for the evaluation
step of the individuals for all XOR Arbiter PUF (XOR-PUF) experiments.

Model. One possibility to strengthen the resilience of arbiter architectures
against machine learning is to employ l individual Arb-PUFs, each with k stages.
The same k-bit challenge C = b1 · · · bk is applied to each of these Arb-PUF, and
their individual outputs ti are XORed (i.e. added modulo 2) in order to pro-
duce a global output tXOR [14] (see Fig. 1 b). We denote such an architecture
as l-XOR-PUF. This builds a ”needle in a haystack” search space that is very
challenging for ES and PGPE.

Results. Figures 2 and 3 show the best of a total of 10 runs on each XOR-PUF
that have been conducted. Table 2 shows the needed evaluations to achieve a
prediction rate of 90% and the fraction of runs that have achieved this prediction
rate in the given maximal number of evaluation steps. Clearly the number of
evaluations needed grows more than linearly for ES and PGPE. We speculate on
the basis of the obtained data that the growth rate is higher degree polynomial,
but stress that due to noise and the small database, a definite and final conclusion

Fig. 2. The best of 10 runs on each XOR-PUF architecture with a 16 bit input vector.
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Fig. 3. The best of 10 runs on each XOR-PUF architecture with a 64 bit input vector.

is difficult. The fraction of runs that succeed in predicting the PUF with a
suitable rate drops strongly with the number of XOR-inputs. However, as shown,
in all cases up to 3 XOR-inputs we have been able to successfully learn the PUFs
with rates better than 10% with both ML methods. Our experiments show that
the XOR-PUF can be broken up to 3 XORs and challenge length of 64 bit. When
comparing PGPE and ES, we observe that PGPE performs computationally
about 3 times faster on this type of PUF. Also the success rate drops less for
PGPE, so PGPE seems slightly more relieable on breaking this kind of PUF as
can be seen nicely in Figure 2.

4.3 Feed Forward Arbiter PUF

The Feed Forward Arbiter PUF (FF-PUF) is the most important type of PUF
for this paper. Their models are, in general, not differentiable, and are therefore
not prone to supervised learning and to standard PG methods. In [7], we showed
that FF-PUFs are prone to attacks based on Evolutionary Algorithms. In this
section, we show that PGPE is a better alternative to ES in breaking this PUF
and therefore opens up the RL domain for attacking this type of PUF. The
exact architecture of the chosen FF-PUF structures (length of loops, start and

ES on XOR-PUFs

E Rate
XOR 16 Bit 64 Bit 16 Bit 64 Bit

2 1080 5508 100% 100%
3 3031 17460 90% 50%
4 5796 - 30% 0%
5 - - 0% 0%

PGPE on XOR-PUFs

E Rate
XOR 16 Bit 64 Bit 16 Bit 64 Bit

2 315 1350 100% 100%
3 556 5620 50% 90%
4 1690 - 40% 0%
5 2810 - 40% 0%

Table 2. The number of evaluations needed to achieve a prediction rate of 90% and
the rate of runs that achieved this prediction rate in the given maximal number of
evaluations with ES and PGPE. ”E” marks the columns with the evaluations needed,
while ”Rate” marks the column that shows the rate of successful runs.
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Fig. 4. The architecture of the FF-PUFs that we employed in our ML experiments,
shown for the 8 FF-loop case.

end point of loops) are shown in Figure 4. This architecture of symmetric and
equally distributed loops seems the most natural way of placing the loops, and
has also been used in earlier publications [15],[7]; investigations are on the way
to consolidate that this is indeed the optimal, i.e. hardest to learn, architecture.

Model. FF-PUFs were introduced in [9, 15, 5] and further discussed in [11].
Their basic layout is similar to the architecture of Arb-PUFs. However, some of
their multiplexers are not switched in dependence of an external challenge bit,
but as a function of the delay differences accumulated in earlier parts of the cir-
cuit. Additional arbiter components evaluate these delay differences, and their
output bit is fed into said multiplexers in a “feed-forward loop” (FF-loop). The
number of loops as well as the starting and end point of the FF-loops are vari-
able design parameters. Please note that a FF Arb-PUF with k-bit challenges
C = b1 · · · bk and l loops has s = k + l multiplexers or stages. The described de-
pendency makes natural architecture models of FF Arb-PUFs not differentiable
any more. This architecture generates an interesting multi-modal search space
that is also challenging for ES and PGPE.

Fig. 5. The best of 40 runs (80 for 9+10 FF) with ES and the best of 10 runs (20 for
9+10 FF) with PGPE on each FF-PUF architecture.
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ES on FF-PUFs PGPE on FF-PUFs

90% 95% Best 90% 95% Best
FF E E/FF E E/FF Result E E/FF E E/FF Result

5 10200 2040 17100 3420 99.3% 2900 580 3730 746 99.6%
6 21200 3533 42300 7050 97.7% 7840 1307 9340 1557 99.5%
7 10100 1443 22700 3243 97.4% 4710 673 6580 940 98.2%
8 17600 2200 53100 6638 95.5% 4840 605 21350 2669 96.1%
9 - - - - 89.2% - - - - 89.3%
10 37500 3750 - - 93.4% 15480 1548 - - 90.9%

Table 3. The evaluations needed to achieve an prediction rate of 90% and 95% for
the best run out of 40 (80 for 9+10 FF) for ES and out of 10 (20 for 9+10 FF)
for PGPE. E stands for the needed number of evaluations, and E/FF symbolizes the
needed evaluations divided by the number of FF loops. ”Best” marks the columns with
the best results after 72,000 evaluations (ES) and 36,000 evaluations (PGFPE).

Results. Figure 5 shows the best of a total of 40 runs for ES and 10 runs for
PGPE on each FF-PUF that have been conducted while varying the number of
FF-loops. Table 3 shows the evaluations needed to achieve an average prediction
rate of 90% and 95%. As shown, in all cases we have been able to successfully
learn the PUFs with rates close to 90%. Please note that our accuracy is sig-
nificantly better than the stability of an in-silicon FF-Arbiter with 7 FF-loops
while undergoing a temperature change of 45◦C, which is only 90.16% [16]. The
experiments show that the FF-Arbiter are definitely susceptible to attacks by ES
and PGPE. When comparing PGPE and ES, we observe that PGPE performs
computationally about 3 times faster on this type of Arbiter PUF.

5 Summary and Conclusion

We investigated the performance of the recently published Policy Gradient method
PGPE in the cryptanalysis of electrical PUFs. We found that up to a medium
level of size and complexity, essentially all currently known electrical PUFs are
susceptible to attacks by this method. One particular advantage of PGPE in
the cryptanalysis of circuit-based PUFs is, that it merely requires a paramet-
ric internal model of the PUF. In opposition to that, other ML methods that
have been applied for PUF attacks require linearly separable or differentiable
models, which can be hard to find, or may not even exist at all. Our results
further reveal that PGPE significantly outperforms Evolution Strategies in the
cryptanalysis of PUFs. ES was up to now the only other known ML method ap-
plicable to all existing electrical PUFs, since it also worked on the mere basis of
a parametrizable model. Due to their broad applicability, and since they do not
require hard-to-optimize differentiable or separable models, PGPE-based tests
have the potential of becoming a standard security benchmark for circuit-based
PUFs: ML curves obtained by PGPE on small instances can help us to judge
and compare the security of various electrical PUF implementations.
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12. Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies, evo-
lutionary programming, genetic algorithms. Oxford University Press, USA (1996)

13. Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., Schmidhuber,
J.: Policy gradients with parameter-based exploration for control. In J. Koutnik
V. Kurkova, R.N., ed.: Proceedings of the International Conference on Artificial
Neural Networks. Volume I, LNCS 5163. (2008) 387–396

14. Suh, G., Devadas, S.: Physical unclonable functions for device authentication and
secret key generation. In: Proceedings of the 44th annual Design Automation
Conference, ACM (2007) 14

15. Lee, J., Lim, D., Gassend, B., Suh, G., Van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
applications. In: Proceedings of the IEEE VLSI Circuits Symposium. (2004) 176ff

16. Lim, D., Lee, J., Gassend, B., Suh, G., Van Dijk, M., Devadas, S.: Extracting secret
keys from integrated circuits. IEEE Transactions on Very Large Scale Integration
Systems 13(10) (2005) 1200


