
Timing Anomalies in Multi-core Architectures due to the Interference

on the Shared Resources

Hardik Shah, Kai Huang and Alois Knoll
Department of Informatics VI, Technical University Munich,

85748 Garching, Germany.
{shah,huangk,knoll}@in.tum.de

Abstract— Timing anomalies in single-core proces-

sors have been theoretically explained and well under-

stood phenomenon. This paper presents new timing

anomalies which occur in multi-core architectures due

to the interference on the shared resources. We de-

rive formulation to capture these anomalies and pro-

vide practical evidences using real applications from

the Mälardalen WCET benchmark suit executing on

NIOS II multi-core architecture on an Altera FPGA.

I. Introduction

Timing anomaly is a counter intuitive timing behav-
ior. The term was coined by Lundqvist & Stenström [1].
They observed that in a dynamically scheduled processor,
a cache hit at certain execution point could lead to longer
execution time than a cache miss at the same point. Thus,
the timing anomaly for processor architectures is defined
as, A processor architecture is said to be timing anomalous
when a locally favorable event (e.g. cache hit) could result
in a globally unfavorable event (e.g. longer execution time)
and vice versa. The formal definition of timing anomaly
is provided by Reineke et al [2].

Simple processors could also exhibit timing anomalous
behavior [3]. The occurrence of timing anomalies can be
analyzed using static worst case execution time (Wcet)
analysis techniques [4]. However, these events are rarely
(or never) observed in real life. This argument is often
used against the static Wcet analysis techniques. Hence,
it is important to present real-life evidences of the presence
of timing anomalies.

In multi-core architectures, the shared resource inter-
ference caused by accesses from the co-existing applica-
tions increases shared resource access latencies for the
application-under-test. This leads to longer execution
time of the application. It is intuitive that if the co-
existing applications are very aggressive in accessing the
shared resource then the application-under-test experi-
ences higher latencies to the shared resource and the ex-
ecution time increases accordingly. The other intuition
is, the higher the number of aggressive co-existing appli-
cations, the higher the latencies to the shared resource.
In this paper, we show that certain applications behave
counter intuitively to these intuitions.

The major contributions of the paper are as follows. i)
We prove that in the presence of aggressive accesses from
the co-existing applications, some applications-under-test

benefit and experience less than the average case latencies
to the shared resource. ii) We prove that in the presence of
the aggressive accesses, for some applications-under-test,
shared resource latencies under less number of interfering
applications could be more than the shared resource laten-
cies under more number of interfering applications. iii) We
also provide practical evidence of these timing anomalies
using real applications from the Mälardalen Wcet bench-
mark suit executing on the Nios II based multi-core archi-
tecture on Altera Cyclone III Fpga. The paper focuses on
the round robin arbiter which is one of the most popular
starvation free arbiters and a default component of many
off-the-shelf interconnect architectures [5, 6]. However,
other starvation free arbiters are discussed in Sec. VI.

The paper is organized as follows. Sec. II provides exist-
ing work related to this paper. Sec. III provides necessary
background information. Sec. IV provides formalism from
which the timing anomalous behavior is inferred. Sec. V
provides practical evidences of timing anomalous behav-
ior. Sec. VI discusses the timing anomalies in other star-
vation free arbiters and Sec. VII concludes the paper.

II. Related Work

This paper has two dimensions, i) Interference analysis
in multi-core architectures and its effect on the Wcet. ii)
Timing anomalies. We address the related work on both
the topics in this section.

Lv et al [7] propose to build Timed Automata (TA)
models of concurrently executing applications using ab-
stract interpretation. These TA models are then combined
with the shared resource arbiter’s TA model. The combi-
nation is analyzed using a model checker to find the Wcet
of each application considering the maximum interference
among them. Pellizzoni et al [8] use cache activity trace of
the application-under-test and upper bound on I/O traf-
fic. These inputs are analyzed using real-time calculus to
calculate Wcet of the application-under-test considering
maximum interference from the I/O traffic. Both of these
approaches take the knowledge of the co-existing applica-
tions into the account.

On the contrary, our previous work [9, 10, 11] and
Paolieri et al [12] analyze applications in isolation for
shared Sdram interference. Here, the worst possible be-
havior from co-existing applications is assumed, including
the faulty behavior. All the above mentioned works as-
sume timing-anomaly-free architecture.



W

B

m1

m2m3

m4

SlotSize

(SS)

Fig. 1.: Graphical View of the Round Robin Arbiter

Li et al [13] model timing anomalous processor for the
Wcet analysis. They analyze the interaction between
Basic Blocks (BB) and its effect on the instruction cache
state. Kirner et al [14] identify a new timing anomaly
that arises due to the parallel decomposition. The parallel
decomposition is used for hardware state space reduction.
These approaches target single-core architectures.

Recently, there has been some work on the Wcet anal-
ysis in multi-cores in the presence of timing anomalies.
Chattopadhyay et al [15] provides the first unified analy-
sis that takes various micro-architecture components into
account. Interaction among these components is analyzed
to estimate the Wcet of applications on a timing anoma-
lous multi-core architecture. Kelter et al [16] investigate
when a BB will start executing with respect to the stat-
ically assigned slot to access the shared bus. The shared
bus access latency is estimated by analyzing whether the
access from the BB lays in the current slot or in next slots.
Both, [15] and [16] use Tdma as a shared bus arbiter.

All the above mentioned work related to timing anoma-
lies explain it hypothetically without real evidences. In
this paper, we derive formulation which is used to infer
timing anomalies due to the shared resource interference
in multi-core architectures. Moreover, we provide real-life
evidences of their presence.

III. Background

In this section, we provide some background informa-
tion in order to facilitate discussion in the later sections.

A. Work Conserving Round Robin Arbitration

The Fig. 1 depicts the Round Robin (RR) arbitration
graphically. Under the RR scheme, the shared resource
contenders are assigned fixed number of slots in a vir-
tual ring depending on their bandwidth requirements. Al-
though, our analysis is valid for any slot allotment, for
simplicity, we consider one slot per contender without loss
of generality. The figure shows four contenders (master1,
master2, master3 and master4) in the ring. Here, we as-
sume that these contenders are processor cores execut-
ing independent applications and the shared resource is
shared main memory. These cores access the shared main
memory when a cache miss occurs. Throughout the paper,
we use master and core terms interchangeably. Similarly,
we use memory and shared memory interchangeably.

The arbiter continuously searches for a master which
wants to access the memory in a clock-wise direction. We
call this master an active master. As soon as an active

ST
A

R
T 

ST
O

P
 

T1 

e1 

L1 

T2 

e2 

L2 

T3 

e3 

L3 

T4 T0 

ST
A

R
T 

ST
O

P
 

t1 

e1 

t2 

e2 

t3 

e3 

t4 t0 

c1 c2 c0 c3 

c0 c1 c2 c3 

Recorded 
Trace 

Computation 
Trace 

WL = Worst case latency, Lx = Measured latency, cx = Computation time,  
ex = xth event, Tx = Time in recorded trace, tx = Time in computation trace 

ST
A

R
T 

c0 c1 c2 c3 WL WL WL 

ST
O

P
 

WCET 
Computation 

WCET 

e0 e4 

e0 e4 

e1 e2 e3 
e0 e4 

Fig. 2.: Wcet Computation using the Computation Trace

master is encountered, it is granted the memory for a pre-
defined maximum number of clock cycles (SlotSize - SS).
The SS is big enough to accommodate the burst issued for
one cache-line fill. After the granted master finishes its
burst access, the search process resumes from the next
slot in the ring. Thus, the memory is always occupied
as long as there is at least one active master (hence the
name, “work conserving” or “greedy TDMA”).

Now, let us assume that the application-under-test is
executing on m1 and the SS is same for all masters. For this
architecture, an access request from m1 experiences the
worst case completion latency (WL = 4×SS) if it is issued
when the arbiter pointer is at W in Fig. 1 AND all other
masters utilize their slots. Similarly, an access request
experiences the best case completion latency (BL = 1 ×
SS) if it is issued when the arbiter pointer is at B in
the figure. If the exact location of the arbiter pointer
OR activity of other masters are unknown, the completion
latency could be any number in the range [BL,WL].

Intuitively, the average case latency, AL = (BL+WL)/2.
In this paper, by latency of an access, we mean completion
latency of an access (scheduling latency + time required to
complete the access). Moreover, we also assume that the
application-under-test executes on m1.

B. Computation Trace

The computation trace is an execution trace of an ap-
plication path where cache misses are denoted by timeless
events. The motivation behind the timeless events is the
following. In the shared memory architecture, the shared
main memory is accessed when a cache miss occurs. The
contention on the shared memory delays service to this
memory access. Typically, the collision of cache misses on
the shared memory is extremely difficult to predict. More-
over, the delay in service also delays the subsequent cache
misses (memory accesses) of the application-under-test by
the same amount. This causes difficulties in estimating
the worst case interference and its impact on the Wcet.
To avoid these difficulties, at first, we remove all the la-
tencies related to the memory accesses. This means, there
is no interference at all and the shared memory takes zero
cycles to respond. Later, theoretically calculated worst
possible latency is added for each cache miss.

Computation trace, depicted in the Fig. 2, can be eas-
ily obtained through simulation. At first, occurrence time
(T0, T1, ...) of each cache miss event (e0, e1, ...), and its



m2 m1 m4 m3 m2 m4 m3 m2 m4 m3 

Completion Latency l1 

Issue Delayed by l1 

m1 
l2 

e1 e2 

req1 req 2 Total Time 
c1 + l1 + l2 

m1 m2 m3 m4 m3 

Completion Latency l1’ 

Issue Delayed by l1’ 

m1 

l2’ 

e1 e2 

req1 req 2 Total Time 
c1 + l1’ + l2’ 

Computation Time c1 

m4 

Computation Time c1 

A 

B 

 c1 

 c1 

Fig. 3.: In case A, over all execution time is lower than in
case B although the accesses generated by the co-existing
application is more aggressive in case A than in case B

experienced latency (L0, L1, ...) are recorded in a trace
by executing the application on cycle accurate simulation
models of processor and memory. Later, these latencies
are removed and each event is shifted towards left in time.
The resulting trace is the computation trace. Now, to
compute the Wcet considering the worst case interfer-
ence, each cache miss event in the computation trace is
annotated by the worst possible latency (WL) and all the
subsequent accesses are shifted to the right. Now, the
computed Wcet contains the effect of the worst possible
interference the application may experience.

It must be noted that the latencies in the recorded trace
depend on shared memory interference at the time of mea-
surement. However, the computation trace remains un-
changed1 when the same path is executed multiple times,
provided that each time we start the application from the
same cache state2 and use the same data as an input.

Note that the Wcet computed using this method
is actually Wcet of the path being executed on the
application-under-test. Moreover, the method considers
only shared resource interference as an execution time
modifying source. Practically, applications have multi-
ple paths through execution and caches, pipelines, branch
predictors etc. contribute heavily to the execution time
deviation. The core contribution of the paper is to iden-
tify the timing anomalies originating from the shared re-
source interference and to provide practical evidences of its
presence. Therefore, we do not present analysis of caches,
pipelines, branch predictors, execution path etc in this pa-
per and fully concentrate on interference analysis.

C. Latencies under round Robin Arbitration

In this subsection, we analyze different latency scenarios
for the computation trace. As explained before, the com-
putation trace remains constant for multiple runs of the
application, however, the interference scenarios can be dif-
ferent resulting in different execution times. Fig. 3 depicts
two different interference scenarios. In scenario A, the
co-existing applications generate aggressive accesses (un-

1In this paper, we assume absence of jitter in occurrence of cache
misses due to operating system, floating point unit, pipeline etc.

2In order to fully concentrate on the new timing anomalies orig-
inating from interference, we assume classical timing-anomaly-free
architecture in this paper. Certainly, these new timing anomalies
are valid in the presence of the classical ones as well.

interrupted accesses/interference) to the shared memory
while in scenario B, the co-existing applications generate
sparse accesses. The computation trace in the figure con-
tains two cache miss events e1 and e2. The computation
time between these events is c1.

In scenario A, the request 1 (corresponding to event e1)
is issued just after the arbiter has scheduled m2. Since
cores m2, m3 and m4 are generating uninterrupted ac-
cesses, the request 1 from m1 can be scheduled only after
3× SS. After request 1 is scheduled, it needs another SS
to complete. Hence, request 1 has latency of l1 = 4×SS,
which is the worst case latency (WL). After requests 1 is
served, the m1 does computation for c1 amount of clock
cycles. During this time, the m1 executes from caches and
on-chip registers and does not send any request to the
shared memory. However, the co-existing cores send un-
interrupted accesses to the shared memory and keep on
rotating the arbiter pointer. Thus, when request 2 (cor-
responding to e2) is issued, the arbiter pointer is close to
the next scheduling opportunity of m1. Hence, the latency
of request 2, l2 << WL.

In scenario B, although the co-existing applications gen-
erate sparse accesses, the total execution time is longer
than that of scenario A. Similarly, another scenario can
be presented where both the accesses experience the worst
case latencies which results into the real Wcet3.

IV. Latency Analysis under α Interference

This section focuses on the uninterrupted interference
and derives equations for experienced latencies under it.
The first subsection defines the α interference and the sec-
ond subsection provides analysis of experienced latencies.

A. α Interference

Definition: The α interference is defined as the unin-
terrupted interference produced by α number of co-existing
masters. Under α interference, the rotation of the arbiter
pointer becomes deterministic since accesses from the co-
existing masters are deterministic (uninterrupted or no
access at all). Here, except m1, on which the application
is being executed, other masters either continuously utilize
their slots or they do not utilize their slots at all.

The α interference occurs in real life in the following
scenarios, i) Immediately after reset or after a new task is
scheduled on co-existing applications, there are high num-
ber of cache misses. At this point, the co-existing appli-
cations send many accesses to the shared resource in a
relatively short period of time. ii) When some of the co-
existing applications generate aggressive traffic e.g. Dma
and the remaining are idle for a short period of time. iii)
When some of the co-existing masters have a stuck-at-
fault on the request line and other masters are idle for a
short time. It is clear that the α interference could occur
randomly for a short period of time in real life. How-
ever, applications with relatively short life times (typical

3In this paper, we focus only on the effect of the interference on
Wcet and consider the effects of other components such as caches,
pipe-lines, branch predictors etc as constant.



s

s

m2

m4

m1 can be 
scheduled 

here
Unfavorable Region

Favorable Region

m1 can be 
scheduled 

here

m4

Unfavorable 

Region

Favorable Region

(a) Three Interfering 

Masters, a = 3

(b) Two Interfering 

Masters, a = 2

m3 m2

Fig. 4.: Deterministic Rotation of the Arbiter Pointer
(SlotSize - SS not to the scale)

hard real-time control applications) could experience it
during their entire execution. In the remaining sections,
we will show that, counter intuitively, these uninterrupted
accesses from co-existing masters could also be beneficial
to some applications.

B. Analysis

Fig. 4 depicts two scenarios, α = 3 and α = 2. In
α = 3 scenario (same as Fig. 3 scenario A), all other
masters m2, m3 and m4 do uninterrupted accesses to the
shared resource. In α = 2 scenario, only masters m4 and
m2 do uninterrupted accesses; m3 is idle. Hence, there
are only two slots in Fig. 4(b). Note that there are total
four masters in the system and the theoretical values of
BL, WL and AL are derived considering all masters in the
system, irrespective of number of active masters.

We denote the latency of ith access under α interference
as deterministic latency (DLiα) since it is derived assuming
the deterministic rotation of the arbiter pointer. Its value
can be obtained using the following equation.

DLiα = (α+ 1)× SS − {c(i−1) mod (α× SS)} (1)

Here, c(i−1) is the computation time between ith and
(i − 1)th cache miss events in the computation trace

(Fig. 2). Let Θ
(i−1)
α = {c(i−1) mod (α× SS)},

DLiα = (α+ 1)× SS −Θ(i−1)
α (2)

Consider average of all DLiα values is DLα and the av-
erage of all Θi

α values is Θα ( note that DLα and Θα rep-
resent average values over entire execution path). Hence,
equation (2) can be re-written as,

DLα = (α+ 1)× SS −Θα (3)

DLα is the average experienced latency when the appli-
cation is executed in the presence of α interference.

Recall that AL = (BL + WL)/2, BL = 1 × SS and
WL = N×SS, N is total number of master in the system.
From this information, the average-case latency of the ith

access, AiL, is given by the following equation,

AiL =
N + 1

2
× SS (4)

Since value of AL in (4) depends only on constant num-
bers, the average of all AiL values is,

AL =
N + 1

2
× SS (5)

Equations (1) to (5) are used to infer counter intuitive
timing behavior. First, let us prove couple of lemmas.

Lemma 1 ∃c(i−1), α : AiL > DLiα. In other words, for
a combination of α, and c(i−1), it is possible that the ob-
served latency of ith access (DLiα) is less than the theo-
retical average-case latency of the ith access (AiL).

Proof: Since Θ
(i−1)
α = {c(i−1) mod (α× SS)}, Θ

(i−1)
α ∈

[0, (α×SS−1)]. Thus, if c(i−1) = n(α×SS)−1, Θ
(i−1)
α =

α× SS − 1, n ∈ N+.

Putting Θ
(i−1)
α = α × SS − 1 in (2), DLiα = SS + 1.

Here, DLiα < AiL, ∀N > 1, SS > 2. Hence, the lemma
holds. tu

The lemma 1 leads to a counter intuitive observation. It
proves that an access from an application could experience
less than the average-case latency under α interference.
Moreover, the latency does not depend on the absolute

value of c(i−1), rather on the Θ
(i−1)
α . This phenomenon

is explained graphically in Fig. 4. Here, favorable and
unfavorable regions are depicted. If the application has all
ci such that Θα lies in the favorable region, the average
experienced latency (DLα) is less than the average-case
latency (AL). The sweet point (ṡ) between the boundaries
of the regions is derived by the following equation.

ṡ = WL −AL (6)

The proof of lemma 1 can also be used to derive condi-
tion for experiencing the worst case latency for all accesses
is, ∀i, ci = n(α× SS), n ∈ N0 AND α = (N − 1). The ap-
plication fulfilling this condition always requests exactly
when the next master to it in the ring is scheduled (at
point W in Fig. 1) and all other masters in the system
utilize their allocated slots.

In real-life, it is difficult to find an application which
fulfills the above mentioned conditions for the worst case
latencies. However, applications that experience less than
the average-case latencies under α interference are not rare
(see Sec. V).

Lemma 2 ∃c(i−1) : DLiα̌ > DLiα̂ , α̌ < α̂. In other
words, under α interference, for a particular value of
c(i−1), less number of interfering masters could result in
longer latency than more number of interfering masters.

Proof: Let, c(i−1) = (α̌× SS). From equation (1),

DLiα̌ = (α̌+ 1)× SS = α̌× SS + SS (7)

Again using equation (1) and since α̌ < α̂, c(i−1) mod
(α̂×SS) = α̌×SS. Hence, the value of DLiα̂ can be given
by the following equation,

DLiα̂ = (α̂+ 1)× SS − (α̌× SS) (8)



m2 

m4 

m4 m1 m2 m4 m2 m4 m1 m2 m4 m2 m4 m1 

m2 m3 m1 

 c1  c2 

e1 e2 
 c1 

 l1 req1  l2 req2 

 c2 
e3 

req3  l3 
Total Time 

c1 + c2 + l1 + l2 + l3 

e1 e2 
 c1  c2 

e3 

 c1 

 l1’ req1 

m4 m2 m3 m1 

 l2’ req2 

 c2 

m4 m2 m3 m1 

req3 
Total Time 

c1 + c2 + l1’ + l2’ + l3’ 

 l3’ 

a = 3 

a = 2 

Fig. 5.: Experienced Latencies under α = 3 and α = 2
Interference

Interfering Cores 

Core 2 Core … Core N 

Core 1 
 

I$     D$   

Round Robin Arbiter (Avalon Interconnect) 

Shared 
Memory 

TRACE 
 

r,T1,L1 

w,T2,L2 

r,T3,L3 

……… 

Fig. 6.: Test Set-up

DLiα = (α̂− α̌)× SS + SS (9)

From equation (7) and (9), DLiα̌ > DLiα̂,∀α̂ : α̌ < α̂ ≤
2α̌. Hence, the lemma holds. tu

The Fig. 5 provides supporting example for the lemma
2. Here, for the given application, α = 2 interference
produces higher latencies than α = 3 interference.

V. Test Cases

The goal of this section is to provide real life evidences
of timing anomalies inferred by the lemmas of previous
section. We did intensive testing by executing applica-
tions from the Mälardalen Wcet benchmark suit4 [17]
on Altera Nios II multi-core architecture as depicted in
Fig. 6. We experimented with different cache sizes and
different number of cores. Note that with the variation in
cache size, the computation trace also varies (ci and total
number of cache miss). Hence, for each new cache config-
uration, new set of traces for each application was created
using cycle accurate simulation models.

We did experiments on Altera Cyclone III Fpga Devel-
opment board. Altera provides cycle accurate simulation
models of processor and memory. These models were used
to capture the recorded trace of each application under
different cache configurations. For recording trace, con-
nection point between core 1 and the shared memory was
probed as depicted in the figure. Here, core 1 executes one
of the applications and all other cores execute a dummy
application (similar to [18, 19, 20]) that uninterruptedly
accesses the shared memory. We started with total 4 cores
in the system and step by step increased the total number
of cores to 8. Note that, unlike variation in cache size,

4We chose only single path applications from the suit to avoid
path analysis since the path analysis is not our contribution.

Benchmark Oet Acet Wcet DL3

cover 12207 11586 14274 24.95
crc 104331 101196 108396 26.57
duff 6777 5936 7364 28.63
edn 360574 361342 391834 19.91
expint 16573 16469 16781 23
fac 1129 1107 1227 24
fdct 22079 24173 32453 18
fibcall 1110 1098 1182 24
jane 832 813 921 25
jfdcint 28209 28107 33891 21.97
minver 158910 142289 189893 25.95
prime 196676 186533 228197 25
quart 224508 204366 271530 24.99
ud 38248 34815 46443 24.93

TABLE I

: Execution times in clock cycles under α = 3 Interference

α α = 3 α = 4 α = 5 α = 6 α = 7
cover Oet 10717 11686 11046 11942 13662

DL 23 30 27 32 42

TABLE II

: Execution times in Clock Cycles under varying α inter-
ference

variation in number of cores does not change the compu-
tation trace since computation trace of an application is
independent of experienced latency.

A. Test 1

In this experiment, we used instruction and data caches
of 512 Bytes each. Total of N = 4 cores were used, hence,
α = N−1 = 3. As depicted in Fig. 2, we inserted the worst
case (WL) and the average-case (AL) latencies for each
cache miss to obtain the Wcet and the Acet (Average
Case Execution Time) of the applications, respectively.

Table I depicts the results. The first column depicts
Observed Execution Time (Oet) of the applications. It
is clear from the table that most of the applications ex-
perienced more than the average-case latencies. However,
the edn and the fdct applications experienced less than
the average-case latencies under this hardware configura-
tion. These applications did majority of accesses in the
favorable region of Fig. 4 (note the lower values of DL3

for these applications). Thus, the results provide evidence
for the lemma 1 of the previous section.

B. Test 2

The evidence of the lemma 2 was captured when we in-
creased the cache size to 1 KB. We started from total 4
cores (α = 3) and step-by-step increased the total num-
ber of cores to 8 (α = 7). After adding each core, the
OET was measured. For the cover application, execution
times are listed in the Table II. This application exhibits
higher execution time under α = 4 interference than under
α = 5 interference. Due to its shared memory access pat-
tern (cache miss pattern), it experiences longer latencies
in the presence of less number of aggressive masters than
presence of more number of aggressive masters, which is
counter intuitive.

Note that the cache configuration is different in this ex-
periment and the previous experiment. Hence, the cover

application has different Oet in the tables for α = 3. Ex-
cept the cover application, other applications followed in-
tuition and experienced more latencies as α was increased.



VI. Discussion

These anomalies are not limited to the round robin
arbiter. In the budget based arbiters, such as Credit
Controlled Static Priority (Ccsp), Priority-based Budget
Scheduler (Pbs) and Dynamic Priority Queue (Dpq) this
phenomenon can also be observed. Under these arbiters,
all masters are assigned a unique budget to access the
shared resource per unit time. If a master consumes its
budget, it is termed ineligible and cannot access the shared
resource until the unit time expires [9, 11]. Thus, due to
the aggressive accesses, if co-existing applications become
ineligible, shared resource accesses from the application-
under-test experience low latencies. Again, it depends
on access pattern of the application-under-test. If the
application-under-test itself is aggressive then it quickly
becomes ineligible and following accesses experience high
latencies. Thus, similar to classical timing anomalies,
these anomalies are application dependent. Only under
the Tdma and the Priority Division [21] arbiters, these
timing anomalies are absent.

The timing anomalies presented in this paper depend on
the shared resource access pattern (cache miss pattern) of
the application. Modification in cache line size, associa-
tivity, cache size etc modifies the shared resource access
pattern. The modification can either remove these timing
anomalies or introduce them. This makes the measured
execution time in the presence of uninterrupted interfer-
ence a highly unreliable Wcet candidate.

VII. Conclusion

This paper has identified two new timing anomalies
which occur due to the interference on shared resources
in multi-core architectures. The anomalies are as follows:
i) Some applications could benefit from aggressive co-
existing applications and experience less than the average-
case latencies while accessing the shared resource. ii)
Some applications experience more latencies in the pres-
ence of less number of aggressive co-existing applications
than in the presence of more number of aggressive co-
existing applications while accessing the shared resource.
The anomalies are inferred from formulation and the real-
life evidences of their presence are provided using applica-
tions from the Mälardalen Wcet benchmark suit. The ex-
periments are conducted on the Altera Nios II multi-core
with shared memory architecture implemented on Altera
Cyclone III Fpga development board.

Collisions of cache misses of concurrently executing ap-
plications on a shared main memory is extremely diffi-
cult to predict. Moreover, such prediction is limited to
the particular set of application execution paths and pre-
cise phase of their starting time. Thus, this prediction
is not useful for Wcet analysis, practically. To esti-
mate Wcet in the presence of unpredictable interference,
it is intuitive to let the co-existing applications gener-
ate uninterrupted accesses to the shared memory and as-
sume that this is the highest possible interference. How-
ever, this paper concludes that the measured execution
time of application-under-test in the presence of uninter-

rupted shared resource accesses from co-existing applica-
tions could be highly optimistic and well below the Wcet
considering the theoretical worst case interference.

Acknowledgment

This work was funded by German BMBF projects ECU
(13N11936) and Car2X (13N11933).

References

[1] T. Lundqvist and P. Stenstrom. Timing anomalies in dynami-
cally scheduled microprocessors. In Proc. RTSS, 1999.

[2] J. Reineke, et al. A definition and classification of timing
anomalies, wcet 2006.

[3] Gernot Gebhard. Timing Anomalies Reloaded. In WCET 2010,
Dagstuhl, Germany.

[4] Reinhard Wilhelm et al. The worst-case execution-time
problem—overview of methods and survey of tools. ACM
Trans. Embed. Comput. Syst., 7(3), 2008.

[5] Advance microcontroller bus architecture (amba).

[6] Avalon interface specifications.

[7] Mingsong Lv et al. Combining abstract interpretation with
model checking for timing analysis of multicore software. In
Proc. RTSS, 2010.

[8] R. Pellizzoni et al. Impact of peripheral-processor interference
on wcet analysis of real-time embedded systems. IEEE Trans-
actions on Computers, 2010.

[9] H. Shah et al. Bounding WCET of Applications Using SDRAM
with Priority Based Budget Scheduling in MPSoCs. In Proc.
DATE, 2012.

[10] Dynamic priority queue: An SDRAM arbiter with bounded
access latencies for tight WCET calculation. Technical report,
2012.

[11] Hardik Shah, Alois Knoll, and Benny Akesson. Bounding sdram
interference: detailed analysis vs. latency-rate analysis. In Date
’13, Grenoble, France.

[12] Marco Paolieri et al. An Analyzable Memory Controller for
Hard Real-Time CMPs. Embedded Systems Letters, IEEE,
2009.

[13] Li. Xianfeng et al. Modeling out-of-order processors for software
timing analysis. In RTSS, 2004.

[14] R. Kirner et al. Precise worst-case execution time analysis for
processors with timing anomalies. In ECRTS ’09.

[15] S. Chattopadhyay et al. A unified wcet analysis framework for
multi-core platforms. In RTAS 2012.

[16] T. Kelter et al. Bus-aware multicore wcet analysis through
tdma offset bounds. In ECRTS, 2011.

[17] J. Gustafsson et al. The Mälardalen WCET benchmarks – past,
present and future.

[18] M. Fernández et al. Assessing the suitability of the ngmp multi-
core processor in the space domain. In EMSOFT ’12.

[19] P. Radojković et al. On the evaluation of the impact of shared
resources in multithreaded cots processors in time-critical en-
vironments. TACO, 2012.

[20] J. Nowotsch et al. Leveraging multi-core computing architec-
tures in avionics. In EDCC ’12.

[21] H. Shah, A. Raabe, and A. Knoll. Priority division: A high-
speed shared-memory bus arbitration with bounded latency. In
Proc. DATE, 2011.


