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Abstract. In this paper, a scene perception and recognition module
aimed at use in typical industrial scenarios is presented. The major con-
tribution of this work lies in a 3D object detection, recognition and pose
estimation module, which can be trained using CAD models and works
for noisy data, partial views and in cluttered scenes. This algorithm was
qualitatively and quantitatively compared with other state-of-art algo-
rithms. Scene perception and recognition is an important aspect in the
design of intelligent robotic systems which can adapt to unstructured
and rapidly changing environments. This work has been used and evalu-
ated in several experiments and demonstration scenarios for autonomous
process plan execution, human-robot interaction and co-operation.

1 Introduction

Scene perception and recognition, in the very general sense of the term, is the
process of gathering information about the environment using sensors and pro-
cessing this data to generate information which is useful in carrying out some
task or process. The perception problem in the industrial robotics context in-
volves detecting and recognizing various objects and actors in the scene. The
objects in the scene consist of workpieces relevant to the task and obstacles. The
actors involved are humans, and the robot itself. The major contribution of this
work is an object detection, recognition and pose estimation module, which uses
3D point cloud data obtained from low-cost depth sensors like the Kinect.

Industrial robotics, which was hitherto mostly used in structured environ-
ments, is currently witnessing a phase where a lot of effort is directed towards
applications of standard industrial robots in scenarios that are rather unstruc-
tured and rapidly changing. Hence, the scene perception and recognition module
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has now become an important component in intelligent robotic systems. This
module provides information about the working environment which is used by
reasoning modules and intelligent control algorithms to create an adaptive sys-
tem. In these systems, the process plans are often written at a semantic level
which is abstracted from the execution and scenario specific information. The
perception module is the key for bridging this gap. On one hand, the perception
module provides information which is used by the reasoning engines to pro-
vide an abstraction of the world and learn tasks at this abstract level by human
demonstration. On the other hand, the perception module provides scenario spe-
cific information which is used by the low-level execution and control modules
for plan execution.

Object detection, recognition and pose estimation using 3D point clouds is
a well researched topic. The popular approaches for this task can be broadly
classified as: local color keypoint [1], [2], local shape keypoint [3], global de-
scriptors [4], [5], geometric [6], primitive shape graph [7], [8]. Each of these
approaches have their own advantages and disadvantages. For example, color
based methods would not work on texture-free objects. Shape based methods
can not distinguish between objects having identical shape but different texture.
Global descriptors such as VFH [4] require a tedious training phase where all
required object views need to be generated using a pan-tilt unit. Besides, its
performance decreases in case of occlusions and partial views. The advantage of
these methods, however, lies in their computational speed. Some other methods
such as [7], [9], [10] provide robustness to occlusions, partial views and noisy
data. However, these methods are rather slow and not suitable for real-time ap-
plications in large scenes. In this paper, an extension to the Object Recognition
RANSAC (ORR) [9], [10] method has been proposed, where the effort has been
directed towards a solution which enhances its robustness to noisy sensor data
and also increases its speed. Another object recognition and pose estimation
algorithm has been proposed, which is complementary to the PSORR method
with respect to the target object geometries.

To distinguish objects having identical geometry but different color, the point
cloud is segmented using color information and then used for object detection.
There are several popular approaches for Point cloud segmentation such as Con-
ditional Euclidean Clustering [11], Region Growing [12], and graph-cuts based
segmentation methods [13], [14], [15], [16]. In this paper, a combination of multi-
label graph-cuts based optimization [16] and Conditional Euclidean Cluster-
ing [11] is used for color-based segmentation of point clouds.

2 Object Recognition and Pose Estimation

2.1 Shape Based Object Recognition from CAD models

There are two complementary approaches presented here. One is an extension
of the ORR method [9], [10] called Primitive Shape Object Recognition Ransac
(PSORR), and the other is based on Primitive Shape Graph (PSG) matching.
The results obtained are qualitatively similar for both approaches. The PSORR
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Fig. 1. Pipeline for Shape based perception.

method is more suitable for handling arbitrary object geometries and objects
having few primitive shapes while the PSG method is more suitable for large
models which decompose into a large number of stable primitive shapes. The
pipeline for this module is shown in Fig. 1.

2.1.1 Primitive Shape Decomposition
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Fig. 2. Pipeline for Primitive Shape Decomposition.

The pipeline for this step is shown in Fig. 2. This step is very important for
the algorithm because the hypothesis generation and pose estimation step are
based on this decomposition. The hypothesis verification step, which is a major
bottleneck in most algorithms such as ORR, can also be significantly simplified
and sped-up using this decomposition.

The point cloud P is represented as a set of primitive shapes si containing
points pi ⊆ P such that ∪pi ⊆ P . The primitive shapes si could be planes,
cylinders, etc. An example of such a decomposition is shown in Fig. 3, where the
original scene cloud is shown in Fig. 3 (a) and its decomposition into primitive
shapes is shown in Fig. 3 (b).

Primitive Shape Hypothesis

Hypothesis for primitive shapes are generated by randomly sampling points
in the point cloud. Once the hypotheses have been generated, each point in the
cloud is checked to determine whether it satisfies the hypotheses. The method
used for generating a hypothesis and determining its inliers depends on the type
of primitive shape.
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Fig. 3. Primitive Shape Decomposition example : (a) original Point Cloud (b)
result of Primitive Shape Decomposition (c) Primitive Shape Graph representa-
tion.

– Planes: A plane hypothesis can be generated using a single point (X0) with
its normal direction (n̂). To test if a point X lies on the plane (X −X0) .n̂ =
0, the distance of the point from the plane | (X −X0) .n̂| is used.

– Cylinders: A cylinder hypothesis can be generated using 2 points (X0, X1)
with their normal directions (n̂0, n̂1). The principal axis of the cylinder is
selected as the minimum distance line between the normal directions n̂0 and
n̂1. The radius r is the distance of either point to this line. To test if a point
X lies on the cylinder, the distance of the point from the cylinder’s axis is
used.

Primitive Shape Assignment

The hypotheses associated with each point in the cloud can be considered as
labels for point. There may be multiple labels associated with each point and
the labeling may be spatially incoherent. To resolve such issues and generate a
smooth labeling, a multi-label optimization using graph-cuts is performed. In this
setting, the nodes in the graph comprise all possible assignment of labels to the
points. The data term indicating the likelihood of a label assignment to a point
is inversely proportional to the distance of the point from the primitive shape.
The smoothness term penalizes neighboring points having different labels and
the penalty is inversely proportional to the distance between the neighboring
vertices. Label swap energies are used for neighboring primitive shapes in a
way that only neighboring primitive shapes labels can be swapped. This convex
energy functional is then solved using the α - expansion, β -swap algorithms
[13], [14], [15], [16] which give the label assignment for each point in the cloud,
such that the total energy is minimized.

Merging Primitive Shapes

Each primitive shape has a fitness score associated with it which indicates
how well the primitive matches the point clouds. It is based on the minimum
descriptor length(MDL) approach [17]. The fitness score of a primitive shape is
defined as :
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fitness score =
inliers

total points
+K ∗ descriptor length (1)

where, the first fraction represents the inlier ratio, i.e., the ratio of points which
satisfy the primitive shape (inliers) to the total number of points in the input
cloud (total points), descriptor length represents the complexity of the prim-
itive shape (e.g. the number of values required to represent the shape). The
constant K determines the relative weighting of the two factors. Higher values
of K will support under-segmentation resulting in bigger, less accurate primi-
tives, while low values will hamper robustness against over-segmentation, causing
fewer merges and resulting in fragmented, over-fitted primitives.

The merging strategy is based on a greedy approach where pairs of primitive
shapes are selected and merged if the combined primitive shape has a better
fitness score than the individual primitive shapes. This continues till there are
no more primitive shapes which can be merged.

2.1.2 Primitive Shape Graph(PSG) Representation

The primitive shapes detected in the previous step are now used to create
a graphical representation of the point cloud. In this graph G = (V,E), each
primitive shape is a node v ∈ V and neighboring primitive shapes are connected
by an edge e ∈ E. An example of such a graph is shown in Fig. 3 (c).

2.1.3 Hypothesis Generation

PSORR method

An oriented point pair (u, v) contains two points along with their normal
directions: u = (pu, nu) and v = (pv, nv). A feature vector f(u, v) is computed
from this point pair, as shown in Eq. 2.

f(u, v) =


‖pu − pv‖
6 (nu, nv)

6 (nu, pv − pu)
6 (nv, pu − pv)

 , (2)

The central idea in the ORR method is to obtain such oriented point pairs
from both the scene and model point clouds and match them using their feature
vectors. For efficient matching of oriented point pairs, a Hash Table is generated
containing the feature vectors from the model point cloud. The keys for this table
are the three angles in Eq. 2. Each Hash Cell contains a list of models (Mi ∈M)
and the associated feature vectors. Given an oriented point pair in the scene
cloud, this Hash Table is used to find matching point pairs in the model cloud.
Each feature vector f has an associate homogeneous transformation matrix F
associated with it, see Eq. 3.
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Fuv =

( puv×nuv

‖puv×nuv‖
puv

‖puv‖
puv×nuv×puv

‖puv×nuv×puv‖
pu+pv

2

0 0 0 1

)
, (3)

where puv = pv − pu and nuv = nu + nv. Hence, for each match fwx in
the hash table corresponding to fuv in the scene, a transformation estimate can
be obtained, see Eq. 4. This transformation estimate (Ti) forms a hypothesis
hi = {Ti,Mi} ∈ H for the model (Mi) in the scene.

T = FwxF
−1
uv (4)

The raw point clouds are generally noisy, especially the normal directions.
The original ORR method is sensitive to noise in the normal directions and
hence, randomly selecting points to generate the feature vectors requires more
hypothesis until a good oriented point pair is found. In the PSORR method,
every node representing a plane in the scene PSG is considered as an oriented
point (u) with the centroid of the plane as the point (pu) and the normal di-
rection as the orientation (nu). The normal directions for these oriented points
are very stable because they are computed considering hundreds of points lying
on the plane. Therefore, we can use these centroids instead of the whole cloud
to compute and match features, which leads to a significantly less number of
hypotheses.

The centroid for the scene cloud primitives might not match the model cen-
troids in case of partial views. Hence, for the model cloud, the point pairs are
generated by randomly sampling points from every pair of distinct primitive
shape clouds.

PSG Matching for hypothesis generation

In cases where the PSG is rather large and the individual primitive shapes
are small, the speedups obtained by the PSORR method are not significant due
to the additional cost of primitive shape decomposition. In this case, another ap-
proach is used where the scene PSG is matched with model PSG’s and used to
recognize the object and estimate its pose. Given both model and scene PSG’s,
the problem of object recognition becomes equivalent to constrained sub-graph
matching, which is an NP-complete problem. However, the nature of the con-
straints on these graphs provide good heuristic solutions.

Some special cliques in this graph are minimal representations for object pose
estimation, e.g. a clique of 3 intersecting planes, or a plane intersecting with a
cylinder. A feature vector is computed for each of these cliques which can be used
for matching. For a clique of 3 planes, the angles between the pairs of planes
constitutes the feature vector. For a plane and cylinder intersection clique, the
cylinder radius along with the angle between the plane normal and the cylinder
axis direction constitutes the feature vector.

The clique matches between the scene and model point clouds generates full
hypotheses hi ∈ H, i.e., it gives the model (Mi) as well as the pose (Ti). Each
of these hypotheses gives a set of partial matches for the scene and model graph
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vertices. Since they are full hypotheses, a fitness score can be computed for each
of them which indicates the accuracy of the hypothesis.

The graph matching problem is identical to a vertex labeling problem. For
each vertex Vs in the scene graph Gs, a match with a vertex Vm in the model
graph Gm can be considered as a label. Hence, this problem can be posed as a
multi-label optimization problem, where the scene graph nodes are the nodes
and the model graph nodes are the labels.

This multi-label optimization problem is formulated as a Quadratic Pseudo-
Boolean Optimization (QPBO) [18], [19] problem. In this setting, each vertex
consists of a node and its possible label. Thus, the maximum number of nodes
in this graph can be |Vs|× |Vm|. Since the node matches are obtained in pairs or
cliques, the co-occurring node labels are considered as neighbors in this graph.
The weights for these vertices are obtained from the fitness scores of the hypothe-
ses. By solving this optimization problem, we get the optimal match between
the model and scene graphs. This acts like a filtering step which ensures that
conflicting hypotheses are removed.

2.1.4 Efficient Hypothesis Verification

Hypothesis verification consists of transforming the model point cloud according
to the transformation estimate and calculating how much of it matches with the
scene point cloud. Since we use a primitive shape decomposition of the scene
and model clouds, the hypothesis verification step can be simplified. The idea is
to utilize this primitive shape decomposition and use it to speed up the point
cloud matching step.

Since the model and scene clouds are decomposed into primitive shapes and
represented as PSG’s, matching these point clouds is equivalent to matching
all the primitive shapes in their PSG’s. A Minimum Volume Bounding Box
(MVBB) [20] is computed for each of these primitive shapes. Matching these
primitive shapes can then be approximated by finding the intersection of their
MVBB’s. The i-th MVBB comprises 8 vertices vi1,..,8, which are connected by

12 edges li1,..,12 and forms 6 faces f i1,..,6. To find the intersecting volume between

MVBB’s i and j, the points pi at which the lines which form the edges of MVBB i
intersect the faces of MVBB j are computed. Similarly, pj are computed. Vertices
vi of the first MVBB which lie inside the MVBB j and vertices vj of the second
which lie inside the MVBB i are also computed. The intersection volume is then
the volume of the convex hull formed by the set of points

(
pi ∪ pj ∪ vi ∪ vj

)
.

The fitness score for this match is the ratio of the total intersection volume
to the sum volumes of the primitive shapes in the model point cloud. This score
is an approximation of the actual match but the speed-ups achieved by this
approximation are more significant compared to the error due to approximation.

Fig. 4 shows examples of results obtained using the PSORR algorithm. Fig.
4 (a) shows the case when a partial view of the object is present in the scene.
Fig. 4 (b) shows the case where a very low resolution full view of the object is
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Fig. 4. Example of object recognition and pose estimation using PSORR algo-
rithm: (a) scene cloud containing partial view of object (b) scene cloud containing
sparse full view of object.

present in the scene. In both cases, the algorithm is able to recognize the object
and estimate the pose accurately.

2.2 Combining shape and color information

b ca

Fig. 5. Example of object recognition using a combination color and shape in-
formation: (a) Color Based segmentation (b) Detected Object Clusters (c) Final
result of Object Recognition using shape and color information.

A combination of multi-label graph-cuts based optimization [16] and Con-
ditional Euclidean Clustering [11] is used for color-based segmentation of point
clouds. Fig. 5 shows an example of object recognition using a combination of
color and shape information, where the point cloud is first segmented using
color information. Each of these segmented objects is then recognized using the
PSORR method described in Sect. 2.1.3. Fig. 5 (a) shows the color based seg-
mentation, Fig. 5 (b) shows the clustered objects and Fig. 5 (c) shows the final
recognized objects along with their poses.
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Fig. 6. Primitive Shape Detection results. Cylinders are shown in red and planes
are shown in blue-green.

3 Evaluation and Performance Analysis

The Object Segmentation Database [21] was used to evaluate parts of this work.
Fig. 6 shows the results from primitive shape decomposition of scene clouds
taken from the Open Shape Database.

Full View
(same res.)

Full View
(different res.)

Partial
View

Partial
View

Partial
View

Object
Name

Metal
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Board

Fig. 7. Shape Based Object Recognition results.

Fig. 7 illustrates the results obtained for the PSORR algorithm (Sect. 2.1.3)
over industrial workpieces using partial and full views at different resolutions.

Table 1 provides a comparison of the ORR and PSORR methods in terms
of the number of hypotheses generated and the hypothesis verification time for
each of the hypotheses. It can be observed that the PSORR method generates
fewer hypotheses and has a much faster hypothesis verification phase.

4 Applications

The object recognition and pose estimation algorithm presented in this paper
was evaluated on a HRI application in a realistic industrial setting. Such environ-
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Table 1. Comparison of ORR and PSORR recognition algorithms

Object Algorithm Number of Hy-
potheses

Hypothesis verifi-
cation time

Metal Chassis ORR 2000 100ms

Metal Chassis PSORR 100 1ms

Transformer ORR 1000 50ms

Transformer PSORR 30 1ms

Circuit Board ORR 2000 100ms

Circuit Board PSORR 30 1ms

1.a 1.b

1.c 1.d

2.a - process side view

2.c- process top view

2.b - object detection module

2.d - articulated human tracking

1-Intuitive Teaching Interface 2-Automatic Execution of Process Plans

Fig. 8. 1. Intuitive Teaching Application : (a) A snapshot of the GUI used in
the application (b) the Human tracking module providing the hand positions
(c) The projected GUI controlled using hand gestures (d) Process plan taught
using the application. 2. Automatic Execution of Process Plans : (a & c) Process
Plan views (b) Object Recgonition and Pose estimation (d) Articulated Human
Tracker

ments are typically unstructured and objects are often occluded by the human.
Noisy point cloud data was obtained from the low-cost depth sensor (Microsoft
kinect) used in the experiments. Also, accurate object poses are required for pre-
cise pick-and-place tasks, due to mechanical limitations of the 2-fingered gripper.
Given these constraints, an accurate algorithm which can handle occlusions, par-
tial views and sensor noise is essential for such scenarios.

In HRI scenarios, the separation of problem and solution spaces is a popular
concept and the perception module is a key component linking these spaces. This
separation enables the robot system to converse with the human about objects
and their semantic properties rather than numeric values and parameters, which
makes the HRI experience more intuitive for the human. Further details about
this HRI setup and the associated concepts are beyond the scope of this paper.
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4.1 Intuitive Interface for Teaching Process Plan

A mixed reality interface is designed for teaching process plans to the robot using
intuitive physical human-robot interaction. The human can grasp the robot by
its end-effector and take it to the desired position and orientation. Some of the
results from this application are illustrated in Fig. 8 (1), where a GUI projected
on the working table is controlled using hand gestures to record the taught
robot poses. The perception module detects the objects present in the scene and
a reasoning module associates objects with the taught poses to automatically
generate a semantic description of this process plan in STRIPS [22] format.

4.2 Automatic Plan Execution

This application is aimed at automatic execution of semantic process plans in
industrial scenarios. The perception module plays a key role in bridging the gap
between the semantic level process plan and the real-world numeric parameters
required for execution by providing positions and orientations of workpieces dur-
ing execution. The object recognition and pose estimation approach used in this
application is described in Sect. 2.2. The human can also point to objects on
the table which will be considered as obstacles for the robot. Fig. 8 (2) shows
snapshots from this application.

A video illustrating results for the algorithms presented in this paper and its
use in the applications mentioned above can be found at :
http://youtu.be/6pjlpJa0C8Y.

5 Conclusion and Future Work

The main contribution of this work has been the development of a shape based
object detection and recognition module which can handle sensor noise, occlu-
sions and partial views. This module can be trained from CAD models or scanned
3D objects. In the current implementation, planes and cylinders were used for
primitive shape decomposition of point clouds. This could be easily extended
for other shape primitives such as torus, spheres or other conics. The primitive
shape merging phase supports primitives in general as long as a fitness score and
model complexity can be defined.
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