
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017 1

An Exact Solver for
Geometric Constraints with Inequalities

Nikhil Somani, Markus Rickert, Alois Knoll

Abstract—CAD/CAM approaches have been used in the man-
ufacturing industry for a long time, and their use in robotic
systems is becoming more popular. One common element in
these approaches is the use of geometric constraints to define
relative object poses. Hence, approaches for solving these ge-
ometric constraints are critical to their performance. In this
work, we present an exact solver for geometric constraints. Our
approach is based on mathematical models of constraints and
geometric properties of constraint nullspaces. Our constraint
solver supports non-linear constraints with inequalities, and also
mixed transformation manifolds, i.e., cases where the rotation and
translation components of the constraints are not independent.
Through several applications, we show how inequality constraints
and mixed transformation manifolds increase the expressive
power of constraint-based task definitions. The exact solver
provides repeatable solutions with deterministic runtimes and
our experiments show that it is also much faster than comparable
iterative solvers.

Index Terms—Control Architectures and Programming; Op-
timization and Optimal Control; Robust/Adaptive Control of
Robotic Systems

I. INTRODUCTION

Our main motivation in this work is to demonstrate how
geometric information from CAD models can be exploited
for constraint-based descriptions of robotic tasks. The use
of CAD software to design mechanical parts and assemblies
is established standard practice that has proven to be of
immense value, especially with the increasing availability of
computational power and maturity of such software. In popular
CAD software such as SolidWorks, constraints between the
individual geometric entities of each part can be defined
to create assemblies. We show how such a constraint-based
approach can be extended for other applications.

The study of geometric constraints is a central theme
in this work. Geometric constraints can be categorized in
several ways. Firstly, depending on equations representing
the constraints between objects, they can be classified as
linear or non-linear. Secondly, the rotation and translation
components of the constraints may or may not be independent.
This independence greatly simplifies the constraint solving
algorithm [1]. However, as we have demonstrated in this paper,
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Fig. 1: A cup grasping task expressed using geometric con-
straints with inequalities. The rotation and translation compo-
nents in this example are not independent.

this limitation restricts the expressive power of constraint-
based descriptions. We propose a solution for cases where the
rotation and translation constraints depend on each other.

Although geometric constraint solving is a general problem
that is relevant to several domains, we focus on robotics
applications in this work. Through our experiments, we have
observed that many robotic tasks are well-suited for constraint-
based descriptions. This is due to the fact that robotic tasks are
often under-constrained, i.e., they do not completely define the
desired pose of the robot, but only impose certain constraints
on it. As an example, a welding task requires the tool-tip to
follow a line or a curve (Fig. 6). However, the orientation
of the tool-tip need not be fully constrained. The nullspace
of this task can be utilized to optimize the robot motion by
staying away from joint limits or to satisfy secondary goals
such as collision avoidance. With the inclusion of inequalities
in constraints, restrictions in the form of allowed ranges can
be defined for this orientation. This might be necessary to
keep the welding tool within the acceptable angular limits
such that the weld quality is maintained. This allows us to
exploit the nullspace, but also impose restrictions on it based
on requirements of the task.

There are two major categories geometric constraint solving
approaches [7]: Iterative and exact. Iterative approaches model
the constraints using cost functions and pose the solving
process as an optimization problem. Exact solvers use geo-
metric properties of the involved entities to create constraint
simplification and combination rules, along with a mapping
of constraints to geometric nullspaces. Iterative approaches
are generally easier to model and can represent constraints
which can be difficult to model geometrically. However, they
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TABLE I: Comparison of constraint solvers

Framework Exact Non-separable R,t Inequalities Efficient Supported Use-Cases (Table IV) Output Type

TSID [2], [3] 3 + A,C �
WBCF [3], [4] 3 + A,C �
Somani et al. (GN solver) [5] 3 −− A,C q
Rodriguez et al. [1] 3 ++ A,C x
Somani et al. (NLOpt) [6] 3 3 − A,B,C,D,E,F q
This work 3 3 3 ++ A,B,C,D,E,F x

TABLE II: Classification of constraints

Non-separable R,t Inequality Example Transformation Manifold
(Translation, Rotation)

Plane-Plane Coincident Plane, OneParallel
3 Plane-Plane Distance Min-Max Box, OneParallel

3 Line-Line Distance, Tangent 1-DOF sub-manifold (Fig. 2c)
3 3 Line-Line Distance Min-Max, Cylinder-Plane Tangent 2-DOF sub-manifold (Fig. 2g)

inherit problems from the non-linear optimization domain,
such as a lack of convergence guarantee with different starting
values, local minima, numerical stability issues when using
derivatives, and a non-deterministic runtime. Exact solvers
are designed to give repeatable and guaranteed results from
any starting pose, with a deterministic runtime which can be
significantly faster than iterative approaches (Section VII).

We present an exact solver that supports non-linear geo-
metric constraints with inequalities, where the rotation and
translation components may not be independent. One example
of a robotics use-case where both these properties are essential
is shown in Fig. 1. We use the set of robotics applications
that were presented in our previous work [6] using an iterative
solver, and show how they can be solved using an exact solver.
We get exact, repeatable solutions for the same applications,
with an improvement in runtime by a factor of approximately
10. The runtime of approximately 50 µs that can be achieved
using our exact solver makes it suitable for robot control
applications. The deterministic nature of the runtime is very
important for applications requiring hard real-time control with
time slot management. Although environment and robot model
constraints are also necessary for such applications (as shown
in [6]), they are beyond the scope of this paper which focuses
only on geometric inter-relational constraints.

II. CONTEXT

While using iterative solvers for robotic manipulation tasks,
we have observed that geometric constraints often have the
most significant effect on the solver in terms of the conver-
gence properties as well as runtime. In this paper, we propose
a method to improve both aspects by solving the geometric
constraints exactly. The exact solution manifold of geometric
constraints is essentially a geometric constraint on its own
between the robot and the environment. An iterative solver
can combine this geometric constraints with environment and
other constraints as shown in our previous work [6]. By adding

an inverse kinematics step after the exact solution of geometric
constraints (see Section VII-B), a robot controller can be
developed that is still within the requirements of real-time
interfaces from most industrial robots (e.g., 400 µs for Comau
C5G Open, 1ms for KUKA FRI, 4ms for KUKA RSI, 7.11ms
for Mitsubishi Electric, 8ms for Universal Robots).

Although we present only robotics examples in this work,
geometric constraints find use in several fields such as ma-
nipulation planning and computer vision. In our previous
work [8] on object pose estimation, geometric constraints
were used to generate object pose hypotheses. This typically
requires generation of hundreds of hypothesis for each frame
of sensor data. In manipulation planning [9], each step of each
branch of the RRT requires a projection into the geometric
nullspace. Hence, the runtime of geometric constraint solving
is extremely important for each of these applications.

III. RELATED WORK

Constraint-based methods for robot tasks have been studied
for a long time, from operational space control concepts in the
late 80s [10] to whole body control [4] and constraint between
frames in iTaSC [11], with applications in safe human-robot
collaboration [12] and motion primitives [13].

Applications based on representations of coordinate frames
and geometric relations between them were presented in [14].
The work in [1], [5], and [6] defined relations between
geometric entities (e.g., points, lines, surfaces) that comprise
manipulation objects, and used an iterative solver for solving
these geometric constraints. Borghesan et al. [15] defined
formal models of geometric constraints and their control law
for positioning tasks minimized distance functions derived
from geometric constraints.

Berenson et al. [9] used task space regions (TSR) to
represent constraints and affordances for robotic tasks. A TSR
is essentially a subspace in SE(3) whose shape depends on
the specific task. The sampling step for probabilistic motion
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Fig. 2: Illustration of geometric constraints and their nullspaces. (a) The Line-Point distance constraint (red) defines the
distance of Point2 from Line1. The translation nullspace of this constraint is the Cylinder (red). The rotation is completely
unconstrained. (b) The line-line distance constraint (red) defines the distance of a point on Line2 from Line1. The Axis-Axis-
parallel constraint (green) defines that the axes of the two lines should be parallel. The translation nullspace is the Cylinder
(red). The rotational nullspace is shown using the blue arrow. (c) Example of a set of constraints, where the rotation and
translation are non-separable. The Line-Point distance constraint (red) defines the distance of the center point of the plane
from the line. The Line-Circle-tangent constraint (green) defines that the normal direction of the plane should be tangential
to the circle shown in red. In a combination of these constraints, the rotation and translation elements are non-separable. The
composite nullspace of this transformation manifold is the rotation around the line (as shown in blue). (d) The Plane-Line
distance constraint (red) defines the distance of Line2 from P lane1. The translation nullspace is indicated by the green and
blue arrows. The rotation nullspace is around the axes marked by red and green arrows. (e)–(h) The constraints are extended
with inequalities to define the minimum and maximum distances.

planning is then performed by either rejection, projection or
direct sampling in the TSR. The exact geometric solver that
we propose in this work generates a transformation nullspace
that can be used as a TSR. Since each of these geometric
nullspaces already has an exactly defined distance function,
projection function, and a parametric representation, all three
types of sampling strategies in [9] can be used.

An exact constraint solver for primitive shapes was pre-
sented in [1]. The concepts of translation and rotation man-
ifolds, constraint combination rules, and some examples of
their use in robotics applications were presented in this work.
We build upon these concepts and extend them in several
directions. Firstly, we remove the restriction of requiring
independent rotation and translation constraints. As shown in
this work, this dependence between rotation and translation
manifolds is common in the constraint-based definition of
robotic tasks. Secondly, we add definitions of inequalities
for geometric constraints and the corresponding combination

rules, which greatly enhances their expressiveness. The impor-
tance of inequalities in robotic tasks has already been studied
in several works including [6], [16], [17], where it has been
shown that many robotics tasks are naturally expressed using
inequalities.

A qualitative evaluation of constraint-based approaches with
respect to features and runtime is presented in Table I. It can be
observed from this table, that the approach proposed in this
work offers a unique set of features compared to the other
approaches. The runtimes are roughly classified as −− being
less than 4ms, − being between 4ms and 1ms, and + being
between 1ms and 0.1ms, and ++ being less than 0.1ms. It is
clear that the exact approaches are generally much faster than
the iterative solvers. Solvers based on local linearizations such
as TSID and WBCF are also very efficient, but are restricted
in their scope of supported geometric constraints.
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Fig. 3: Visualization of nullspaces of combinations of ge-
ometric constraints: (a) One Plane-Plane distance-min-max
constraint generates a Box with two sides of infinite length
as the nullspace, where the constrained axis of the Box
lies along the normal direction of the fixed plane, (b) two
Plane-Plane distance-min-max constraints generate an infinite
Parallelepiped as the nullspace, where the infinite axis of
the Parallelepiped lies along the cross product of the normal
directions of the fixed planes, (c) three Plane-Plane distance-
min-max constraints generate a finite Parallelepiped as the
nullspace.

IV. CONSTRAINT MODELING

In this section, the mathematical models of geometric con-
straints are presented. This includes definitions of constraint
nullspaces and an analysis of their geometric properties.

A. Transformation submanifolds

Submanifolds for geometric constraints whose rotation and
translation elements are decoupled were defined for relative
positioning tasks in [1]. We add definitions for some additional
submanifolds (e.g., Box, Parallelepiped, ThickCylinder) that
are required for inequality constraints. Mathematical defini-
tions and properties of translation submanifolds are summa-
rized in Table VI. The equations and properties of rotation
submanifolds are very similar to the ones defined in [1].

We also define full transformation submanifolds, where each
DoF in the submanifold nullspace can be a mixture of rotation
and translation DoFs. An example of such a manifold is
shown in Fig. 2c where the rotation and translation elements
depend on each other and cannot be separated. For any point
lying on Line2, the translation is restricted along the Cylinder
submanifold. If the translation along the Cylinder submanifold
is considered as a DoF, the rotation is fully defined by the
two perpendicularity constraints. Conversely, if the rotation
along axis Line1 is considered to be the DoF, the translation
is fully defined. Hence, the nullspace of this constraint is a
1-DoF manifold where the rotation and translation cannot be
independently controlled at the same time.

B. Boundary representation of geometric entities

We use a boundary representation (BREP) [18] for all
geometric entities in the robotic system. This representa-
tion decomposes each object into semantically meaningful
primitive shapes (e.g., planes, cylinders). For each of these
shape types, Table VI lists the parametric equation used to
define the geometric nullspace, and a projection function to
project a point onto the shape. Conversely, the nullspaces of

geometric constraints can be expressed using transformation
submanifolds, which can be modeled using BREP.

C. Geometric constraints

Given a fixed and a constrained shape, a geometric con-
straint adds restrictions to the relative pose of the constrained
shape with respect to the fixed shape.

Table II lists the different types of geometric constraints
based on two criteria: Inequality support and separability
of rotation and translation components. This classification is
important for the solving step in Section V.

Table III lists some of the geometric constraints that are
supported by our system and are relevant to our use-cases.
In case of separable constraints, the rotation and translation
components have also been defined. The mapping of these
constraints to transformation manifolds has also been defined.

D. Geometric properties of constraint nullspaces

The nullspace of geometric constraints can be expressed
in the form of transformation submanifolds, which have a
geometric meaning (with parametric equations and projec-
tion functions) of their own. Fig. 3 illustrates the geometric
properties of the constraint manifolds for combinations of
plane-plane-distance constraints with inequalities. Hence, the
nullspace of such geometric constraints can often (but not
always) be exported as CAD files and visualized using 3D
rendering software.

V. EXACT CONSTRAINT SOLVER

The geometric constraints solving problem can be defined
as an approach to calculate a relative pose between two
objects (in general), based on a set of constraints between
their geometries. Hence, given a set of geometric constraints
ℂ between a fixed object Of and a constrained object Oc
and an initial transformation T cf , the goal is to compute

a transformation T ns(c)f that is the projection of T cf in the
nullspace of the geometric constraints ℂ:

T ns(c)f = projection(ℂ, T cf ) . (1)

In case of iterative solvers, each constraint (Ci ∈ ℂ) defines
a cost function CF(Ci, T cf ). The constraint solving problem is
then expressed as an optimization problem:

T ns(c)f = argmin
∑

Ci∈ℂ
CF(Ci, T cf ) . (2)

In case of exact geometric solvers, the set of constraints ℂ is
first decomposed into simpler constraints (and in case of sep-
arable constraints, their rotation and translation components)
using the rules defined in Table III. These constraints are then
combined according to specified constraint combination rules
(see Table VII, Fig. 4, and Fig. 5). These constraint processing
steps are important to simplify and reduce the set of input
constraints to a set that can be easily mapped to submani-
folds. Some of the rules for mapping sets of constraints to
transformation submanifolds are shown in Table III. Given
the transformation submanifold, the transformation T cf can be
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TABLE III: Decomposition of geometric constraints and their mapping to Transformation Manifolds

Fixed Constrained Constraint (i) Rotation Translation Transformation Manifold
(Translation, Rotation)

Line1 Point2 Distance (dmin, dmax) - dmin ≤ d(Line1, Point2) ≤ dmax ThickCylinder, ℝ3 (Fig. 2e)
Line1 Line2 Distance (dmin, dmax) ∠(a1,a2) = 01 dmin ≤ d(Line1, Point2) ≤ dmax ThickCylinder, OneParallel (Fig. 2f)

Line1 Line2 Angle (amin, amax) amin ≤ ∠(a1,a2) ≤ amax − ℝ3, OneAngleMinMax

Plane1 Point2 Distance (dmin, dmax) − dmin ≤ d(Plane1, Point2) ≤ dmax Inf. Box, ℝ3

Plane1 Line2 Distance (dmin, dmax) ∠(n1,n2) = �∕2 dmin ≤ d(Plane1, Point2) ≤ dmax Inf. Box, OneAngle (Fig. 2h)

Plane1 Line2 Angle (amin, amax) �∕2 − amin ≤ ∠(n1,n2) ≤ �∕2 − amax − ℝ3, OneAngleMinMax
Plane1 Plane2 Distance (dmin, dmax) ∠(n1,n2) = 0 dmin ≤ d(Plane1, Point2)≤ dmax Plane, OneParallel

Plane1 Plane2 Angle (amin, amax) amin ≤ ∠(n1,n2) ≤ amax − ℝ3, OneAngleMinMax
Line1 Plane2 Tangent non-separable non-separable see Fig. 2g

Algorithm 1: Constraint solving approach: separation is a
set of constraint decomposition rules defined in Table III.
combinationRule is a set of constraint combination rules,
some of which have been defined in Table VII and il-
lustrated in Figs. 4 and 5. manifoldMap is the mapping
of constraints to transformation manifolds, as defined (not
exhaustively) in Table III. geomProject is a projection
function for each translation and rotation transformation
submanifold.

Input: Constraints ℂ, initial constrained object pose T cf
Output: Solved constrained object pose T ns(c)f

1 solvable ← false
2 foreach Ci ∈ ℂ do
3 if ∃ separation(Ci) then
4 ℂ ← (ℂ − Ci) ∪ separation(Ci)

5 foreach pair Ci, Cj ∈ ℂ do
6 if ∃ combinationRule(Ci ∪ Cj) then
7 ℂ ← (ℂ − (Ci ∪ Cj)) ∪ combinationRule(Ci ∪ Cj)
8 if ∃manifoldMap(ℂ) then
9 solvable ← true

10 break

11 if solvable then
12 manifold ← manifoldMap(C)
13 if separable(manifold) then
14 Rns(c)f ← project(Rcf ) ∗ (Rcf )

T

15 tns(c)f ← project(tcf ) − (project(Rcf ) ∗ (Rcf )
T ∗ tcf

16 T ns(c)f ← (Rns(c)f , tns(c)f )
17 else
18 T ns(c)f ← geomProject(T cf )

projected to T ns(c)f using the submanifold’s projection function
(geomProject defined in Table VI).

The algorithm for the exact geometric solver is explained
in Algorithm 1. The most important steps, i.e., the constraint
processing rules and solution synthesis, are explained next.

Coincident (PlaneA, PlaneB) Concentric (CylinderA, CylinderB)

Distance (PlaneA, PointB1) = 0

Angle (AxisA, AxisB) = 0
Distance (LineA, PointB2) = 0

Angle (AxisA, AxisB) = 0

PointManifold OneAngleManifold (AxisA)

AxisAAxisB

CylinderA

CylinderB

PlaneB

PlaneA

LineA ∉ PlaneA

identical

Fig. 4: Example of constraint combination rules for assembly.
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Fig. 5: Constraint combination rules for a task with inequality
constraints (tray grasping)

A. Constraint processing rules

The simplification and combination of constraints is an
important step in the constraint solving process. By separating
complex constraints into a combination of simpler ones, the
number of constraint combination scenarios and rules can
be reduced. The combination rules for a constraint pair also
perform a consistency check by analyzing their geometric
properties and determining whether they are compatible or
redundant. By combining constraints in this way, the number
of mappings needed from constraint sets to transformation
manifolds can also be reduced.
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Some constraint simplification and combination rules have
been presented in [1]. We created additional rules in this
work to enable the combination of constraints with inequalities
(Table VII). Also, for constraints where the rotation and trans-
lation sub-manifolds are dependent on each other (Table III),
full transformation manifolds are required to represent their
nullspace (Section IV-A).

After simplification, the constraints are recursively com-
bined till a set of constraints that can be directly mapped to a
transformation manifold is obtained (Table III).

Fig. 4 presents an example of constraint processing rules
from an assembly use-case (Section VI-A), where both con-
straints are separable into rotation and translation components
(Table III). The rotation components from both constraints are
identical, and are mapped to a OneParallel rotation manifold.
The translation components can be combined according to the
case where LineA is not contained in the PlaneA. The resulting
translation constraint is a point-point coincident constraint,
which is mapped to a Point translation manifold. Fig. 5
presents an example of constraint processing rules for a task
that requires inequality constraints (see Section VI-B). More
examples of constraint processing rules based on robotics use-
cases have been illustrated in Section VI.

B. Solution synthesis

Once the transformation manifold has been determined,
the closest operational pose for the robot is calculated by
projecting the current pose onto the transformation manifold.

VI. ROBOTIC APPLICATIONS

Constraint-based approaches are effective at representing
robot tasks, especially in the case of robots interacting with
rigid objects of known geometry. We have shown how such
geometric constraints can be defined using intuitive user
interfaces in our previous work [5], [19]. For benchmarking
our solving approach with other approaches (including our
previous work [3], [5], [6]), we choose some common robotic
applications and derive their constraint-based representations.

A. Assembly of two workpieces

In this scenario (Fig. 4), two workpieces from a gearbox
need to be assembled together. The parameters for each
of these steps can be specified using geometric constraints
between the assembly objects (A and B, Fig. 4).

B. Tray grasping

This task involves grasping of a tray using a two-fingered
gripper. The constraint-based definition of this task is shown in
Fig. 5. ParallelDistance constraints between three sets of non-
parallel Planes would, in the absence of inequalities, result in
a fully specified robot pose. Hence, inequality constraints are
necessary to model the nullspace of this task.

The rotation and translation components of the constraints
are separable. Two ParallelDistance constraints between sets
of non-parallel Planes generate an infinite Parallelepiped,
whose infinite axis is the line of intersection of the two

AxisB

PointA2

PointA1

LineA

PointB

AxisA

Coincident(PointB , LineA)
0 ≤ Angle(AxisB , AxisA) ≤ �max

Coincident(PointB , PointA1) (start point)
Coincident(PointB , PointA2) (end point)

Fig. 6: Constraint for seam welding.

Planes. Three ParallelDistance constraints between sets of
non-parallel Planes generate a finite Parallelepiped. The ro-
tation in this case is fully defined.

C. Seam welding

The seam welding task requires the tip of the welding tool
(a point) to move along a specified path on the target object
(e.g., a line in case of Fig. 6). This task can be expressed
using a line-point-coincident constraint, where the translation
of the point is restricted along the line but the rotation is free.
Limits on the rotation of the tool with respect to the object
can also be defined using inequality constraints, ensuring that
the tool is oriented within the angular limitations required by
the welding process.

D. Grasping of a soda can

This task involves the grasping of a cylindrical object
(a soda can) from its sides (Fig. 1). This task can be
described using a line-line-distance-min-max constraint, that
results in a translation nullspace described by a ThickCylinder.
To ensure proper grasping, the gripper plane also needs to
be tangential to this cylinder, resulting in a cylinder-plane-
tangent constraint. A combination of these constraints is a non-
separable constraint, whose nullspace is described in Fig. 2g.
To incorporate grasping possibilities along the length of the
can and to utilize the gripper span and finger length, additional
inequality constraints can be defined (Fig. 1).

E. Manipulating a tray carrying an assembly

This task presents an example with multiple objects. The
assembly described in Section VI-A is placed on a tray. The
assembly itself has one rotational DoF along its symmetrical
axis in its nullspace. Additionally, the object can translate in
two directions along the tray and rotate around its normal
direction. The tray in turn is manipulated by a robotic arm and
can translate in all 3 axes as well as rotate along the normal
direction of tray plane. The other two rotational axes are
restricted to prevent the object from falling off the tray. Since
there are three consecutive sets of constraints, the solution is
obtained by solving the problem in three steps. In total, this
system has 4 constraints and 8 DoFs in the nullspace (see
Fig. 7).
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Fig. 7: Multi-object task: manipulating a tray that carries an
assembled part (Section VI-A)

TABLE IV: Runtime evaluation on application scenarios

Scenario #Constraints Nullspace
DoF

Iterative [6]
Runtime
(in ms)

Exact Geom.
Runtime
(in ms)

A. Plane Distance 1 3 0.6 ± 0.1 0.05 ± 0.01
B. Seam welding 1 3 0.8 ± 0.1 0.06 ± 0.01
C. Cylinder Grasp 4 1 0.8 ± 0.1 0.06 ± 0.01
D. Cup Grasp 4 1 1.2 ± 0.2 0.06 ± 0.01
E. Tray Grasp 3 0 3.0 ± 0.2 0.06 ± 0.01
F. Tray with object 4 8 N/A 0.17 ± 0.01

VII. EVALUATION

We present quantitative evaluations of our approach in terms
of solver runtimes for different tasks in the following Sections.
In each of these evaluations, the mean and standard deviation
of the runtime for our approach was calculated for 1000
repetitions from different random initial poses of the robot.

A. Runtime evaluation for different robotic tasks

To assess the time efficiency of our approach, we evaluated
the solver runtimes for each application mentioned in this
paper. The results are summarized in Table IV. The evaluation
covers a wide variety of tasks having 1–4 constraints and
1–8 degrees-of-freedom in the task nullspace. The constraints
include separable and mixed transformation manifolds. For
one pair of objects, the runtime ranges from 0.05ms for

TABLE V: Runtime evaluation of control frameworks

Framework
Runtime

1 constraint
(in ms)

Runtime
2 constraints

(in ms)
Output

This work 0.05 ± 0.01 0.06 ± 0.01 x
Somani et al. (NLOpt) [6] 0.54 ± 0.07 0.62 ± 0.08 x
Somani et al. (GN solver) [5] 3.21 ± 0.70 3.89 ± 0.50 x
This work+IK 0.28 ± 0.03 0.29 ± 0.03 q
TSID [2], [3] 0.50 ± 0.10 0.50 ± 0.10 q
WBCF [3], [4] 0.80 ± 0.10 0.80 ± 0.10 q
Somani et al. (NLOpt) [6] 0.80 ± 0.10 0.90 ± 0.10 q
Somani et al. (GN solver) [5] 4.00 ± 1.00 5.00 ± 0.80 q

the simplest task to 0.06ms for the most complicated one.
We compare this to our previous work [6]. Since the other
frameworks mentioned in Table I do not completely support
the types of constraints used in our applications, they are
skipped for this evaluation.

B. Comparison with other constraint-based approaches
Based on reference implementations from our previous

works [3], [5], [6], we compare our proposed approach to
TSID [2], WBCF [4], and our previous approaches in terms
of average controller runtime and task errors. The first test case
involves a plane-plane-coincident constraint where 3 DoF are
fixed. The second test case has two plane-plane-coincident
constraints, making 5 DoF fixed. The tolerance for task errors
is set to 10−6. The results are summarized in Table V.

Note that the frameworks TSID and WBCF generate robot
torques � (Table I) and a forward dynamics step was added
in our implementation [3] to obtain robot joint positions q.
[5] and [6] generate robot joint positions q, but we modified
our implementations so that they can also generate only
target Cartesian positions x. In this evaluation, we used the
inverse kinematics approach from [20] to generate robot joint
positions q from Cartesian positions x provided by the exact
solver.

The timing for generating robot joint positions including the
additional IK step is reported separately for this evaluation.
This is because (1) many controllers directly support input in
the form of end-effector Cartesian positions and (2) runtimes
for IK can vary immensely depending on the kinematics of
the robot and the IK algorithm (symbolic or iterative).

VIII. CONCLUSION

We have presented an approach for exactly solving ge-
ometric constraints by exploiting the geometric properties
of their nullspaces. Qualitatively, the solver supports several
features that are not supported by other state-of-art approaches
(both exact and iterative). Quantitatively, the solving time (see
Section VII-A) is good for hard real-time control applications.
From Section VII-B, it can be seen that the exact approach is
much faster than other comparable frameworks.

There are several limitations to our approach that can form
directions for future work. Firstly, we have studied constraint
definitions only between a small set of primitive shapes.
Extending this to generalized and more complex descriptors
such as B-Splines or Bezier curves, in order to support the
full B-REP standard is not trivial. Secondly, the number of
constraint combination rules required to cover all corner cases
can be relatively large and cumbersome to implement. This
is especially relevant for our approach since the addition of
inequalities to the combination rules presented in [1] already
significantly increased the number of combination cases.

APPENDIX

Table VI lists the geometric properties of some translation
manifolds used in this work, including their parametric rep-
resentation and projection functions that calculate the nearest
point on the translation manifold from a given input point.

Table VII shows some constraint combination rules.
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TABLE VI: Parametric representation and point projection operations for geometric shapes

Shape/submanifold Parametric representation Projection of Point: geomProject(u)

ℝ3 q(s1, s2, s3) = p + s1d̂1 + s2d̂2 + s3d̂3 u
Point (p) q = p p
Line (p, â) q(s) = p + sâ p + ((u − p) ⋅ â)â
Circle (p, n̂, r) q(�) = p + r(c� n̂⟂1 + s� n̂⟂1) p + r[geomProjectPlane(p,n̂)(u) − p]1

Plane (p, n̂) q(s1, s2) = p + s1n̂⟂1 + s2n̂⟂2 u + ((p − u) ⋅ n̂)n̂
Sphere (p, r) q(�, �) = p + r(c�c� d̂1 + s�s� d̂2 + c� d̂3) p + r[u − p]1

Cylinder (p, â, r, ℎ) q(s, �) = p + sâ + r(c� â⟂1 + s� â⟂1) geomProjectPlane(p,n̂)(u) + r[u − geomProjectPlane(p,n̂)(u)]1

Box (p,d, l) q(s1, s2, s3) = p + s1d̂1 + s2d̂2 + s3d̂3, si ∈ [−li∕2, li∕2]
Parallelepiped (p,n, l) q(s1, s2, s3) = p + s1n̂1 + s2n̂2 + s3n̂3, si ∈ [−li∕2, li∕2]
ThickCylinder(p, â, r, ℎ,w) q(s1, s2, �) = p + s1â + (r + s2)(c� â⟂1 + s� â⟂1)

1 vectors enclosed in [] are considered normalized

TABLE VII: Constraint combination rules1

Constraint 1 Constraint 2 Combination condition Combined constraint

Coinc(Planef1 , Pointc1) Coinc(Planef2 , Pointc2) Planef1 ∦ Planef2 , Pointc1 = Pointc2 Coinc(Linef12, Pointc1)

Dist(Planef1 , Pointc1) ∈ [d1min, d1max] Dist(Planef2 , Pointc2) ∈ [d2min, d2max] Planef1 ∦ Planef2 , Pointc1 = Pointc2 In(Inf.Ppdf12, Pointc1)

Dist(Planef1 , Pointc1) ∈ [dmin, dmax] In(Inf.Ppdf2 , Pointc2) ∈ [dmin, dmax] Ppdf2 ∉ Planef1 , Pointc1 = Pointc2 In(Ppdf12, Pointc1)

Coinc(Planef1 , Pointc1) Coinc(Linef2 , Pointc2) Linef2 ∪ Planef1 , Pointc1 = Pointc2 Coinc(Pointf12, Pointc1)

Dist(Planef1 , Pointc1) ∈ [d1min, d1max] Dist(Linef2 , Pointc2) ∈ [d2min, d2max] Linef2 ∪ Planef1 , Pointc1 = Pointc2 In(Obl.Cyl.f12, Pointc1)

1 Ppd = Parallelepiped, Inf.Ppd = Infinite Parallelepiped, Obl.Cyl = Oblique Cylinder
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