
Applying the Service Oriented Paradigm to Develop Sensor/Actuator
Networks

Stephan Sommer, Christian Buckl, Alois Knoll
Department of Informatics

Technische Universität München
Garching b. München, Germany
{sommerst,buckl,knoll}@in.tum.de

Abstract

Programming sensor/actuator networks requires ex-
pertise in low-level programming. A major reason is the
resource-constraint hardware that is typically used for
these applications. The result are systems, where ap-
plication logic and platform logic is interwoven. This
minimizes code reuse and leads to major changes, in
case the platform (hardware or software) is changed.
In this paper, we present a model driven approach based
on the service oriented paradigm to support the differ-
ent expert involved in the development, namely plat-
form experts, domain experts and end users. The goal
of our approach is to enable the use of pre-implemented
services in a potentially heterogeneous sensor/actuator
network. The execution of these components is per-
formed by a middleware. To address the resource con-
straints, this middleware is tailored for each application
using a domain specific development tool. The platform
experts can expand the code generator to support fur-
ther platforms. Domain experts provide services and
describe a potential interaction between different ser-
vices. The end users can select, configure and combine
adequate services to form a running application.

1 Introduction

Wireless sensor networks differ from standard com-
puter systems. They are executed on resource-
constrained devices, so that the efficiency of the code
becomes essential. This leads to the fact that imple-
menting sensor network applications demands expert
knowledge in the application domain and in low-level
programming. Modifications of the used platform1,

1By the term platform, we understand the combination of
hardware and operating system.

e.g. by changing the version of the operating system
or by using different hardware, leads to the necessity
of changing large parts of the system. Since the imple-
mentation depends on the used platform, the potential
of reusing pre-implemented components is very limited.
The wide variety of available platforms contradicts the
approach to implement components independent of a
concrete application.

A promising approach is to rely on the concepts of
MDA and Service Oriented Architecture (SOA): an ap-
plication is interpreted as a set of data providing (sen-
sors), data processing (application logic), and data con-
suming (actuators) services. However, the common im-
plementation of these approaches using a generic mid-
dleware is not suitable for sensor/actuator networks as
it is too resource consuming. Our solution to this prob-
lem is to use a code generator to tailor the middleware
to perfectly match the application requirements [1].

This interpretation of SOA differs from other
approaches in the sense that the service oriented
paradigm is only used for the application logic. Fea-
tures of the middleware such as communication is ab-
stracted from the user / developer. This approach
allows us to exploit the service-oriented paradigm to
simplify the development process. In particular, we
want to support the different expert groups that are
typically involved in the development process of sen-
sor / actuator networks. The first group, called the
Platform Experts, have in depth knowledge of the in-
volved platforms and are able to provide services for
hardware interaction and middleware extensions. The
second group we have in mind are the domain experts.
They have expert knowledge to provide domain spe-
cific services for the third group, the End Users or In-
stallers. This group does in general not have expert
knowledge in implementation details neither in a cer-
tain domain nor in a platform. Within our approach,



they can simply select services with desired capabili-
ties and interconnect them with advanced tool support
to build a concrete application. In combination with
suitable hardware, the deployment will then be done
automatically. In the following, we will elaborate this
approach. The paper starts with a description of the
different development groups and the associated devel-
opment process. Afterwards, we give an overview of
the middleware architecture in Section 3 and give in
Section 4 a short introduction in the application we
are using as example. The related work is referenced
in Section 5. Finally, the paper is summarized and
some future work is mentioned.

2 Development Process

In our approach the development and deployment
process can be split into tree phases reflecting the three
different development groups. Within each phase, the
experts can focus on their expertise.

Domain Experts The Domain Experts implement
the building blocks (Logic Services) that are used later
on to build a specific application. In the Building Au-
tomation domain for example, a building block can be a
heating / air conditioner control service based on tem-
perature information from several sensors distributed
across the building and a reference value given by the
facility manager. The Domain Expert will have ex-
pert knowledge in his domain (e.g climate control in
buildings), but does not have to take care of how to
actually interface to specific sensors and actors. The
interaction with other services is specified on a high
abstraction level. A simple heating control might for
example have one input reflecting the actual tempera-
ture, one input for the reference temperature and one
output to control the heater. The in- and outputs are
specified based on a domain-specific ontology to have
a common understanding. In addition, it is possible
to specify constraints like measurement resolution and
minimal sampling rates.

Platform Specialist The interaction between dif-
ferent services is realized by the generated middleware.
This middleware implements all non-functional services
such as data transfer in the distributed system includ-
ing QoS, service instantiation and execution. It is
generated using a template-based code generator [1].
The templates are implemented by Platform Special-
ists. This group has in-depth knowledge of the hard-
ware or operating system and can implement the rele-
vant parts of the middleware. Due to the expandability

of the code generator, new platforms can be easily sup-
ported by adding new templates or modifying existing
ones. In addition, the Platform Specialist also pro-
vides the Basic Services for easy hardware access and
extensions. The basic services reflect the software in-
stances of the sensors and actuators that are provided
by the hardware. The basic services abstract all im-
plementation details and allow a black box usage of the
hardware. In contrast to the transformation of a PIM
to PSM model done by a platform expert, our experts
each contribute artefacts to our model.

Installer / End User Using the Basic Services pro-
vided by Platform Specialists representing the hard-
ware infrastructure in combination with the logic ser-
vices provided by one or more Domain Experts, the
Installer / End User assembles the services in the same
way he installs and wires the hardware components.
After the hardware installation, the application can be
launched and configured. This is done by the installer
with full tool support. A very simple example would be
the control of a shutter. The installer selects a shutter-
control application capable of all the features he has
in mind. In our application the installer would select,
on the one hand, the hardware module for the shutter
and on the other hand some push-buttons to allow the
user to open and close the shutter. In addition, he can
connect a central building control system to the shut-
ter. So, in case of tempest, all shutters can be opened
centrally.

3 Middleware Architecture

The result of our code generation (for more details
on the generation process see [1]) is an optimized, tai-
lored middleware with embedded and already config-
ured services that implement the application logic. The
main task of the middleware is to connect the different
services involved independent of their location (local or
remote). We decided to concentrate the configuration
logic within the system in one component per node, the
Service Broker.

The Service Broker is the central component of the
system and is responsible for data flow and service in-
teraction. Thus, it is also the component that has to
be addressed if the system should be reconfigured dur-
ing run-time. For the first version, we are currently
only supporting dynamic data-flow reconfiguration and
static placement for basic and control services due to
the fact that we are using TinyOS as underlying oper-
ating system which does not support dynamic module
loading. But our future goals are to support dynamic
instantiation of services to increase flexibility and to



7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

Broker Broker

Overlay Network Overlay Network

Underlying Network

Service Service Service

Middle-
ware

Platform

ISO/OSI Layer

Figure 1. Network Stack

address fault-tolerance issues as well as system trig-
gered optimizations at run-time.

The code implementing the service instances is inde-
pendent of the concrete service interaction. Thus, the
service instance needs not to have knowledge about the
location of the interconnected services and nodes. The
data processing in a service is triggered by incoming
data at an input port; after successful processing, the
output data is sent to an output port. For basic ser-
vices, processing could also be triggered by hardware
events. Output events of a service are observed by the
Service Broker which routes those messages to all con-
nected input ports. The service even does not know
where his input came from and where his output will
be sent to by the Service Broker.

The interaction between middleware and services is
depicted in Figure 1. Top down the involved Services
(only one at each node in this example), the Service
Broker and the Overlay Network layer are depicted. As
described above the decision to which service a message
has to be sent is made in the Service Broker. Based on
the knowledge on which Node a Service is being ex-
ecuted, the Service Broker uses the Overlay Network
layer to send the message to the remote Broker which
is responsible for the destination service. The Over-
lay Network layer is used to abstract from any possible
underlying network topology. This ensures us support
for heterogeneous communication infrastructure. The
underlying network can cover all layers from the phys-
ical layer to the transport layer. Our system supports
currently UDP/IP, serial connection and I2C.

Apart from some Services, we have implemented
components for this middleware for the versions 1.1 and
2.0 of TinyOS2 being executed on our MICAz motes
and for a Windows PC. In addition, we also imple-
mented some components for a Windows PC that allow
the easy implementation of graphical user interfaces to
permit easy user interaction with the sensor network.
Due to the middleware approach, the services can be

2www.tinyos.net

ADC ServiceCounter Service Relay Service

Speed 
Service

Distance 
Service

circumference

Signal 
HornLight

Accelera
tion 

Sensor

Bright
ness

Sensor

Light 
Control 
Service

threshold

GUI Service
(Windows PC)

Hall 
Sensor

Accelerat
ion 

Service

Se
ns

or
 N

et
w

or
k 

(M
IC

Az
)

Figure 2. Application Example: Involved Ser-
vices

placed transparently either on the motes or the Win-
dows PC.

4 Application Example and Evaluation

We evaluated the model-driven development ap-
proach, our template based code generator and the
separation of system an application logic with differ-
ent kinds of services in the context of an example ap-
plication realizing the control of a model railway. As
hardware, we used MICAz[3] sensor nodes from Cross-
bow in combination with a data acquisition board to
expand the capabilities and support a wider range of
sensors and actuators. For our example application
we used brightness, acceleration and a hall sensor for
speed measurement. As actuator we used two relays,
one driving the train light and one driving a signal
horn. To provide easy access to these hardware compo-
nents, we implemented suitable basic services for those.
These basic services can be seen as device drives for our
middleware and are not application specific; they can
be used in completely different scenarios. In addition
to the basic services, we implemented hardware inde-
pendent control services to calculate the current speed,
covered distance, acceleration and brightness level, see
Figure 2. Using different basic and logic services, we
could compose the application and generate the com-
plete middleware layer being executed on the MICAz
motes. To demonstrate the interaction between the
user and the sensor network, we implemented an appli-
cation service for a Windows system which allowed the
user to turn the signal-horn on. Summarily, we could
show that the approach has significant advantages re-
garding development time and maintainability.

5 Related Work

Different research teams addressed recently the dis-
cussed issue by using macro-programming languages,



middleware and service-oriented approaches for sensor
networks [4, 13].
CORBA [11], Minimum CORBA [10], Real-Time
CORBA [9] and the .net MicroFramework [14] are
widely used middleware standards, but are typically
too resource consuming for devices we have in mind.
The OASiS Framework[8] and the SIRENA[7] project
aim at developing a framework that allows designing
service-oriented sensor or automation network applica-
tions with an object-centric point of view; In contrast
to our approach, they do not provide automatic code
generation.
In contrast to BOTS [12] which also uses generative
programming we see our platform as collaboration of
loose coupled services provided by multiple vendors
and not as a static system image.
The RUNES[2] middleware provides a component ori-
ented programming platform for sensor network appli-
cations. However, the design and composition of the
individual components is still the task of an expert and
cannot be done by the end-user himself.
For home automation, the Konnex (KNX) [6] stan-
dard and for industrial-process measurement and con-
trol systems the IEC 61499 [5] standard is used to en-
sure the interoperability of different devices. However,
these standards do not address issues like automatic
code generation or transparent heterogeneous commu-
nication.

6 Conclusion

In this paper, we proposed an approach using do-
main specific languages and a template-based code gen-
erator to accelerate the development of sensor actuator
network applications and to increase reusability.
For the domain specific language, we are using a
service-oriented approach. The sensor network appli-
cation is interpreted as a set of services that interact
via an event based push model. Basic services are used
to access hardware devices and offer an abstraction of
the low-level implementation. Logic services in combi-
nation with the service composition done in the Ser-
vice Brokers realize the actual application logic and
can be implemented independent of the used hardware
and operating system. Thus, also developers without
expert knowledge in low-level programming can imple-
ment these systems. By introducing an Overlay Net-
work Layer, we established a seamless communication
layer to transparently connect multiple heterogeneous
devices.
Since we just have started this work, there are a lot of
features, we have in mind but could not yet implement.
The next step will be to realize a dynamic instantia-

tion of new services in the sensor network at runtime
to cope with node failures and improve flexibility. To
increase the support for the component developers, we
are currently improving our modelling tool splitting up
the hardware description into three consecutive steps.
Furthermore, we also plan to implement Quality of Ser-
vice (QoS) methods into the network.

References

[1] C. Buckl, S. Sommer, A. Scholz, A. Knoll, and
A. Kemper. Generating a tailored middleware for wire-
less sensor network applications. In 2008 ieee Inter-
national Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing, 2008.

[2] P. Costa, G. Coulson, C. Mascolo, G. P. Piccoand, and
S. Zachariadis. The RUNES Middleware: A Reconfig-
urable Component-based Approach to Networked Em-
bedded Systems. In Proc. of the 16th Annual IEEE
Intl. Symposium on Personal Indoor and Mobile Ra-
dio Communications (PIMRC’05), 2005.

[3] I. Crossbow Technology. Micaz, wireless measurement
system.

[4] S. Hadim and N. Mohamed. Middleware: Middle-
ware challenges and approaches for wireless sensor net-
works. IEEE Distributed Systems Online, 07(3), 2006.

[5] International Electrotechnical Commission. IEC
61499: Function blocks.

[6] International Organization for Standardization.
ISO/IEC 14543-3: Information technology - Home
Electronic Systems (HES) Architecture - Part 3:
Communication Layers and Initiation.

[7] F. Jammes and H. Smit. Service-oriented Paradigms
in Industrial Automation. In IEEE Transactions on
Industrial Informatics, volume 1, pages 62–70, 2005.

[8] M. Kushwaha, I. Amundson, X. Koutsoukos,
S. Neema, and J. Sztipanovits. OASiS: A Program-
ming Framework for Service-Oriented Sensor Net-
works. In International Conference on Communica-
tion System software and Middleware (COMSWARE
2006), 2007.

[9] Object Management Group. Real-time corba specifi-
cation, Jan 2005.

[10] Object Management Group. Corba for embedded
specification, version 1.0 beta 1 specification, Aug
2006.

[11] Object Management Group. Common object request
broker architecture (corba) specification, version 3.1,
Jan 2008.

[12] R. Pandey and JeffreyWu. BOTS: A Constraint-based
Component System for Synthesizing Scalable Software
Systems. In ACM Conference on Languages, Compil-
ers and Tools for Embedded Systems (LCTES), 2006.

[13] A. Rezgui and M. Eltoweissy. Service-oriented sensor-
actuator networks: Promises, challenges, and the road
ahead. Comput. Commun., 30(13):2627–2648, 2007.

[14] D. Thompson and C. Miller. Introducing the .net mi-
cro framework, 2007.


