
Towards the Internet of Things: Integration of

Web Services and Field Level Devices

Stephan Sommer1, Andreas Scholz1, Christian Buckl2, Alfons Kemper1, Alois
Knoll1, Jörg Heuer3, and Anton Schmitt3

1 Institute of Informatics, Technische Universität München
Boltzmannstr. 3, D-85748 Garching, Germany
{scholza,sommerst,knoll,kemper}@in.tum.de

2 fortiss GmbH
Guerickestr. 25, D-80805 München, Germany

{buckl}@in.tum.de
3 Corporate Technology, Networks and Multimedia Communication, Siemens AG

D-81730 München, Germany
{joerg.heuer,anton.schmitt}@siemens.com

Abstract. Handling the development and management of networked
embedded systems becomes more and more complex with the increasing
number and diversity of connected components. The challenges encoun-
tered during application development can be mastered by applying a
model driven development approach and the concepts of service oriented
architectures (SOA). Both development strategies are well established
in their domains and, in combination, provide an excellent base for the
development of networked embedded systems. However embedded net-
works nowadays seldom operate in isolation. The increasing interaction
between embedded devices and Web based services, as envisioned by
the Internet of Things, requires interfaces that provide Internet based
access from and to services in the embedded network. We propose a de-
velopment platform for embedded networks that eases the creation and
maintenance of embedded networks and supports a seamless interaction
between services from the embedded world and Web services through a
bridge component. Despite creating a mere interface between the em-
bedded world and Web services, this paper discusses how the embedded
system can also be integrated semantically.

1 Introduction

Large scale embedded networks are emerging in many application fields, such
as the building automation, automotive or energy sector. Common properties
of these systems are the complexity of the networks and the heterogeneity of
contained devices. Service Oriented Architectures are a promising approach for
building systems given these boundary conditions, because they provide a high
level of abstraction that allows to safely hide hardware specific details from
the developer and to integrate components from different vendors. In the en-
visioned Internet of Things, embedded networks do not work in isolation, but



interact with other, Internet-based applications. Nowadays, Web service based
interfaces are the de-facto standard for the communication between such sys-
tems, which have to be supported by embedded networks. However, currently
most approaches either implement web services within the embedded network
thus requiring high-performance computational nodes [1] or implement a man-
ually preconfigured mapping between web services and the embedded network
e.g.[2]. In order to ease the integration of services contained on field level devices
and other Web services, semantic support is decisive: a domain expert should
be able to discover and integrate field level devices based purely on domain
knowledge.

In this paper, we discuss how this semantic integration can be realized. We
start with a description of εSOA, a service oriented architecture tailored for
the special requirements of embedded systems in section 2. Our approach for
syntactic and semantic integration of εSOA and Web services is described in
section 3. The paper is concluded with a review of related work in section 4 and
a summary and outlook in section 5.

2 εSOA

This section describes our development platform for embedded networks, the
εSOA platform. The main motivation was to combine and adapt common ap-
proaches, such as actor-oriented design and SOA, to ease the development pro-
cess of highly-distributed embedded systems.

2.1 Actor Oriented Design and SOA

As known from the web service domain, a service oriented architecture pro-
vides many advantages for application development and maintainability like well
structured applications consisting of many different services implementing only
a single aspect of the application. When developing software for the embedded
domain, you also have to deal with hardware interaction like reading a sensor
or writing data to an actor. To formalize such a control application, it is a com-
mon approach to go with actor oriented design[3]. Actors can represent sensors
(inputs), actuators (outputs) and control functions; the interaction between ac-
tors is realized using ports. For our approach, we combined both pattern. Our
applications consist of services which can be sensor, actor or control-services in-
teracting by using ports. In contrast to Web based SOAs which are often based
on a ad-hoc request-response message pattern, control applications are typically
event/data driven: the data is acquired by sensors and published to all con-
nected services. These connected services can be actuator services triggering a
hardware action or control services which can produce new output data based
on their inputs.

Therefore, instead of using ad-hoc interactions, the interaction is defined
statically in εSOAand is performed in the fire and forget scheme. By using our
development tools [4], end-users can modify the interaction between services by



adding or deleting edges between the ports of services at run-time. However, we
assume that these modifications occur seldom in comparison to the communica-
tion between services.

Concrete System
Abstract Infrastructure

Service

Application

Pattern Repository

Service Placement

Code Generation

Pattern Filling

sensor/actuator

wireless link

Fig. 1. Embedded Network Views

2.2 εSOA Middleware Design Principles

Our εSOA middleware is based on a hierarchy of three views of the embedded
network, as depicted in Figure 1 to separate concerns and to make the devel-
opment process more clear. The Application view contains an overview over
all installed applications. Applications are built based on patterns that specify
the required services on an abstract level. This abstraction allows using soft- and
hardware from any vendor, as long as these components provide a compatible in-
terface. On the more fine grained Service view, the applications consist of various
interconnected services which form the logical structure of the distributed appli-
cation. Based on information provided by the Abstract Infrastructure view, the
execution of applications is optimized by deciding where a specific service should
be installed and by adapting the middleware running on the nodes. These opti-
mizations are based on the characteristics of the underlying hardware, which are
extracted from the Concrete System and annotated to the system model in the
Abstract Infrastructure view. A significant aspect of this layering is to provide
a view suitable for all involved developers and users. An application developer
will only have to focus on connecting the right services to provide and process
information whereas a service developer will only have to focus on the control



logic in his service. The communication, service management and monitoring of
the whole network is done by our εSOA middleware which can be tailored using
code generation[5].

3 Web Service Interfaces

Currently, a lot of research is done to create Web service interfaces between field
level devices and enterprise systems [6, 7]. This trend will most likely continue,
especially because of the envisioned Internet of Things, which aims at integrating
all kinds of embedded devices via the Internet. We do not think that all devices
will be powerful enough to host a Web service stack, so we chose to build a
bridge based approach.

3.1 Web Service Bridge

Fig. 2. Web Service Bridge

The Web service bridge shown in Figure 2 was already presented in [8], we will
therefore only provide a high level overview of its functionality. The bridge medi-
ates between the Web service world and the embedded world. Devices from the
embedded world are assigned virtual IP-addresses. Web service calls targeted at
these addresses are intercepted by the bridge and translated into the message and
addressing format used in the embedded network. The same holds for outgoing
messages, which are translated to SOAP messages. In the example in Figure 2,
the incoming call for IP-address “193.150.15.14” is converted to a sensor network
address - in this case a ZigBee address. For this sample application, our ZigBee
nodes are adressed by IP but support for different addressing schemes can be
added easyly. Based on a mapping table, the service address “light/turnOn” is
translated to a service and port identifier. This mapping table is automatically
generated by the bridge whenever embedded services are made available as Web
services. At this point, the bridge generates a WSDL description for the embed-
ded service and updates the mapping table. It is important to note that this
approach does not contradict the different communication schemes of WS-SOA
and εSOA. Ad-hoc messages from the Web service world are intercepted at the
bridge similar to sensor events. In the following, the message is forwarded using
pre-defined (static) connections to the targeted service component.



3.2 Integration of Semantic Information

As already indicated in the example, the Web service interface generated by the
bridge should provide an intuitive access point to the embedded world. Because
the users of this interface will be domain experts and no embedded network
programmers, it is important to provide an interface that describes a service in
terms of the application domain. In the example this is done by using domain
specific terms for the identification of services, such as “light” instead of the
technical addresses. In order to create these domain specific interfaces fully au-
tomatically and to ensure that a combination of services is meaningful, services
in the εSOA platform possess metadata information. This metadata describes
the in- and outputs of a service w.r.t. the technical characteristics, data types,
data rates, etc, and the kind of data that is produced or consumed by the service.
The latter information is based a domain specific taxonomy. During the gener-
ation of the WSDL, this taxonomy is used to create descriptive names for the
Web service interfaces. Note that this information can also be used to ease the
discovery of services. Often a user will not know the exact address of an embed-
ded device, but can provide some semantic information that allows determining
which device should be accessed. In our example a user could issue a request like
“turn on the light in room 4”. In this case, the semantic information about the
location of an embedded device (which can attached during its installation) and
the fact that the device must have an input that allows modifying “light” can
be used to determine the address of the device. This discovery interface can be
realized with existing Web service technologies like UDDI[9]. We are currently
investigating how more declarative expressions, such as the example mentioned
above, can be supported.

3.3 Implementation

Based on our εSOA platform, we developed a demonstrator, which covers a future
home automation scenario. The assembling of our demonstrator is shown in Fig-
ure 3. We assume that in the near future, energy prices are dynamically changing
in order to influence the overall energy consumption in a way that smoothes load
peaks. We further assume that some kind of power storage system, such as the
battery of an electric car, is present in future homes. We implemented the fol-
lowing scenario: A household comprising a battery and loads (a refrigerator and
2 lights) with different power consumption and energy saving options. One task
of the automation logic is to optimize the power consumption costs throughout
the day. If prices are cheap, the battery is charged and the refrigerator cools
down to a lower threshold. If prices are high, the house is disconnected from the
power grid and draws its energy from the battery. Additionally, the refrigerator
is put to energy saving mode, i.e., it stops cooling until an upper temperature
threshold is reached. To show the feasibility of our web service approach, tenants
can monitor the system by establishing a connection to a Web service that pro-
vides the current costs of the household or to Web service providing the current
temperature of the refrigerator.



Fig. 3. Smart Home Demonstrator

4 Related Work

Within different application domains, standardized middleware architectures,
e.g., KNX[10] for the building automation domain or AUTOSAR[11] for automo-
tive applications were established. These approaches work on a very low abstrac-
tion level and therefore support neither end user programmability nor a seamless
integration with external services, because the data processing paradigm is not
compatible with service oriented principles.

In the context of sensor networks, different middleware approaches, e.g.,
TinyDB[12] or Cougar[13] were developed for gathering sensor data for monitor-
ing purposes. A typical characteristic of these systems is a hierarchical network
structure, in which data is more and more aggregated towards the root. This
infrastructure introduces unnecessary bottlenecks and single points of failure for
control oriented applications involving multiple sensors and actuators.

A SOA approach for embedded networks is also persuaded by other projects,
such as SIRENA[14] and SOCRADES[1]. These projects aim at making embed-
ded devices directly accessible with Web Service technologies by installing an
adopted Web Service stack, the DPWS[15] stack. While this approach is suit-
able for a certain range of devices, we believe that there will always be a class
of very small and lighweight devices, which will not be able to deal with the
additional overhead introduced by the Web Service technologies and therefore
require a more efficient SOA implementation. In [5], we demonstrated that the



generated code can run on very small controllers, such as 8-bit controllers, and
that the middleware only requires 13 kBytes.

Other projects which apply a service oriented approach are OASiS[16], MORE[17],
or RUNES[18]. We believe that our model based code generation and the use of
application patterns allows better exploiting the characteristics of a given em-
bedded network by generating tailored code and optimizing the placement of
services.

5 Summary and Ongoing Work

In this paper we outlined the design principles for a service oriented development
platform for embedded networks and presented a bridge that allows mediating
between services in the embedded world and Web services. We presented some
first steps aiming at the semantic integration of embedded devices and Web
services, which is a fundamental building block for the envisioned Internet of
Things. This is done by adding semantic information during the generation of
WSDL documents. We are currently investigating which requirements an intu-
itive interface for the discovery and integration of field level devices and Web
services has to fulfill and whether already existing technologies, such as UDDI
registries or query interfaces such as TinyDB[12] are capable of solving these
problems.

References

1. L. de Souza, P. Spiess, D. Guinard, M. Khler, S. Karnouskos, and D. Savio,
“SOCRADES: A Web Service Based Shop Floor Integration Infrastructure,”
IOT’08, pp. 50–67, 2008.

2. WiMAC@home, “http://www.wimac-at-home.de.”
3. E. A. Lee, S. Neuendorffer, and M. J. Wirthlin, “Actor-oriented design of embedded

hardware and software systems,” Journal of Circuits, Systems, and Computers,
vol. 12, pp. 231–260, 2003.

4. eSOA, “http://www6.in.tum.de/main/researchesoa.”
5. C. Buckl, S. Sommer, A. Scholz, A. Knoll, and A. Kemper, “Generating a Tailored

Middleware for Wireless Sensor Network Applications,” SUTC, pp. 162–169, 2008.
6. S. de Deugd, R. Carroll, K. E. Kelly, B. Millett, and J. Ricker, “Soda: Service-

oriented device architecture,” IEEE Pervasive Computing, vol. 5, no. 3, pp. 94–C3,
2006.

7. S. Karnouskos, O. Baecker, L. de Souza, and P. Spiess, “Integration of soa-ready
networked embedded devices in enterprise systems via a cross-layered web ser-
vice infrastructure,” Emerging Technologies and Factory Automation, 2007. ETFA.
IEEE Conference on, pp. 293–300, Sept. 2007.

8. C. Buckl, S. Sommer, A. Scholz, A. Knoll, A. Kemper, J. Heuer, and A. Schmitt,
“Services to the field: An approach for resource constrained sensor/actor networks,”
in The Fourth Workshop on Service Oriented Architectures in Converging Net-
worked Environments (SOCNE), 2009.

9. UDDI, “http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm.”
10. KNX, “http://www.knx.org/.”



11. AUTOSAR – Automotive Open System Architecture, “http://www.autosar.org/.”
12. S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TinyDB: An Acquisitional

Query Processing System for Sensor Networks,” TODS, vol. 30, no. 1, pp. 122–173,
2005.

13. Y. Yao and J. Gehrke, “The cougar approach to in-network query processing in
sensor networks,” SIGMOD Rec., vol. 31, no. 3, pp. 9–18, 2002.

14. F. Jammes and H. Smit, “Service-oriented Paradigms in Industrial Automation,”
in IEEE Transactions on Industrial Informatics, vol. 1, 2005, pp. 62–70.

15. Devices Profile for Web Services, “http://specs.xmlsoap.org/
ws/2006/02/devprof/devicesprofile.pdf.”

16. M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, and J. Sztipanovits, “OA-
SiS: A Programming Framework for Service-Oriented Sensor Networks,” in COM-
SWARE’06, 2007.

17. MORE – Network-centric Middleware for Group communication and Resource
Sharing across Heterogeneous Embedded Systems, “http://www.ist-more.org/.”

18. P. Costa, G. Coulson, C. Mascolo, G. P. Piccoand, and S. Zachariadis, “The
RUNES Middleware: A Reconfigurable Component-based Approach to Networked
Embedded Systems,” in PIMRC’05, 2005.


