
Service Migration Scenarios for Embedded Networks

Stephan Sommer, Andreas Scholz, Irina Gaponova, Alois Knoll, Alfons Kemper
Technische Universität München

Boltzmannstr. 3, D-85748 Garching, Germany
{sommerst,scholza,knoll,kemper}@in.tum.de

Christian Buckl, Gerd Kainz
fortiss GmbH

Guerickestr. 25, D-80805 München, Germany
{buckl, kainz}@fortiss.org

Jörg Heuer, Anton Schmitt
Corporate Technology, Multimedia and Network Communication, Siemens AG

D-81730 München, Germany
{joerg.heuer,anton.schmitt}@siemens.com

Abstract

More and more devices are becoming network enabled
and are integrated within one large, distributed system. The
service-oriented paradigm is the predominant concept for
the implementation of this approach and helps to deal with
heterogeneous network infrastructures. For long term de-
ployments, e.g., in process and building automation, instal-
lations have to be adaptable over time. During runtime new
services will be added to the network, old services will be
replaced and deployed services will be relocated to adapt
the network to environmental changes and new application
fields. Handling these updates is challenging, because the
impact on the currently executed applications has to be min-
imized. In general, such tasks are very application spe-
cific. However, the service based application development
paradigm allows applying a generic approach for most of
the scenarios. This paper presents such a generic solu-
tion by adding mechanisms, which are capable of handling
service migration and service updates, to a sensor network
middleware.

1 Introduction

Using sensor networks in industry has a long tradition.
Where in the past the sensor networks were dedicated for
one specific measuring task and each vendor deployed his
own proprietary network as a bundled solution comprising
hard- and software, the trend for future deployments shows

that multifunctional networks are needed to reduce man-
agement and infrastructure cost. Using one communication
infrastructure also allows reducing the amount of sensors
deployed: sensors can be re-used for further applications
without additional overhead for wiring, independent of the
vendor and the application it was firstly deployed with.
This saves costs for hardware acquisition and for infrastruc-
ture management. Connecting sensors to a single network
(probably also consisting of different subnets using differ-
ent communication technologies) and making them accessi-
ble by different applications can be seen as a trend for new
deployments. Because most of these networks are also con-
nected to the Internet, devices are becoming accessible with
Internet technologies, leading to the Internet of Things.

Service-oriented architectures (SOA) are used to lower
development cost and to support modularization of applica-
tions. Web services are a well known implementation of a
SOA and can be found in the Internet domain. Due to re-
source constraints, the Web service technologies cannot be
directly mapped to the domain of embedded system. The
ultimate goal is to support SOA concepts in the embedded
domain by using a suitable implementation. Different ap-
proaches for reaching this goal have been suggested in the
literature. The main concept is to restrict the functionality
of the middleware, e.g. by removing run-time support to dy-
namically detect services within the network, or to use long
term service compositions, instead of ad-hoc service inter-
action to avoid the overhead of frequently initializing the
service interaction. These modifications reflect the behav-
ior of embedded systems which are rather statically config-

2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-4019-1/10 $26.00 © 2010 IEEE

DOI 10.1109/WAINA.2010.84

502

Concrete System
Abstract Infrastructure

Service

Application

Pattern Repository

Service Placement

Code Generation

Pattern Filling

sensor/actuator

wireless link

Figure 1. Embedded Network Views

ured and where external tools are applied to reconfigure the
network. Examples for such approaches are the εSOA[10]
project or the Devices Profile for Web Services (DPWS)[6])
specification.
Considering industrial applications for process monitoring
or building automation shows that these applications con-
sist of many different services and need to be used for many
years or even for decades. For such long term deployments,
flexibility is a major concern. It is necessary to support
updates of the deployed services as well as the migration
of already deployed services to new hardware without a
complete system interruption. Updating or migrating ser-
vices is usually a very application specific task, but in sen-
sor networks, where applications consist of interconnected
services, a generic approach is feasible for most scenarios.
This paper will present a migration workflow suitable for
embedded systems to solve this issue. The main contribu-
tion of this work will be the classification of different migra-
tion scenarios and the identification of the main components
required to implement the migration.
The approach is currently restricted to systems with real
world awareness and soft real-time applications and is not
directly applicable for hard real-time systems. For our mi-
gration workflow we assume, that most of the reconfigu-
rations are fast enough to be performed between two mes-
sages. Otherwise, the middleware needs to guarantee that
messages can be buffered, that messages are not delivered
twice and that critical reconfigurations (e.g. it they involve
multiple services) are performed as a transaction.
The paper is structured as follows: in the beginning, we
give a short summary of the εSOA platform for better un-
derstanding of the infrastructure we are targeting. In section
3, we elaborate the different scenarios for service migration,
as well as the challenges for this task. Our implementa-
tion of a migration workflow and a suitable demonstrator
is shown in section 4. Finally we summarize related work
and conclude the paper with a discussion about topics for
ongoing and future work.

2 εSOA

Before we show our migration workflow, we first want
to introduce the εSOA platform, which is our development
platform for embedded networks. The main motivation was
to combine a well known development approach - model
driven development - with concepts taken from Service ori-
ented Architecture and actor-oriented design to ease the
development process of heterogeneous, highly-distributed
embedded systems.

2.1 Actor Oriented Design and SOA

As known from the web service domain, a service ori-
ented architecture provides many advantages for applica-
tion development and maintainability like well structured
applications consisting of interacting services, each of them
implementing only a single aspect of the application. When
developing software for the embedded domain, one also has
to deal with hardware interactions, such as reading from a
sensor or writing data to an actuator. To formalize such a
control application, it is a common approach to use an actor
oriented design[8]. Actors can represent sensors (inputs),
actuators (outputs) and control functions; the interaction be-
tween actors is realized using ports. For our approach, we
use actors based on the concepts common in the domain
of embedded systems as services for the service-oriented
architecture. Actors/services can be sensor-, actuator- or
control-services which communicate by sending data from
outputs of one service to the inputs of another service.

In contrast to Web based SOAs which are often based
on an ad-hoc request-response message pattern, control ap-
plications are typically event/data driven: the data is ac-
quired by sensors and published to all connected services.
These connected services can be actuator services trigger-
ing a hardware action or control services which can pro-
duce new output data based on their inputs. Therefore, in-
stead of using ad-hoc interactions, the interaction is defined
statically in εSOA and is performed in the fire and forget
scheme. By using our development tools [10], end-users
can modify the interaction between services by adding or
deleting edges between the ports of services at run-time.
However, we assume that these modifications occur seldom
in comparison to the communication between services.

2.2 εSOA Middleware Design Principles

Our εSOA middleware is based on a hierarchy of three
views of the embedded network, as depicted in Figure 1
to separate concerns and to make the development process
more clear. The Application view contains an overview
over all installed applications. Applications are built based
on patterns that specify the required services on an abstract

503

level. This abstraction allows using soft- and hardware from
any vendor, as long as these components provide a com-
patible interface. On the more fine grained Service view,
the applications consist of various interconnected services
which form the logical structure of the distributed applica-
tion. Based on information provided by the Abstract Infras-
tructure view, the execution of applications is optimized by
deciding where a specific service should be installed and by
adapting the middleware running on the nodes. These opti-
mizations are based on the characteristics of the underlying
hardware, which are extracted from the Concrete System
and annotated to the system model in the Abstract Infras-
tructure view. A detailed discussion of these different layers
can be found in [10].

An important design criterion during the development of
this layering was to provide suitable views for all parties
involved in the development process of an embedded net-
work. An application developer will only have to focus on
connecting the right services to provide and process infor-
mation whereas a service developer will only have to focus
on the control logic in his service. The communication, ser-
vice management and monitoring of the whole network is
done by our εSOA middleware which can be tailored using
a model-driven development tool[2].

3 Migration Scenarios

Sensor networks tend to be used for long period of time
in large industry deployments. Additional devices or even
additional sub-networks often need to be deployed to adapt
the network to new challenges emerging over time. To face
this problem, it is a common way to use the communication
standard already deployed and simply add new dedicated
hardware nodes with the required functionality.
In our approach focusing on a middleware for heteroge-
neous service oriented architectures, a further way of ex-
tending the application is possible. As described in more
detail in section 2 our applications consist of services dis-
tributed over the network. If such a network should sup-
port additional applications, new services can be easily in-
stalled on existing nodes to form new applications in coop-
eration with the already deployed services and applications.
Adding these new services to already existing applications
or replacing services in an already deployed application is
a critical task because the interactions of different applica-
tions have to be taken into account.
A further critical task in these networks is to move already
deployed services to different nodes. Possible reasons for
this service shifting are better load balancing for the net-
work traffic, equal resource utilization on the nodes and
links, and finally avoidance of energy depletion of battery
powered nodes. In the following, we will elaborate the dif-
ferent scenarios for such reconfigurations and point out the

Sensor

Control
Service 1

Actuator

Control
Service 2

a b

c d

Figure 2. Simple Application

consequences for the update process.
The term state comprises in our definition all (configura-
tion and runtime) information locally stored in a service
necessary to process incoming data. For our applications,
the state can only be changed by data received from ports or
read from the hardware.

3.1 Extension of already deployed appli-
cations

Extending an already deployed application by a new, ad-
ditional service is the easiest update scenario. In this sce-
nario, the new service requires data already provided by one
service of the old application. It is only necessary to deploy
the new service to the network and to connect its input ports
to some of the output ports of the already deployed appli-
cation. Before deploying the service, possible changes in
network utilization and resource consumption need to be
considered. For this, the same workflow can be used as for
the initial service placement, but with fixed placements for
the already deployed ones. The deployment can be done at
runtime without harming the already deployed application
if the new service can be instantiated at runtime (depending
on the platform), or if the new service is deployed to a node
not involved in any application until now.

3.2 Service Migration without explicit
state transfer

A second scenario for service migration is the replace-
ment of an already deployed service by a new one. First we
only consider a migration where no inner state of the service
needs to be transferred, either because the service is state-
less or because the new service can automatically recover
the internal state. This could be the case for very simple
services like data converters or basic logic operators and for
those services, which can acquire the state over time just by
listening to input data1 like services calculating the average
of the last x values. Afterwards, we will extend this sce-
nario for state full services.
The first step for the migration or replacement 2 of a service
is to deploy the new service to an adequate node. As already

1This interface has to be implemented by the service developer.
2A migration can also be seen as a replacement of a service by a new

one of the same kind.

504

mentioned for the first scenario, the placement can be done
using the already available tools. A very simple application
is depicted in figure 2. This applications consists of a source
service (Sensor), a control service (Control Service 1) and
a destination service (Actuator). The ControlService2 is
the service which replaces the ControlService1.

3.2.1 Stateless services

For stateless services, the migration is almost completed at
this point. The only remaining task is to remove the data
paths connected to the old service and add connections for
the new one. Usually, connections from a source service
which provides the data to the service, and further connec-
tions from the output ports of the service to all data sub-
scribers exist.
The best way to perform this task is to add the new con-
nections for the newly deployed service beginning from the
sink side to the service (figure 2, connection c) and, after
that, from the new service to his data recipients (figure 2,
connection d). The removal of the connections involving
the ControlService1 is done vice versa (figure 2, connec-
tion b and a).

3.2.2 Stateful services

For state full services that do not provide an interface
for state migration and for services which can acquire
the current state only by listening to the data flow, addi-
tional tasks need to be performed before the migration
is complete. The first steps are the same as for stateless
services until the connections from the new service to the
subscribers are added. Before these connections can be
configured (figure 2, connection d), the process has to be
a halted until the correct internal state of the new service
(ControlService2) is acquired. After this service is up
to date, the remaining data paths can be added from this
service to all the subscribers. At the subscribing nodes,
the reconfiguration (removal of the old data paths related
to the old service (connection b) and the addition of the
new data paths for the new service (connection d)) needs
to performed in a transactional way. If a message arrives
in this very short transaction phase, it has to be cached to
avoid possible application misbehavior.

3.3 Service Migration with state transfer

The approach already described for stateless services,
can be extended to handle the migration of state full ser-
vices. Handling the state transfer also comes with coordi-
nation challenges for the reconfiguration of data paths. As
shown for the case without explicit state transfer, the data
paths need to be adapted in a coordinated way to integrate

the newly deployed service.
To guarantee a seamless and consistent migration, it is im-
portant to add the data paths from all sources to the new ser-
vice in exactly the moment where the state transfer begins.
After that point in time, the old service does not receive
further data until the state transfer is completed. For the
new service receiving the state, it is important to not start
processing of inputs before the state transmission was com-
pleted. If the application is e.g. a climate control system in
building automation and some temperatures measured are
lost (assuming a high enough data acquisition rate) it will
no harm the application. But if we consider data loss in an
application with very rare events or a user interaction e.g.
a user pushing a button, the application and the real world
could get inconsistent without buffering the messages.
If the service to migrate is involved in many different appli-
cations, all requirements of the involved applications need
to be taken into account. For example some of the involved
services might tolerate the data loss while others do not,
some can tolerate downtime while others cannot. In the
worst case all applications related to a service which needs
to be migrated need to be stopped.
According to the challenges elaborated for the service mi-
gration in this section we developed a workflow, which is
presented in the next section.

4 Migration Workflow

Migrating services inside an embedded network is im-
plemented in our project in a stepwise approach. First of
all, an instance of the service needs to be created at the des-
tination node. The way this instance is created depends on
the runtime and the underlying system infrastructure.
After a new instance is created at the destination host, the
internal state needs to be transferred to the new instance.
The state transfer is split up into four phases namely serial-
ization, state transfer, de-serialization and reconfiguration.
In the process of state transfer two components are involved
in addition to the source and destination service. These
components, namely the MigrationCoordinator which
initiates the migration, and the MigrationFacilities,
which actually performs the local operations, necessary for
the migration at the nodes. An example scenario is de-
picted in figure 3. In this scenario, the service instance
x is moved from the node B to node C (x′). All man-
agement extensions for the middleware namely the applica-
tion repository, the facilities for network management, and
the MigrationCoordinator are located at node A in this
example. The interaction of services is stored in the ap-
plication repository; information related to the network is
stored in the network management, which subscribes statis-
tics from the nodes (using the middleware) in the network
and processes them to provide e.g. utilization statistics. Al-

505

though information is gathered by the system, a migration
is only triggered by the user / administrator.

Node A

Node CNode B

State Transfer
MF

Instance
x

MF

MC

LMF

Instance
x’

MN

MNNM

Node D

MF

NM

Instance
y

DataPath

Routing Table Modification

DataPath

Application Repository

Application 1

Application 2

MF = Migration Facility
MC = Migration Coordinator
NM = Node Management Facility
Red = New Data Path
Orange = State Transfer
Blue = Data Path Updates
Green = Component Communication

Figure 3. Migration Scenario

At the beginning of the process, the source service seri-
alizes its inner state and provides it to the migration facil-
ity located on the source node. The migration facility then
transfers the state data to the corresponding migration facil-
ity on the destination node. The migration facility finally
provides the data to the destination service using the migra-
tion interface where the data is de-serialized.

After transferring the internal state and starting the new
service, connections using the old service need to be re-
placed by connections using the new service. The last step
finally is to decommission the old service.
Both components, the Migration Director and the Migra-
tion Facilities are generic and interact with the services us-
ing predefined interfaces. In the following, the components
will be explained in more detail

4.1 Migration Coordinator

In our middleware, the software parts responsible for the
migration are split into two different kinds; the first one is
the Migration Coordinator, which is the centralized part,
and the Migration Facilities, which need to be installed at
least on the nodes involved in the migration process.
The Migration Coordinator is responsible to coordinate
the migration according to network and application needs.
To fulfill this task, the migration coordinator has in-depth
knowledge of the applications, services, requirements and
the data paths of the network. It gathers this information
from the network management facility installed on one or,
if a distributed implementation is used, on several nodes in
the network.
When a migration is triggered by the user or by a moni-
toring agent, the coordinator first checks if the source and
destination nodes are available in the network and if the

requested service is installed on the source node. Using the
meta data dictionary located in the network management
facility, the information is gathered if the destination
node can handle the service and if the state migration is
supported by the service or not. In case of problems, the
user gets notified and the process is stopped here.
If all pre-conditions for the migration are met, the migration
coordinator triggers the instantiation of the destination
service instance at the destination node. The instantiation
itself is done by a middleware component and can, in worst
case, require to overwrite the complete software image on
the destination. This can of course effect the remaining
applications being executed on the node or transmitting
data using this node as a hub.

4.2 Migration Facility

In contrast to the migration coordinator which is a cen-
tralized component, a migration facility is located at each
networked node which provides support for service migra-
tion. The migration facility can perform two different tasks
according to the responsibility in the migration process.
The migration facility on the source node is responsible for
checking if the requested source service is available and if it
implements the required migration interface. If the interface
is implemented, the migration facility requests the service
state. This state information is then stored and, according
to the information provided by the migration coordinator,
sent to the migration facility at the destination host.
The migration facility at the destination node receives the
system state. It checks if the destination service is instan-
tiated properly and transfers the state using the migration
interface. Finally it starts the new service and notifies the
migration facility. For monitoring purposes, this message is
also forwarded to the migration coordinator.
To finish the migration process, the data paths reconfigura-
tion is triggered by the migration facility at the source node.
If the reconfiguration was performed properly, the applica-
tion can be resumed.

4.3 Implementation

The practicability of our approach elaborated in this pa-
per was implemented and tested in our εSOA demonstrator.
The demonstrator is described in [3]. Basically it illustrates
an energy scenario which consists of a fridge, some lamps
and a rechargeable battery. To control the devices there are
several ZigBee nodes executing the TinyOS version of our
middleware, some more powerful nodes executing the JAVA
version of our middleware and a PC node connected via a
web service bridge for visualization. All these components
form the embedded network.

506

To increase the flexibility of this scenario, it was necessary
to support reconfiguration of applications, where the relo-
cation of services is a key part. We could show for different
test cases that stateful services can be successfully moved
between several nodes

5 Related Work

Within different application domains, standardized mid-
dleware architectures, e.g., KNX[7] for the building au-
tomation domain or AUTOSAR[1] for automotive applica-
tions were established. Because of their low level of ab-
straction they can only provide a communication layer for
a specific application domain, but do not really focus on
how to interconnect applications of different domains. A
further component based middleware for distributed appli-
cations is CORBA[9] which provides great functionality for
state and component migration, but was designed to inter-
connect heavy weight application servers, where our ap-
proach targets resource constraint embedded systems. Nev-
ertheless, the concepts implemented in CORBA can be seen
as an inspiration, even for small devices. Other projects
which apply the service oriented approach are MORE[11]
and RUNES[5]. Although they also provide functionality
for service migration, we believe that our approach with ap-
plication patterns and a rich set of meta information allows
a more user friendly network management.
Moving currently executed code between different systems
is a challenge also encountered in the domain of system vir-
tualization. A typical approach in this scenario is to copy
the whole system image (including the RAM) to a new host
and update the network configuration after completion[4].
This approach cannot be used in systems using heteroge-
neous network technologies, which are common in em-
bedded networks (e.g. a mixture of wired and wireless
links network using different network protocols). Addition-
ally, the resource constraints in embedded networks prohibit
some of the common solutions, such as storing the whole
RAM image at the original host and forwarding it to the
new host upon completion of the migration.

6 Conclusion and Future Work

In this paper, we elaborated the challenges for service
migration in embedded networks. We proposed a workflow
for the migration of services using a decentralized compo-
nent, the Migration Facility and a centralized component,
the Migration Coordinator. Based on these generic com-
ponents, a centrally controlled and monitored migration of
distributed services with the scalability of a distributed ap-
proach can be achieved. The main contribution of this work
was the classification of different migration scenarios and

the identification of the main components required to im-
plement the migration.
In the future, we will investigate on service dependencies
and how such dependency graphs could be partitioned ac-
cording to the migration constraints defined by the service
and application developer. A further topic will be to demon-
strate the feasibility of our approach for single image based
TinyOS nodes with a pre installed service library and for
scenarios where the whole runtime needs to be updated.
This will also include performance measurements to iden-
tify potential bottlenecks and according solutions.

References

[1] AUTOSAR – Automotive Open System Architecture.
http://www.autosar.org/.

[2] C. Buckl, S. Sommer, A. Scholz, A. Knoll, and A. Kem-
per. Generating a tailored middleware for wireless sen-
sor network applications. Sensor Networks, Ubiquitous,
and Trustworthy Computing, International Conference on,
0:162–169, 2008.

[3] C. Buckl, S. Sommer, A. Scholz, A. Knoll, A. Kemper,
J. Heuer, and A. Schmitt”. Services to the field: An ap-
proach for resource constrained sensor/actor networks. In
The Fourth Workshop on Service Oriented Architectures in
Converging Networked Environments (SOCNE 2009) – ex-
tended version. IEEE, May 2009.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of vir-
tual machines. Networked Systems Design and Implementa-
tion, 2005.

[5] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo,
L. Mottola, G. P. Picco, T. Sivaharan, N. Weerasinghe, and
S. Zachariadis. The runes middleware for networked em-
bedded systems and its application in a disaster management
scenario. Pervasive Computing and Communications, IEEE
International Conference on, 0:69–78, 2007.

[6] Devices Profile for Web Services. http://specs.xmlsoap.org/
ws/2006/02/devprof/devicesprofile.pdf.

[7] KNX the Worldwide STANDARD for Home and Building
Control. http://www.knx.org/.

[8] J. Liu, J. Eker, J. W. Janneck, X. Liu, and E. A. Lee. Actor-
Oriented Control System Design: A Responsible Frame-
work Perspective. IEEE Transactions On Control Systems
Technology, 12, No. 2, March 2004.

[9] Object Management Group. Common object request broker
architecture (corba) specification, version 3.1, Jan 2008.

[10] A. Scholz, C. Buckl, S. Sommer, A. Kemper, A. K. an d
Jörg Heuer, and A. Schmitt. eSOA - service oriented archi-
tectures adapted for embedded networks. In Proceedings of
the 7th International Conference on Industrial Informatics),
June 2009.

[11] A. Wolff, S. Michaelis, J. Schmutzler, and C. Wietfeld.
Network-centric middleware for service oriented architec-
tures across heterogeneous embedded systems. In 11th In-
ternational IEEE EDOC Conference, Middleware for Web
Services Workshop, 2007.

507

