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Abstract

In order to stably grasp an object with an artificial hand, a priori knowledge of the object’s
properties is a major advantage, especially to ensure subsequent manipulation of the object
held by the hand. This is also true for hand prostheses: pre-shaping of the hand while ap-
proaching the object, similar to able-bodied, allows the wearer for a much faster and more
intuitive way of handling and grasping an object. For hand prostheses, it would be advan-
tageous to obtain this information about object properties from a surface electromyography
(sEMG) signal, which is already present and used to control the active prosthetic hand.

We describe experiments in which human subjects grasp different objects at different
positions while their muscular activity is recorded through eight sEMG electrodes placed
on the forearm. Results show that sEMG data, gathered before the hand is in contact with
the object, can be used to obtain relevant information on object properties such as size and
weight.
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1. Introduction

Human reaching and grasping is a complex task and a vast body of research is devoted
to it. One important reason for this research is the fact that it can be very applicable to
robotic hand/arm systems, as well as it will be useful for the development of more dexterous
active hand prostheses. A central problem in robotic and prosthetic grasping is to obtain
information on the object that has to be grasped: its shape, weight, and intended use are
all factors determining the position and exerted force of the fingers grasping the object; see,
e.g., Cutkosky and Howe (1990) for an overview of human grasping studies and challenges in
grasping with artificial hands. Even though research on the control of active hand prosthesis
controlled with sEMG signals made considerable progress recently (see, e.g., Parker et al.
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(2006) for an overview), this research mainly concentrates on recognizing different finger
movements.

sEMG-based control of active hand prosthesis can be realized in two different fashions.
The first is to attempt to restore single finger (or single joint) movement. First of all
this requires highly advanced sEMG methods, which can distinguish the movement of each
finger in each of its movement directions (including abduction/adduction) from a mixed
sEMG signal, but also asks for a prosthetic hand which is able to move each of the fingers
correspondingly—a requirement which is at best partly given by current marketed prosthetic
hands. A second approach, which is therefore more practiced, is to extract the intended grasp
from an sEMG signal and shape the hand accordingly.

When more complex grasps are required, e.g., distinguishing between picking up a pen to
write with, a cup to drink from, or a plate to carry, a better sEMG interface is required. In
order to optimize a grasp quickly and intuitively, knowledge on the shape and approximate
weight of the object is essential, allowing the prosthetic hand to be pre-shaped w.r.t. aperture
and finger stiffness.

Previous research has shown the ability to detect single finger movement from sEMG
(Bitzer and van der Smagt (2006)) as well as finger force (Castellini and van der Smagt
(2009)); but only as soon as the object is being held, therefore such approaches cannot be
used for pre-planning the grasp.

It has been previously demonstrated that, during the reaching movement, hand aperture
increases to a maximum which is related linearly to the object’s size, and this maximum aper-
ture is reached about midway in the reaching movement (e.g., Jeannerod (1981); Paulignan
and Jeannerod (1996); Santello and Soechting (1998)). Furthermore, it has been shown that
human hand pre-shaping (Santello and Soechting (1998)) and hand configuration (Schettino
et al. (2003)) during a reaching movement depend on object size and shape, and that this
pre-shaping is initiated in the first half of the reaching movement. Eastough and Edwards
(2007) showed an influence of object weight on the grasp kinematics during the reaching
movement.

Clearly, there is information on the object properties in the movement of the fingers
during reach movements. We investigate the usability of this information from forearm
sEMG signals.

Brochier et al. (2004) were able to distinguish between different objects by using EMG-
signals recorded from electrodes implanted in the hand, arm, and finger muscles of monkeys.
They showed that the recorded signals were different for each object during a reaching
movement as well as during a grasp. Somerlik et al. (2008) were able to distinguish three
different grip types (cylindrical, tripod, and lateral grip) with an accuracy of more than 82%
using forearm, upper arm and shoulder muscular activity recorded with sEMG. Arguing that
lower arm musculature is not available in transradial amputees, they concentrated on upper
limb and shoulder muscles for their experiments, where they reached an accuracy of 70%.

Our experiments aim at improving accuracy, distinguishing a larger number of objects,
and not only separating shape but also size and weight-related attributes of the object.
Furthermore, following Castellini et al. (2009), signal loss in transradial amputees is very
limited, so that the use of the remaining forearm musculature will still allow for good results
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(a) upper side (b) lower side

Figure 1: Setup of the surface electrodes on the subjects forearm from upper side and lower side. The
electrodes shown record: E10) pronator teres and flexor carpi radialis; E11) palmaris longus and flexor
digitorum superficialis; E13) flexor carpi radialis and flexor digitorum superficialis; 14) extensor carpi radialis
longus and extensor carpi radialis brevis; 15) extensor carpi radialis brevis and extensor digitorum communis;
12) extensor carpi ulnaris and extensor digiti quinti proprius; E6) extensor carpi ulnaris and extensor digiti
quinti proprius; E7) extensor digitorum communis and extensor digiti quinti proprius.

compared to healthy subjects. We therefore decided to focus on forearm musculature only.

2. Methods

To record sEMG signals during reaching to grasp, eight Otto-Bock 13E200=50 surface
EMG electrodes (Ottobock) were placed on the subject’s forearm (see Fig. 1), gathering
data from the following muscles: Extensor carpi radialis longus and brevis, extensor digito-
rum communis, extensor carpi ulnaris, extensor digiti quinti proprius, flexor carpi radialis,
pronator teres, palmaris longus, flexor digitorum superficialis and flexor carpi radialis. Of
course, the nature of sEMG signals is such that the recorded signals are not directly related
to single muscle activity, but always record a signal based on mixed muscle activity. And
further artefacts including skin movement over the muscles during arm/hand movement en-
hance this. The used sEMG electrodes do not require special skin preparation (e.g., the use
of contact gel or shaving). The Otto Bock electrodes include amplification, rectification and
filtering electronics; amplification was set to ’6’ which corresponds to an amplification factor
of about 50,000; bandwidth of the electrodes is specified as 90–480 Hz with a −40 dB notch
filter at 50 Hz. The analog signal from the electrodes was then digitized by a National In-
struments NI-DAQ 6024E PCMCIA card, providing a 12-bit resolution. The digitized signal
was then sampled by a Windows XP PC, which of induced jitter in timing (mean: 0.0022 s,
median: 0.0020 s, std: 0.0020, min: 0.0013 s, max: 0.1865 s). Therefore linear interpolation
has been applied to get approximated values for the needed point of time (see Appendix).
No further filtering happened after the digital conversion of the electrode signal.

For both experiments the actual object was placed on a platform containing four pressure
sensors (FSR type—force sensing resistor) to examine the exact moment of finger-object
contact. Visual inspection during a pre-test showed, that the sensors react at the slightest
finger-object contact. To be sure to only analyze the part of the EMG-signal before finger-
object contact, the last 25 data points (that is approximately 50 ms) before sensor reaction
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were ignored. The subject was instructed to relax his/her hand before starting his/her
grasping movement from a fixed position. A fifth pressure sensor at the start position
recorded the onset of the hand movement.

Experiment 1

Six healthy subjects were asked to grasp one of eight different objects from 16 different
locations. Of the subjects, five were right-handed, one was left-handed, two of them were
female, four male. All of them were innocent to the aim of the experiment. The objects to
be grasped were: two different sized boxes, a beaker, a cup, a plate, a pencil (in up-right
position) and two 0.5 l bottles (one empty, one filled with blue colored water). One object
a time was placed in front of the subject, who was instructed to grasp the object the way
he/she prefers. No requirements of finger placement were provided, but to grasp the same
object in the same way every time. Position and kind of the object varied every trial in a
randomized way. The object positions were defined as eight positions on a circle in front of
the subject and one position in the center of the circle, furthermore, each position varied
between a lower and a higher level, concluding in 16 positions in total (see figure 2). With
respect to Lederman and Wing (2003) who state that the fingers are positioned on the object
such that the lines between the fingers meet in the object’s center respective center of mass,
each object was placed such that the centers of mass of all objects were at the same height at
every specific position, to ensure that this factor does not influence the data. Every subject
executed a total of 500 trials.

Experiment 2

Results of the above setting in experiment 1 showed an unsatisfactory classification of the
different weighing bottles. Subjects stated that they often were surprised by the weight of
the bottles, even though they could clearly see the different filling height of the colored water
in the bottles, corresponding to the weight of the bottle. A reason for this might be the high
number of trials which lead to distraction of the subjects. Thus an additional experiment
was accomplished. To reduce the number of trials only one object position was chosen (in
front of the subject, 28 cm from start to object). Electrodes were placed as described above.
Objects to be grasped were three 1 l bottles weighing 100 g, 700 g, and 1100 g and two 0.5 l
bottles weighing 100 g, and 550 g and one 1.5 l bottle weighing 1100 g (same diameter as the
1 l bottle, but thinner and more elastic material, thus a more careful grip is required; we
called it ’soft’ bottle). As with experiment 1, different weights were achieved by the use of
different amounts of colored water filled into the bottles. In contrast to experiment 1 every
object had to be grasped five times in a row and only ten times in total. Finger position at
the bottles is defined due to the bottle’s geometry, thus for same sized bottles, fingers are
placed at the same place independently on the bottle’s center of mass. The different sized
bottles were placed at such height, that finger position was at same height for every trial.
Four right-handed subjects executed this experiment, three of them female and one male.
Every subject executed a total of 60 trials.
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Figure 2: Setup of the possible object positions relative to the subject, while the object could be placed on
two different heights at each position.
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Analysis

Analysis for experiment 1 is carried out for two different settings: One using the signals
of all eight electrodes and one using only the signals of the four more proximal electrodes
(closer to the elbow). Also three different methods for pre-processing the EMG data are
investigated in the appendix of this paper. Due to the fact, that all of them perform similar
accuracy for classification, in the following only method A (see appendix) will be used.
For classification we use a well-established Support Vector Machine (SVM) implementation
called libsvm (Chang and Lin (2011)). Accuracy values are gained by employing 20-fold
cross-validation.

An SVM is a solution to the machine learning problem of binary classification. The
basic principle of an SVM is to transform the input data space into a higher dimension
an separate two classes via a hyperplane. Since an SVM can only discriminate between
two classes, more effort is needed to enable multiple-class classification. libsvm utilizes the
1-against-1 method, where each possible pairing of class-combinations is checked, and the
class getting most votes is defined as the winning class. For a more in-depth introduction
to SVM see, e.g., Burges (1998). A k-fold cross-validation, a standard machine-learning
approach if only limited data is available, means that the available data is being split into
k parts, a SVM is being trained on k − 1 parts and evaluated on the remaining part. That
is repeated to include and test on all of the k parts. So the input into the SVM here is the
preprocessed electrode-data according to method A (see appendix) and the output is the
estimated according class the input data sample belongs to.

The following data is analyzed for each person in experiment 1:

1. classification of each object against each object using data from all eight EMG elec-
trodes (that is two classes, each containing one object)

2. classification of each object against each object using only data from the four proximal
EMG electrodes close to the elbow

3. classification of six classes using data from all eight EMG electrodes (one class for each
object, but full and empty bottle in the same class and beaker and large box in the
same class)

4. classification of six classes using only data from the four proximal EMG electrodes
close to the elbow (one class for each object, but full and empty bottle in the same
class and beaker and large box in the same class)

5. point of time during the reaching movement from which on a reliable classification using
data from all eight EMG electrodes can be made (six classes as described above).

Analysis of 1 and 2 is mainly executed to validate the EMG data, while 3 and 4 are the
points of interest for application in prostheses or other artificial hands. The last point is
interesting with respect to the level of pre-shaping (Santello and Soechting (1998); Schettino
et al. (2003)) as described in the introduction and with respect to the time remaining to
(pre-)calculate the movement for the artificial hand.

Analysis of experiment 2 is slightly modified. Accuracy values are gained by employing
10-fold cross validation:
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1. classification of each object against each object using data from all eight sEMG elec-
trodes (that is two classes, each containing one object)

2. classification of six classes using data from all eight sEMG electrodes (one class for
each object)

3. point of time during the reaching movement from which on a reliable classification
using data from all eight EMG electrodes can be made (using six classes).

3. Results

3.1. Experiment 1

Even though subjects were not given any instruction regarding the placement of their
fingers on the object, all of them grasped the objects in a very similar way. Fig. 3 shows
an exemplary grasp for each object. The empty and the full bottle were grasped the same
way. Movement duration was measured as the time between switch release underneath the
resting hand, and switch release underneath the object. This duration was measured to vary
between 0.02 s and 2 s with a median of 0.8 s. Indeed, the measurement method used does
not represent very short movements well, but the effect of this inaccuracy has no influence on
the outcome of our experiments. The very short minimal movement durations happen due
to the fact that the nearest position has a distance of about 8 cm from the resting-position
detector, so bending the wrist and stretching the fingers allowed to touch the object without
releasing the resting-position detector.

Eight Electrodes

Fig. 4 shows the results for each person when two objects are classified using method A.
Fig. 5 shows the mean results over all persons. It can be seen, that empty and full bottle
can only be distinguished with an accuracy rate of something between 65% and 75%. That
is better than guessing (which would be 50%), but in our opinion not sufficient for stable
grasping. Thus, for further tests empty and full bottle were put into the same class. For
two of the six persons, the distinguishability between large box and beaker is less than 72%.
For the other four rises to over 80%. Even though that is much better than for the bottle,
we decided to put large box and beaker in the same class for further analysis. The accuracy
rate for classifying the remaining six classes lies between 79.1% and 94.9% depending on the
person, whereas for 6 classes pure guessing would yield 1/6 ≈ 17%.

The relationship between part of the reaching movement fulfilled and results for classi-
fying are shown in Fig. 6. It can be seen that the accuracy rate for six classes at the half of
reaching time is about 60% and improves until the movement is completed. Fig. 7(a) to 7(f)
show the relationship between part of the reaching movement done and results for classifying
two classes. Most of them show a clear distinguishability of the two classes after 50% of the
duration of the reaching. But in Fig. 7(d) a significant improvement of the classification can
be seen until the movement is completed.
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(a) small bottle (b) small box (c) large box (d) pencil

(e) plate (f) cup (g) beaker

Figure 3: Here an exemplary grasp for each of the eight objects is shown. All the subjects grasped the
objects in a similar way, even though they were not given any instructions about finger placement
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(e) Person 5

beakercup plate  lbox sbox eb     fb pencil

beaker

cup

plate

large box

small box

empty bottle

full bottle

pencil

 

 50

60

70

80

90

100

(f) Person 6

Figure 4: Matrix results for each person for classification of each object against each object (that is two
classes, each containing one object) using data from all eight EMG electrodes (near the elbow and near the
wrist). Applied method A and 20-fold cross validation.

Four Electrodes

Fig. 8 shows the results for classifying two objects using only the four electrodes next to
the elbow, while Fig. 9 shows the mean over all participants. The results are not as good as
when using all eight electrodes, but still the accuracy is high.

For identifying one object out of the six (empty and full bottle considered to be the
same class and cup and beaker the same class as described for eight electrodes), accuracy
lies between 69.1% and 90.7%, depending on the person.

3.2. Experiment 2

Even though subjects were not given any instruction regarding the placement of their
fingers on the bottles, all of them grasped them in a very similar way. The duration of the
measured reaching movement varies between 0.43 s and 1.49 s with a median of 0.73 s.

Fig. 10 shows the results when always two different objects are classified against each
other using method A. Accuracy rates of the 0.5 l bottles range from 73% to 94% and
are thus better than in experiment 1 (where they ranged from 65% to 75%), still differing
considerably between participants.

As already seen in experiment 1 (see Fig. 7(f) and 12), within the case of different object
weight and similar object size and shape, accuracy rate does not improve very much over
time, but stays almost the same from the beginning on (see Fig. 11).
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Figure 5: Matrix results showing the mean over all persons for using all 8 electrodes (near the elbow and
near the wrist). Applied method A and 20-fold cross validation.

4. Discussion

Matrix results for classifying two objects (Fig. 4, Fig. 8 and Fig. 10) show that there
are inter-person differences. Especially persons 4, 5 and 6 of Experiment 1 show very good
results. The inter-person differences may depend on different anatomical properties of the
subjects like muscle strength, skin impedance, amount of fatty tissue and many more as well
as on a feasible grasping repeatability of each person.

The relationship between fulfilled part of the reaching movement and results for classi-
fying two classes (see Fig. 7(a) to 7(f)) lead to the conclusion, that objects shape may be
distinguished in the first half of the movement, but distinguishability of object size improves
over the whole reaching movement.

This leads to the conclusion, that not only maximum aperture (which depends on object
size as described in Jeannerod (1981) and Paulignan and Jeannerod (1996) and is supposed to
happen midway of the reaching movement), but also hand posture (which develops during
the whole reaching movement, (Santello and Soechting, 1998)) are dependent on object
properties and are visible in the EMG signal. On the other hand, Schettino et al. (2003)
describe that hand postures requiring only configuration changes in abduction/adduction
dimension occur at about 45% of the reaching movement (in contrast to changes in the
flexion/extension dimension which occur only after 75% of the movement).

Further reasons for the ongoing improvement of classification accuracy may be that the
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Figure 6: This graph visualizes the decrease of classification error the more of the movement is known.
Classification has been done on 6 classes, 8 electrodes and deployed method A, showing mean and standard
deviation over all persons. Accuracy values gathered by 20-fold cross validation and pre-processing method
A.
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(c) plate and beaker

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

part of reaching completed

%
 c

v.
 c

or
re

ct

(d) large box and small box

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

part of reaching completed

%
 c

v.
 c

or
re

ct

(e) pencil and beaker
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(f) full and empty bottle

Figure 7: Relationship between percentage of the duration of the reaching movement and results for classi-
fying different objects. Applied method A and 20-fold cross-validation.
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(d) Person 4
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(f) Person 6

Figure 8: Matrix results for using only 4 electrodes near the elbow. Applied method A and 20-fold cross-
validation.
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Figure 9: Matrix results showing the mean over all persons for using only 4 electrodes near the elbow.
Applied method A and 20-fold cross-validation.

distances from the starting position to the object varied a lot in our setup, so—especially
for the short distances—the movement duration may in some cases be too short. Another
aspect is the signal to noise ratio of the electrodes, thus it is natural, that the better the
data gets, the better the classification result will be. Therefore a monotonic raising error
function up to the end of the movement is quite normal, however we would have awaited to
see a steeper slope up to the 50% mark. Furthermore we presume that persons may already
have started their pre-shaping or in some sense pre-stiffening their muscles before they lifted
the hand from the pressure sensor detecting the onset of the movement. This might explain,
why figure 6 starts at about 30%, where pure chance for guessing within 6 classes would be
about 17%.

In this context, a mentionable aspect is shown in Fig. 7(f), showing the classification
over duration of the two bottles with different weight in experiment 1. The accuracy rate is
not improving over time but is fixed around 60% from the beginning (while pure guessing
would be 50%). We may conclude that the weight leads to an early decision of pre-shaping,
namely setting the grasp impedance to cope with the expected object weight. Fig. 12 from
experiment 2 reinforces this finding. Close inspection of those figures, however, reveal that
the larger the difference in weight gets, the more the development of decision accuracy takes
place over the whole time, but not as dramatically as seen on pre-shaping depending on
shape and size.

The overall results lead to the conclusion that it is possible to recognize different object
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(b) Person 8

S100 S550 L100 L1100 L700 So1100

S100

S550

L100

L1100

L700

So1100

 

 50

60

70

80

90

100

(c) Person 9

S100 S550 L100 L1100 L700 So1100

S100

S550

L100

L1100

L700

So1100

 

 50

60

70

80

90

100

(d) Person 10

Figure 10: Matrix results for different weighing bottles. Applied method A and 10-fold cross-validation.
S100 is 0.5 l bottle weighing 100 g, S550 is 0.5 l bottle weighing 100 g, L100 is 1 l bottle weighing 100 g, L700
is 1 l bottle weighing 700 g, L1100 is 1 l bottle weighing 1100 g, So1100 is 1.5 l bottle (’soft’ bottle) weighing
1100 g

sizes (like small and large box) and grasp types (like power grasps for boxes, bottles and
beaker, fine grasp for the pencil or special grasps for the plate and the cup) with sEMG
signals during the reaching phase well before the grasp is actually performed.

Results of experiment 1 for persons 4 and 6 using only the 4 proximal electrodes show
that accuracy rates can be above 90% for this setting as well. And this setting is feasible
for a wide range of amputees (approximately trans-radial up to one-thirds proximal; despite
the setting with eight electrodes, which is only feasible for amputees trans-radial up to one
third distal). These results compare favourably to those reported by Somerlik et al. (2008).
There, an accuracy rate of 82.3% in three classes using forearm, upper arm, and shoulder
muscles was obtained when classifying over the full movement. In our experiments, the same
accuracy is obtained for 6 classes after 80% of the whole reach movement.

Even though the results for classifying object weight (empty and full bottle) were not
as good as for classifying object size or grasp type, it can be seen that there is information
about the object weight in the sEMG signal before contact. Furthermore it is not clear if the
person really concentrated on object weight or (pre)estimated a wrong weight, since this was
not checked within/after the trial. However feedback after experiment 1 showed that the
test persons found it hard to remain concentrated throughout the 500 grasps, and especially
the different bottles surprised them, even though the liquid was colored blue to give a visual
cue. For this reason we conducted experiment 2 with only a limited number of grasps to
be executed. Results are better than for experiment 1, but show, that a large difference in
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Figure 11: This graph visualizes the decrease of classification error the more of the movement is known.
Classification has been done on 6 classes, 8 electrodes and deployed method A, showing mean and standard
deviation over all persons. Accuracy values gathered by 10-fold cross validation.

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

Part of movement completed

%
 C

ro
ss

va
lid

at
io

n 
C

or
re

ct

(a) small b. 90g and 560g
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(b) large b. 90g and 700g
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(c) large b. 90g and 1100g

Figure 12: Relationship between percentage of the duration of the reaching movement and results for
classifying different weights. Applied method A and 10-fold cross validation.
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weight is necessary to receive accuracy rates above 90%. A mentionable detail in the results
of experiment 2 is that the soft bottle can be easily distinguished from the large bottle, even
so they have the same diameter and weight. Summing up the thoughts on different weights
of the objects, it seems, that shape and size as well as surface properties (like ’soft bottle’)
have more impact on the muscular system during pre-shaping than the actual weight of the
to be grasped object. This is quite surprising, since different work (e.g., Hermsdörfer et al.
(1999)) showed that force is always modulated such that the least possible amount necessary
for a stable grasp is used, even in dynamic scenarios.

This work clearly shows that some useful information of the to be grasped object is
available well before contact—from about 50–70% of total movement time. How to extract
and process this information while grasping an object with prosthesis is however not within
the scope of this work, but will extend into further research.
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Appendix A.

Three different methods are used to pre-process the EMG signals to generate a feature
vector x from each trial consisting of 15 equidistant sampling points sti ; i ∈ {1, 2, . . . , 15},
with each sti being the signal from the 8 (4) sEMG electrodes at time ti.

For pre-processing of the data we investigated three different approaches.
Method A. Signals are normalized over time. This is necessary since the durations of the
movements are highly variable, some last as short as about 0.02 s and some last up to
about 2 s. So rather of taking time-equidistant samples, we decided to take them equally
distributed along the movement. Let t1 be the time when the movement starts (i.e., the
subject lifts the hand), and tn the end of movement (i.e., the subject touches the object).
The equally distributed points of time ti are then defined as

ti = (i− 1)
tn − t1
n− 1

, (A.1)

with n as the total number of equidistant sampling points. Subsequently the EMG-data at
each sampling time is concatenated into a single feature vector xA:

xA = [sTt1 , s
T
t2
, . . . , sTtn ]T , (A.2)

with n = 15.
Method B. The integral over each EMG signal is calculated and used as an extra input added
to method A, resulting in 16 (8) instead of 8 (4) inputs. The idea behind this pre-processing
is to give the classifier also some kind of energy-measure of the movement; a slow movement
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results into a lower amplitude, whereas a fast movement has a higher amplitude. The pre-
processing in Method A however discards the information regarding the real length of the
movement, yet leaves the amplitude data in. Therefore the integral re-adds this missing
information. To scale the value of the integral signals back into the magnitude of the sEMG
electrodes values, the integral-values are all scaled down by the mean of each integrated
signals maximum value together with a mixing factor1 of 1/2.

We define

d(sti) =

ti∑
k=0

sk, (A.3)

while the sum is evaluated per element so that d(sti) is a vector of the same dimension as
sti . Taking mean(a) as the mean of all elements of the vector a, we set

p(sti) =
1

2

d(sti)

mean
(
d(stn)

) , (A.4)

while, again, p(sti) is a vector of the same dimension as sti and n = 15. Effectively p(sti) is
the normalized vector of summed EMG signal up to ti. The resulting feature vector xB is

xB = [sTt1 , s
T
t2
, . . . , sTtn ,

p(st1)
T , p(st2)

T , . . . , p(stn)T ]T ,
(A.5)

with n = 15.
Method C. Each sEMG signal is divided by the maximum sEMG value for the specific
trial. This has to be seen as some kind of normalization, so that all trials have the same
amplitude. This is an ambivalent kind of pre-processing. On the one hand, it ensures, that
all x are of the same amplitude—slow, low amplitude movements get the same as fast, high
amplitude movements—but on the other hand, some information might also be encoded in
the maximum amplitude, and we will loose this, of course. The normalization factor α as

α = max
(
max(st1),max(st2), . . . ,max(stn)

)
, (A.6)

assuming max(a) gives the maximal element of the vector a. The feature vector xC is then
constructed analogous to method A

xC =
1

α
[sTt1 , s

T
t2
, . . . , sTtn ]T , (A.7)

with n = 15.
Results. There are only small differences in the classifications results between methods A,
B and C. Normalization method B performs slightly better results than A and C, however
the standard deviation clearly shows that this increase in accuracy is far below inter person

1We conducted a series with multiple mixing factors, where 1/2 yielded the best results, but since the
impact of the different pre-processing methods is so marginal, we omit this for brevity.
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Table A.1: Results for classification via 20-fold cross-validation of six classes using different pre-processing
methods using data collected from experiment 1

Subject Method A Method B Method C

Person 1 86.5% 86.3% 86.7%
Person 2 84.4% 84.4% 83.2%
Person 3 79.7% 79.7% 78.3%
Person 4 94.9% 95.5% 94.7%
Person 5 90.1% 90.3% 89.1%
Person 6 90.2% 90.2% 90.6%

mean 87.7% 87.8% 87.1%
deviation 5.30 5.50 5.78

variances. See table A.1 for details. Since the differences are so marginal, we used method
A for the sake of simplicity.

The classification of X = {x1, . . . ,xk}, with k as the total number of training samples,
is being done by a very well established Support Vector Machine (SVM) implementation
called libsvm (Chang and Lin (2011)). For accuracy values we used 20-fold cross-validation.
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