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Abstract. In software engineering, graphical formalisms, like state-
transition tables and automata, are very often indispensable parts of
the specifications. Such a formalism usually leads to specification refine-
ment that maintains the simulation/bisimulation relation between an
implementation and a specification. We investigate how to use formal
techniques to generate suggestions for repairing a program that breaks
the bisimulation relation with a graphical specification. We use state
graphs as a unified representation of the program models and specifica-
tions. We propose a technique that may evaluate the cost of a repair.
We present a PTIME heuristic algorithm that suggests how to repair a
model state graph. We then explain how to derive repair suggestions for
programs from the repair for state graphs. Finally, we report our experi-
ment that checks the performance of our repair algorithms and the costs
of our repairs.

Keywords: state graph, state transition relation, repair, graph theory,
cost, evaluation, equivalence, bisimulation.

1 Introduction

The construction of large complex software with quality assurance is becoming
more important than ever. In general, quality assurance is achieved with verifica-
tion techniques, i.e., checking if the behavior of a design meets a specification. Up
to now, for program verification, various techniques have been developed, includ-
ing testing [14] and model checking [5]. Once a bug is reported in the verification
process, locating and repairing the bug still rely heavily on human intervention
which is costly, time-consuming, and error-prone. In fact, the process of program
repair remains to be the least automated in system development. When talking
about repairing, the cost is usually taken into account. Thus, without taking
repair cost into consideration, research work in program repair is not likely to
be useful in practice. This work is to develop techniques for repair suggestions of
programs with a cost concept against graphical state-transition specifications.

Graphical specification formalisms have been widely used in software engi-
neering and telecommunication industry. Examples are the state-transition dia-
grams used in the specification of many protocols, the statecharts of UML, the
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abstract machines of SDL, automata, . . ., etc. In this work, we adopt such a for-
malism, called state graph, as a unified representation for both program models
and state-transition specifications. There are many algorithms and tools that
can construct the state graphs of programs automatically [1].

There are many definitions for the verification between two state graphs. For
example, we can compare sets of traces of the two state graphs. However, state
graphs are usually used as a suggestion for the behavior structures of a program
in a state-by-state and transition-by-transition way. Thus we feel that simulation
checking between state graphs is a better choice in this work. Intuitively, one
state graph Am is simulated by another As if and only if every transition that
Am can make can also be matched by As at a corresponding state. But this
framework sometimes is still not good enough for practical verification in the
industry. For one thing, a specification state graph could be vacuously satisfied
by a faulty program that yields no behavior at all. One way to cope with this
problem is to also specify some good behaviors which the program must exhibit.
Specifically, we can have a pair of state graphs, A

(l)
s and A

(u)
s respectively for the

lower-bound and the upper-bound specifications. Given the model state graph
Am of a program, we can thus verify whether A

(1)
s is simulated by Am and Am

is simulated by A
(u)
s .

However, we feel that the framework of simulation-checking with both a lower-
bound and an upper-bound specifications is a little complicated and may blur the
technical presentation in this article. Instead, we use a less involved framework
called bisimulation checking [13,15]. Intuitively, two state graphs are bisimulation
equivalent if and only if for every corresponding state pairs of the two graphs,
every transition that the one graph can make at a state can also be matched by
the other graph at a corresponding state, and vice versa. In a not very rigorous
sense, bisimulation-checking is like simulation-checking when the lower-bound
and upper-bound state-transition specifications are the same. The techniques
we present in this work for the framework of bisimulation-checking should also
be applicable to the framework of simulation-checking with lower-bound and
upper-bound specifications.

In repairing a program for a specification, engineers usually can evaluate
whether a repair is better than another. For example, a better repair might
introduce less changes to a program, might run more efficiently, might use less
memory, might be more readable, . . ., and etc. It is easy to see that there are
many dimensions in evaluating how good a repair decision is. Thus it is in general
difficult to define a formal approach to evaluate repairs in a way that matches
human engineers’ intuition. Anyway, we still feel it is important to have the
first step in formalizing the evaluation of repairs. In this work, we borrow the
graph edit-distance concept in graph theory for the evaluation of the ‘cost’ of
repairs. A repair is defined as a sequence of edit operations to Am to make Am

and As bisimulation equivalent. We consider several types of edit operations to
state graphs. The length of an edit operation sequence naturally defines the cost
of the corresponding repair. In such a context, cost of repairs can help engineers
to evaluate the degree of changes to be introduced with a repair. This can be
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useful in maintaining legacy software when engineers may prefer not to introduce
significant changes.

In figure 1, we present our framework of verification and program repair sug-
gestion. We construct the state graphs from a program and a graphical specifi-
cation of a state transition relation. We then check the bisimulation equivalence

graphical 

state−transition

specification

model
state
graph

bisimulation

equivalent ?

program
Yes

construct 

state graph

repair with 

a cost concept

No
construct 

program 

repair with 

a cost concept
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Fig. 1. Framwork of verification and program repair

between the program state graph and the specification state graph. If they are
not bisimulation equivalent, then we use the techniques in this work to construct
suggestions for repairing the program with a cost concept.

In this work, we establish an upper-bound on the cost to repair a model state
graph with respect to a specification one. We also present a logic-based algo-
rithm for the calculation of an upper-bound for the minimum repair cost. We
then present a PTIME heuristic algorithm for constructing repairs. We have im-
plemented the heuristic algorithm and compared its performance with a straight-
forward exploration procedure that searches through the space of repairs. We
have experimented against several benchmarks. Our heuristic repair algorithm
can sometimes find a repair at a cost lower than the just-mentioned upper-bound.
We feel that the heuristic algorithm could be used as a foundation for further
investigation in this research direction. Finally, we explain how to convert the
repair for state graphs to the repair suggestions for programs.

The rest of the paper is presented as follows. Section 2 reviews related work.
Section 3 briefly defines state graphs and bisimulation and explains how pro-
grams can be converted to models as state graphs. Section 4 discusses the cost
evaluation of repairs. Section 5 establishes an upper-bound of the minimum-
cost repair for a given repair task and presents an algorithm for calculating the
upper-bound. Section 6 presents algorithms for the construction of repairs with
a cost concept and explains how to repair a program based on the repair of the
corresponding model state graph. Section 7 reports our experiment. Section 8 is
for the conclusion and possible future directions.

2 Related Work

Jobstmann et al. viewed the program repair problem as a game. Given a set of
suspicious statements (information from fault localization), they first relax the
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constraints on those suspicious statements and then look for a further constraint
of the statements to make the program satisfy specifications [12]. Thus the pos-
sible program repairs are restricted to the original architectures of the models.
The work of Griesmayer et al. could be viewed as an extension in this direction
[9]. In contrast, our framework does not constrain ourselves to those repairs con-
forming to the original architectures of the model automata. We allow for any
repaired model that can be represented as a state graph. Our framework also
enables the analysis of repair costs. Moreover, our framework does not rely on
the availability of a fault localizer.

There have been discussions in the Artificial Intelligence (AI) community on
repair automation. We discuss two of them in the following. Buccafurri et al.
argued, with examples, for the connection between the system repair problem
and abductive theory revision problem [3]. They also argued that the repair cost
can be estimated with the length of the corresponding edit operation sequence
and proposed heuristics to avoid redundancy and optimize in the search of the
minimum repair.

Ding and Zhang defined the basic repair steps of Kripke model for specifica-
tions in LTL (linear-time temporal logic) [6]. To formalize the concept of repair
cost, they defined the ordering among repairs and presented theorems in charac-
terizing the minimum repairs for specifications like Fψ and ψ1 ∧ ψ2. They also
presented an algorithm to repair Kripke models for CTL specifications [7].

In this work, we also present a logic-based algorithm for the calculation of
MCS between graphs. At this moment, there are many tools that can construct
the MCS between two graphs, for instance, SimPack [16]. But, to our knowledge,
no existing tools support the construction of MCS’ of graphs with both arc and
vertex labels.

3 State Graphs

For convenience, we have the following notations. Given a set or a sequence V ,
the size (number of elements) of V is denoted |V |. Given a function f , we let
f−1 be the inverse of f . Also, ‘iff’ is a shorthand for “if and only if.”

Definition 1. (State graphs) A state graph A on a set P of atomic proposi-
tions and an alphabet Σ is a tuple (Q, P, μ, Σ, E) with the following constraints.

• Q is a finite set of states.
• P is a finite set of atomic propositions. We assume there is an atomic propo-

sition ini ∈ P that denotes whether a state is initial.
• μ : Q �→ (P �→ {false, true}) is a labeling function for the states.
• Σ is a finite set of input symbols.
• E ⊆ (Q × Σ × Q) is a finite set of transitions.

Also, we let ini(A) = {q | μ(q, ini)} be the set of initial states of A. �
There are many known techniques that allow us to abstract a program into a state
graph [1]. Thus state graph can be used as a unified representation for both our
program models and our graphical state-transition specifications. For conciseness
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of presentation, in thiswork,weuse the following bisimulation relation [13] to define
the verification problem between two state graphs.

Definition 2. (Bisimulation of state graphs) Given a set P of atomic propo-
sitions, a set Σ of input symbols, and two state graphs A1 = (Q1, P, μ1, Σ, E1)
and A2 = (Q2, P, μ2, Σ, E2), a bisimulation B between A1 and A2 is a relation
B ⊆ Q1 × Q2 such that for every (q1, q2) ∈ B, the following restrictions hold.

• μ1(q1) = μ2(q2).
• For every (q1, a, q′1) ∈ E1, there is a (q′1, q

′
2) ∈ B with (q2, a, q′2) ∈ E2.

• For every (q2, a, q′2) ∈ E2, there is a (q′1, q
′
2) ∈ B with (q1, a, q′1) ∈ E1.

A1 and A2 are bisimulation equivalent, in symbols A1 ≡ A2, iff there is a bisim-
ulation B between A1 and A2 with the following restrictions.

• For every q1 ∈ ini(A1), there is a q2 ∈ ini(A2) with (q1, q2) ∈ B.
• For every q2 ∈ ini(A2), there is a q1 ∈ ini(A1) with (q1, q2) ∈ B. �

Bisimulation preserves all properties expressible in the propositional μ-calculus,
which subsumes CTL* [8] in expressiveness. The maximal bisimulation between
two state graphs can be constructed in deterministic polynomial time [15].

4 Repairs and Their Cost Estimation

As we have said that, there are good repairs and bad repairs. It is in general
difficult to evaluate how good a repair is. We first formalize the concept of repairs
to state graphs. As in [3,6,7], we may define a repair of a model state graph as
a sequence of graph-edit operations that transforms the graph to one that is
bisimulation equivalent to a specification. In a repair, we allow the following
four types of basic edit operations. Suppose we are given a state graph A =
(Q, P, μ, Σ, E).

• State addition: Given a state q and a set L ⊆ P , λX.state add(X, q, L) is
an operation that adds state q to X with labels in L. Formally speaking,
state add(A, q, L) is a new state graph (Q ∪ {q}, P, μ′, Σ, E) such that μ′ is
identical to μ except that μ′(q) = L. Note that if q ∈ Q, then the addition
has no effect.

• State deletion: Given a state q, λX.state del(X, q) is an operation that
takes state q out of state graph X . Formally speaking, state del(A, q) is a
new state graph (Q−{q}, P, μ, Σ, E). Note that if q 	∈ Q, then the operation
does not have an effect. Also deleting a state with incoming or outgoing
transitions has no effect.

• Transition addition: Given two states q, q′ ∈ Q and an a ∈ Σ,
λX.xtion add(X, q, a, q′) is an operation that adds transition (q, a, q′) to
state graph X . Formally speaking, xtion add(A, q, a, q′) is a new state graph
(Q ∪ {q}, P, μ, Σ, E ∪ {(q, a, q′)}). In case q 	∈ Q, q′ 	∈ Q, or a 	∈ Σ,
xtion add(A, q, a, q′) = A.

• Transition deletion: Given two states q, q′ ∈ Q and an a ∈ Σ,
λX.xtion del(X, q, a, q′) is an operation that takes transition (q, a, q′)
out of state graph X . Formally, xtion del(A, q, a, q′) is a new state graph
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(Q ∪ {q}, P, μ, Σ, E − {(q, a, q′)}). In case q 	∈ Q or q′ 	∈ Q, or a 	∈ Σ,
xtion del(A, q, a, q′) = A.

An edit sequence is a sequence of edit operations. Given an edit sequence e1e2 . . . en

on a state graph A, the result of the sequence on A, in symbols Ae1e2 . . . en, is de-
fined inductively as follows.

• Aε = A where ε is the null sequence.
• A (λX.state add(X, q, L)) e2 . . . en = state add(A, q, L)e2 . . . en.
• A (λX.state del(X, q)) e2 . . . en = state del(A, q)e2 . . . en.
• A (λX.xtion add(X, q, a, q′)) e2 . . . en = xtion add(A, q, a, q′)e2 . . . en.
• A (λX.xtion del(X, q, a, q′)) e2 . . . en = xtion del(A, q, a, q′)e2 . . . en.

The cost of a repair σ = e1 . . . en is defined as |σ| = n, i.e., the length of σ. For
example, in figure 2, we have (a) for a model graph and (b) for a specification
graph. The initial states are with incoming arrows without a source. (c) is the
obtained from a repair of (a) for (b) with the minimum repair cost two. A repair
is the following edit sequence.

(a) Am (c) repair

id busy id

pass
retry

(b) Aψ

idle

procprocproc

pass retryreject

retry frame reject retry frame reject retry frame reject

pass
reject reject

retry
retry

id
idle idle
q0 q0

q1 q2

q3 q4 q5

q1 q2

q3 q4 q5
proc proc proc proc proc proc

Fig. 2. An example of repair

(λX.xtion del(q0, busy, q2))(λX.xtion add(q1, retry, q5))

5 Upper-Bounds for Minimum Repair Cost

State graphs are in fact directed graphs with states and arc labels. In this section,
we base on graph theory, specifically the work of Bunke [4], to derive an upper-
bound on minimum repair cost for bisimulation equivalence.

5.1 Upper-Bounds from the Graph Theory

We can define the isomorphism between state graphs. Two state graphs A1 =
(Q1, P, μ1, Σ, E1) and A2 = (Q2, P, μ2, Σ, E2) are isomorphic if there is a bijec-
tive function β from Q1 to Q2 such that
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• for all q ∈ Q1, μ1(q) = μ2(β(q));
• for all (q1, a, q2) ∈ E1, (β(q1), a, β(q2)) ∈ E2;
• for all (q1, a, q2) ∈ E2, (β−1(q1), a, β−1(q2)) ∈ E1.

We have the following intuitive lemma.

Lemma 1. Given a model graph Am, a specification graph As, and an edit se-
quence σ, if Amσ is isomorphic to As, then σ is a repair.
Proof : True since isomorphic state graphs are bisimulation equivalent. �
Lemma 1 suggests that we can use the length of the shortest edit sequence that
changes Am to As as an upper-bound for the minimum repair cost. The upper-
bound can be used to bound our exploration in the search for a minimum repair
from Am to As.

In the following, since we may use graph theory to handle state graphs, some-
times we conveniently use the terms in graph theory to call the equivalent struc-
tures in our state graphs. For example, we may also call a state a vertex and
a transition an arc. The size of a graph A = (Q, P, μ, Σ, E), denoted |A|, is
defined as |Q| + |E|. Given a state q, we may write q ∈ A iff q ∈ Q. Also given
a transition (q, a, q′), we may write (q, a, q′) ∈ A iff (q, a, q′) ∈ E. A subgraph
A′ = (Q′, P, μ, Σ, E′) of a state graph A = (Q, P, μ, Σ, E) is a graph such that
Q′ ⊆ Q and E′ ⊆ E. Note that we let A and A′ share the same state-labeling
function for the simplicity of presentation.

Definition 3. (Maximum common subgraph) Let A1 and A2 be two graphs
and A′

1 and A′
2 be subgraphs of A1 and A2 respectively. We call A′

1 (or A′
2) a com-

mon subgraph of A1 and A2 if A′
1 and A′

2 are isomorphic. A graph G is a maximum
common subgraph (MCS) of A1 and A2 if G is a common subgraph of A1 and A2
and for all common subgraphs G′ of A1 and A2, |G′| ≤ |G|. �
The relation between edit sequences and MCS was first presented by Bunke in
[4]. Bunke’s work is based on the assumption that the size of a graph is only
relevant to the number of vertices. Moreover, the edit operations of arcs in his
work are all free. In contrast, we assume that the cost of an edit operation to an
arc (transition) is also one. We have adapted the following lemma from [4] for
the relation between edit sequences and MCS.

Lemma 2. Suppose we are given three state graphs A1, A2, and Ac such that
Ac is an MCS of A1 and A2. Then the shortest edit sequence that changes A1
to A2 is of length |A1| + |A2| − 2|Ac|. �
Due to page-limit, we have left the proof to a full version of the paper in our
tool website. With lemmas 1 and 2, we can establish the following lemma.

Lemma 3. Suppose we are given a model state graph Am and a specification
state graph As. If Ac is an MCS of Am and As, then the minimum repair cost
of Am for As is no greater than |Am| + |As| − 2|Ac|. �
Due to page-limit, we have left the proof of the lemma to a full version of the
paper in our tool website. We use figure 3 to explain lemma 3. The parts circled
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wait frameq1

q3

lock

request q2run

request
ready

(b) As

wait

busy

frameq1

q3

request
run
q2

request
ready

(a) Am

Fig. 3. Two state graphes

with dashed lines are the MCS, say Ac, of the two state graphs. The minimum
repair cost is no greater than |Am| + |As| − 2|Ac| = 7 + 7 − 2 × 6 = 2.

The following lemma shows that the upper-bound established with lemma 3
is actually tight. We can establish the faimily of Ai

m’s and Ai
s’s in figure 4 that

share no MCS.

idle
q1

read q2
idle

read q3
idle

qi
idle

read
write

Ai
m

wait
q′1

write q′2
wait

write q′3
wait

q′i
wait

write
read

Ai
s

Fig. 4. A family of Ai
m and Ai

s with tight upper-bound repair cost

Lemma 4. For the family of state graphs in figure 4, for each positive integer
i, the minimum cost of repair of Ai

m for Ai
s is |Ai

m| + |Ai
s|.

Proof : As can be seen from figure 4, for each i, there is no common subgraph
between Ai

m and Ai
s. Moreover, if any state in Ai

m remains to be initial, Ai
m

cannot be repaired to be bisimulation equivalent with Ai
s. To remove states in

Ai
m, we first have to remove all transitions in Ai

m. This costs |Ai
m| edit operations.

Then we need |Ai
s| edit operations to add Ai

s to Ai
m. In this way, the repaired

model becomes isomorphic to Ai
s. According to lemma 1, the repaired model is

thus bisimulation equivalent to Ai
s. The cost is thus |Ai

m| + |Ai
s| for each i. �

5.2 A Logic-Based Algorithm for the MCS

Our algorithm is built on an MCS construction algorithm. Note that the cal-
culation of MCS is an NP-complete problem [10]. Our motivation is that with
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proper encoding of the logic formulas in advanced data-structures, like BDD
[2], we have a better chance to calculate MCS efficiently in the average cases.
Specifically, we want to construct a logic formula that characterizes the common
subgraphs between two state graphs. A solution (satisfying truth assignments)
to the formula can be used to help us constructing a common subgraph. An
MCS then corresponds to a maximal solution that assigns the most number of
1’s to the variables.

Given a set V of Boolean variables, a formula η of V can be inductively
constructed with rule “η ::= v | ¬η1 | η1 ∨ η2.” Standard shorthands like η1 ∧ η2,
η1 → η2, and η1 ↔ η2 are also allowed in this work. A truth value is either true
or false. An interpretation of a formula is a mapping from its set of Boolean
variables to truth values. An interpretation I satisfies a formula η, in symbols
I |= η, if the following inductive conditions are maintained.

• I |= v iff I(v) = true.
• I |= ¬η1 iff it is not the case that I |= η1.
• I |= η1 ∨ η2 iff either I |= η1 or I |= η2.

I is a solution to η iff I |= η. Given two solutions I and I ′, if for every v ∈ V , I(v)
implies I ′(v), we say I ′ is no smaller than I. A maximal solution is no smaller
than any other solutions.

In our formulas, we use the following Boolean variables for the correspondence
between states and transitions of two state graphs A1 = (Q1, P, μ1, Σ, E1) and
A2 = (Q2, P, μ2, Σ, E2).

{
cq1
q2

| q1 ∈ Q1, q2 ∈ Q2
}

∪
{

c
(q1,a,q′

1)
(q2,a,q′

2) | (q1, a, q′1) ∈ E1, (q2, a, q′2) ∈ E2

}
.

Intuitively, for each q1 ∈ Q1 and q2 ∈ Q2, cq1
q2

is true iff state q1 corresponds to

state q2 in the MCS; for each (q1, a, q′1) ∈ E1 and (q2, a, q′2) ∈ E2, c
(q1,a,q′

1)
(q2,a,q′

2)
is

true iff transition (q1, a, q′1) corresponds to transition (q2, a, q′2) in the MCS. In
the following, we list the restrictions of the correspondence and their respective
formulas.

• State equivalence mutual exclusion: A state q1 cannot correspond to
more than one state in q2; and vice versa.

VEME(Q1, Q2) ≡
∧

q1∈Q1,q2∈Q2

(

cq1
q2

→
( ∧

q̄2∈Q2−{q2} ¬cq1
q̄2

∧
∧

q̄1∈Q1−{q1} ¬cq̄1
q2

))

• State equivalence structure: Corresponding states must have the same
labels.

VES(Q1, μ1, Q2, μ2) ≡
∧

q1∈Q1,q2∈Q2,μ1(q1) �=μ2(q2) ¬cq1
q2

• Transition equivalence mutual exclusion: A transition in E1 cannot
correspond to more than one transition in E2; and vice versa.

∧
(q1, a, q′

1) ∈ E1,

(q2, a, q′
2) ∈ E2

⎛

⎝c
(q1,a,q′

1)
(q2,a,q′

2)
→

⎛

⎝
∧

(q̄2,a,q̄′
2)∈Q2−{(q2,a,q′

2)} ¬c
(q1,a,q′

1)
(q̄2,a,q̄′

2)

∧
∧

(q̄1,a,q̄′
1)∈Q1−{(q1,a,q′

1)} ¬c
(q̄1,a,q̄′

1)
(q2,a,q′

2)

⎞

⎠

⎞

⎠

• Transition equivalence structure: If two transitions correspond to each
other, then their sources must correspond to each other, their destinations
must correspond to each other, and their transition labels must be the same.
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AES(E1, E2) ≡
∧

(q1,a,q′
1)∈E1,(q2,a,q′

2)∈E2

(
c
(q1,a,q′

1)
(q2,a,q′

2)
→

(
cq1
q2

∧ c
q′
1

q′
2

))

We then construct the following formula for common subgraph restriction:
CSR(A1, A2) as the following conjunction.

VEME(Q1, Q2) ∧ VES(Q1, μ1, Q2, μ2) ∧ AEME(E1, E2) ∧ AES(E1, E2).

Given a solution I of CSR(A1, A2), we can construct the common subgraph
CS(A1, A2, I) corresponding to I as follows.

({
q2 | ∃q1(I(cq1

q2
))

}
, P, μ2, Σ,

{
(q2, a, q′2)

∣∣
∣∃q1∃a∃q′1

(
I

(
c
(q1,a,q′

1)
(q2,a,q′

2)

))})

Note that we use a subgraph in A2 to represent the common subgraph. We can
also do it the other way around. With the restrictions in the above, we can show
that each solution of CSR(A1, A2) fully describes a common subgraph.

Lemma 5. Given two state graphs A1 = (Q1, P, μ1, Σ, E1) and
A2 = (Q2, P, μ2, Σ, E2), Ac is a common subgraph of A1 and A2 iff there is
a solution I of CSR(A1, A2) such that Ac is isomorphic to CS(A1, A2, I).
Proof : The correctness of the lemma can be established by checking that
CSR(A1, A2) correctly encodes all the constraints for MCS construction. �
Also a maximal solution encodes an MCS as stated with the following lemma.

Lemma 6. Given two state graphs A1 = (Q1, P, μ1, Σ, E1) and
A2 = (Q2, P, μ2, Σ, E2), Ac is an MCS of A1 and A2 iff there is a maximal
solution I of CSR(A1, A2) such that Ac is isomorphic to CS(A1, A2, I).
Proof : The lemma follows from lemma 5 and the fact that the number of ‘1’s
in a solution actually is equal to the size of the corresponding MCS. �
With lemma 6, we have the following algorithm for MCS construction.

MCS(A1, A2) {
Find a maximal solution I for CSR(A1, A2). Return CS(A1, A2, I).

}

Note that we do not elaborate on how to find the maximal solutions. In this
work, we use JDD (Java BDD library) [11] to construct CSR(A1, A2). JDD
can list all solutions of a formula. A maximal solution has the most number of
1’s in the listing. It is also possible to take advantage of the structure-sharing
capability of BDDs [2] and design a recursive procedure to efficiently search for
the maximal solutions. But due to page-limit, we omit the discussion here.

6 Techniques for Repair Suggestions with a Cost Concept

In a real-world project, minimum cost repairs may be difficult and costly to
construct. To improve the performance of automated repair tools, sometimes we
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may have to settle for quick repairs that may not be of minimum cost. In the
following, we present a PTIME heuristic algorithm for constructing repairs of
model state graphs. Given a model graph Am and a specification graph As, the
algorithm consists of the following three steps.

• Identifying the common structure of Am and As. Here we use the maximal
bisimulation between Am and As instead of MCS for the common structure.

• Disabling the difference from Am to the common structure. The idea is to
make all states in the difference from Am to the common structure unreach-
able from any initial states.

• Gluing a compact version of the difference from As to the common structure
to the common structure.

According to lemma 4, these steps do not save time in the worst case. However,
according to the experiment, in many cases, they yield repairs with costs lower
than the upper-bounds predicted by lemma 3.

At the end, we also discuss how to derive repair suggestions of programs based
on the repairs of model state graphs.

6.1 Identifying the Common Structure Between Am and As

Given two state graphs A1 and A2, there are classical algorithms that construct
the maximal bisimulation, in symbols B(A1, A2), between A1 and A2. Given a
state graph A = (Q, P, μ, Σ, E), B(A, A) is the maximal bisimulation between
A and itself. Given a state q ∈ Q, the bisimulation equivalence class of q, in
symbols [q], is the set of states that are bisimulation equivalent to q in A with
respect to B(A, A). Formally speaking, [q] = {q′ | q′ ∈ Q, (q, q′) ∈ B(A, A)}.
The bisimulation quotient of a state graph A = (Q, P, μ, Σ, E), in symbols [A],
is a state graph ({[q] | q ∈ Q}, P, μ′, Σ, {([q], a, [q′]) | (q, a, q′) ∈ E}) such that
for each q ∈ Q, μ′([q]) = μ(q).

Suppose we have two state graphs A1 = (Q1, P, μ1, Σ, E1) and
A2 = (Q2, P, μ2, Σ, E2). For each i ∈ [1, 2], we use 〈Ai〉B(A1,A2) to denote the
subgraph of Ai in the maximal bisimulation B(A1, A2). That is, 〈Ai〉B(A1,A2)
is a subgraph (Q, P, μi, Σ, {(q, a, q′) | q ∈ Q, q′ ∈ Q, (q, a, q′) ∈ Ei}) of Ai such
that Q = {q | q ∈ Qi, ∃q′ ∈ Q3−i((q, q′) ∈ B(A1, A2) ∨ (q′, q) ∈ B(A1, A2))}.
Given a model state graph Am and a specification state graph As, we can view
〈Am〉B(Am,As) and 〈As〉B(Am,As) as the common structure between Am and As.

6.2 Identifying of the Difference Between Am and As

According to the definition of bisimulation, we know that 〈Am〉B(Am,As) and
〈As〉B(Am,As) are bisimulation equivalent. They can be viewed as intermediate
products in the repair process with all ‘unwanted’ components removed from
Am. Assume that Am = (Qm, P, μm, Σ, Em) and As = (Qs, P, μs, Σ, Es).

Assume that 〈Am〉B(Am,As) = (Qb, P, μm, Σ, Eb). The difference from Am to
〈Am〉B(Am,As), in symbols Am −〈Am〉B(Am,As), can be straightforwardly defined
as the following state graph.
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(

{q | q ∈ Qm − Qb}, P, μm, Σ,

{

([q], a, [q′])

∣
∣
∣
∣
∣
(q, a, q′) ∈ Em,

q ∈ Qm − Qb, q
′ ∈ Qm − Qb

})

We need to disable the effect of Am − 〈Am〉B(Am,As) for the repair.
Assume that 〈As〉B(Am,As) = (Qb, P, μm, Σ, Eb). Similarly, we can also define

As−〈As〉B(Am,As) and use it as the difference from As to 〈As〉B(Am,As). However,
the ‘difference’ could still be too big. We propose only to glue the difference
from the bisimulation quotient of As to 〈As〉B(Am,As). Specifically, we define
this difference, in symbols [As] − 〈As〉B(Am,As), as the following state graph.

(

{[q] | q ∈ Qs − Qb}, P, μ, Σ,

{

([q], a, [q′])

∣
∣
∣∣
∣
(q, a, q′) ∈ Es,

q ∈ Qs − Qb, q
′ ∈ Qs − Qb

})

.

We require that for each q ∈ Qs − Qb, μ([q]) = μs(q). This graph captures the
behavior of those states in Qs − Qb in the bisimulation quotient of As.

6.3 Constructing Repair Based on the Common Structure and the
Difference

With the concepts defined in the above, we are now ready to present our PTIME
algorithm for the repair of Am for As. For convenience, assume that Am =
(Qm, P, μm, Σ, Em), As = (Qs, P, μs, Σ, Es), 〈Am〉B(Am,As) =
(Qb, P, μm, Σ, Eb), and [As]−〈As〉B(Am,As) = (Qd, P, μs, Σ, Ed). Intuitively, the
algorithm consists of the following two steps.

• Disabling Am − 〈Am〉B(Am,As) in Am. We need to delete all initial states in
Am − 〈Am〉B(Am,As). In addition, we also need to delete all transitions to
and from those initial states in Am − 〈Am〉B(Am,As).

• Gluing [As]−〈As〉B(Am,As) to 〈Am〉B(Am,As). This involves the construction
of appropriate transitions between [As] − 〈As〉B(Am,As) and 〈Am〉B(Am,As).

The repair generates a graph (Qb∪Qd, P, μ, Σ, E) with the following constraints.
• E = Eb ∪ Ed

∪ {(q1, a, [q2]) | ∃(q1, q
′) ∈ B(Am, As)((q′, a, q2) ∈ Es ∧ [q2] ∈ Qd)}

∪ {([q2], a, q1) | ∃(q1, q
′) ∈ B(Am, As)((q2, a, q′) ∈ Es ∧ [q2] ∈ Qd)}

• For each q ∈ Qb, μ(q) = μm(q). For each [q] ∈ Qd, μ([q]) = μs(q).
We denote this graph as RepairedB(Am, As). Then we can establish the following
lemma.

Lemma 7. For every state graphs Am and As, RepairedB(Am, As) is bisimula-
tion equivalent to As.

Proof : Here we sketch a brief proof plan. According to the definition of bisim-
ulation equivalence, we only have to check those states that are reachable from
the initial states. This means that we do not need to consider states in Am −
〈Am〉B(Am,As). We can first assume that for some state qr in RepairedB(Am, As)
that is reachable from an initial state, there is no qs in As such that (qr, qs) ∈
B(RepairedB(Am, As), As). There are two cases to analyze. The first is that
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there is a transition (qr, a, q′r) that RepairedB(Am, As) can do at qr to tran-
sit to q′r but As cannot do at any qs to transit on input a to a state q′s with
(q′r, q′s) ∈ B(RepairedB(Am, As), As).

• Assume that qr is in 〈Am〉B(Am,As). According to the definition of B(Am, As),
there is a qs in 〈As〉B(Am,As) such that (qr , qs) ∈ B(Am, As). There are two
more cases to analyze.
− Assume that q′r is also in 〈Am〉B(Am,As). According to the definition

of B(Am, As), there is a (qs, a, q′s) in 〈As〉B(Am,As) such that (qr, qs) ∈
B(Am, As) and (q′r, q

′
s) ∈ B(Am, As). This violates our assumptions.

− Assume that q′r = [q′s] is in [As] − 〈As〉B(Am,As). According to the con-
struction of RepairedB(Am, As), transition (qr, a, [q′s]) is there because
we have a transition (qs, a, q′s) in As with (qr, qs) ∈ B(Am, As) and
q′r = [q′s]. This also violates the assumptions.

• The case that qr is in [As]−〈As〉B(Am,As) can be proved in a symmetric way.
The “vice versa” part is symmetric and is that there is a transition (qs, a, q′s)
that As can do at qs but RepairedB(Am, As) cannot match at any qr. This case
can be proven in a symmetric way. Thus the lemma is proven. �
The following lemma shows the complexity of the algorithm.

Lemma 8. RepairedB(Am, As) is constructible in PTIME.

Proof : According to the classical bisimulation checking algorithm [15],
B(Am, As), 〈Am〉B(Am,As), and 〈As〉B(Am,As) can all be calculated in PTIME. It
is easy to see that [As]−〈As〉B(Am,As) can also be computed in PTIME. Finally,
to disable Am −〈Am〉B(Am,As) and to glue [As]−〈As〉B(Am,As) to 〈Am〉B(Am,As),
there are at most polynomial number of states and transitions to check and to
work on. Thus the lemma is proven. �
Suppose Am = (Qm, P, μm, Σ, Em), As = (Qs, P, μs, Σ, Es), 〈Am〉B(Am,As) =
(Qb, P, μb, Σ, Eb), and [As] − 〈As〉B(Am,As) = (Qd, P, μs, Σ, Ed). By carefully
counting the edit operations, we find that the repair cost suggested by
RepairedB(Am, As) can be computed as follows.

|ini(Am)| − |ini(〈Am〉B(Am,As))|

+

∣
∣
∣∣
∣

{

(q1, a, q2)

∣
∣
∣∣
∣

(q1 ∈ ini(Am) − ini(〈Am〉B(Am,As)) ∧ (q1, a, q2) ∈ Em)
∨ (q2 ∈ ini(Am) − ini(〈Am〉B(Am,As)) ∧ (q1, a, q2) ∈ Es)

}∣
∣
∣∣
∣

+ |{(q1, a, q2) | q1 ∈ Qb, q2 ∈ Qm − Qb, (q1, a, q2) ∈ Em}|
+ |[As] − 〈As〉B(Am,As)|
+ |{(q1, a, [q2]) | ∃(q1, q

′) ∈ B(Am, As)((q′, a, q2) ∈ Es ∧ [q2] ∈ Qd)}|
+ |{([q2], a, q1) | ∃(q1, q

′) ∈ B(Am, As)((q2, a, q′) ∈ Es ∧ [q2] ∈ Qd)}|

As for the complexity of the aglorithm, it is easy to see that this algorithm only
incurs polynomial numbers of set subtractions, graph subtractions, bisimulation
computations, and graph edit operations. This justifies that the algorithm is in
PTIME and only uses polynomial complexity of memory. Due to page limit, we
choose to omit the detailed complexity analysis.
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6.4 Suggestions for Repairing Programs

The repairs that we may construct in subsection 6.3 are for model state graphs.
The engineers still need to know how such repairs can be used as repair sug-
gestions for their programs. Here we give the following rules for deriving re-
pair suggestions for programs. Again, suppose Am = (Qm, P, μm, Σ, Em), As =
(Qs, P, μs, Σ, Es), 〈Am〉B(Am,As) = (Qb, P, μb, Σ, Eb), and [As]−〈As〉B(Am,As) =
(Qd, P, μs, Σ, Ed). We also assume that for each state in Am, we still have the
information of its entry statements and exit statements in the original program.

• For every initial state in Am − 〈Am〉B(Am,As), we suggest to the engineers
that for such a state, its entry statements should not be the entry points of
the program.

• For each transition from a state q1 in 〈Am〉B(Am,As) to a state q2 in Am −
〈Am〉B(Am,As), we suggest to the engineers that the exit statement for the
transition from q1 to q2 should be disabled.

• We suggest that a program segment that implements [As] − 〈As〉B(Am,As)
should be there.

• For each transition from a state q1 in 〈Am〉B(Am,As) to a state q2 in [As] −
〈As〉B(Am,As), we suggest to the engineers that we should change a statement
of q1 to a conditional branch statement that may branch to q2.

• For each transition from a state q1 in [As] − 〈As〉B(Am,As) to a state q2 in
〈Am〉B(Am,As), we suggest to the engineers that we should enter an entry
statement of q2 from an exit statement of q1.

Such suggestions may not lead to the best repair that the engineers may have
in mind. But we feel it is certainly a good mechanical support for some initial
ideas in repairing a program.

7 Implementation and Experiment

Our experimental tool ModelRepair ver.0.1 realizes part of our ideas in find-
ing a minimum repair. The tool supports the construction of MCS, the explo-
ration of a repair space in searching for a repair, and repair construction with the
PTIME heuristic algorithm. The tool is available at http://cc.ee.ntu.edu.
tw/∼val. To visualize the model, we offer interfaces to convert our graph repre-
sentations into the GOAL format [17]. The users can thus conveniently see the
differences between a repaired model and an original model.

To check how well our algorithm performs, we have also implemented an
exploration procedure that searches through the space of edit sequences for a
minimum cost repair based on the results in section 5. The search strategy of the
procedure is breadth-first. Thus it is guaranteed to find a minimum cost repair
if enough time and space are allocated. Also we have designed some strate-
gies to speed up the exploration, including partial order among edit operations.
The procedure may still run slowly due to the vast repair space. However it can

http://cc.ee.ntu.edu.
tw/~val
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Table 1. Performance of ModelRepair ver.0.1

B Am As UB exploration algorithm PTIME algorithm
|Am| |Q| |E| |As| |Q| |E| |Amσ| |Q| |E| |σ| time |Amσ| |Q| |E| |σ| time

1 11 4 7 14 5 9 5 10 4 6 1 1.79s 14 5 9 5 0.46s

2 9 4 5 15 6 9 10 9 4 5 2 16.6s 9 4 5 4 0.50s

3 4 2 2 7 3 4 3 7 3 4 3 645s 7 3 4 3 0.32s

4 23 9 14 29 11 18 22 N/A, > 30min 23 9 14 16 101s

5 18 8 10 20 8 12 18 N/A, > 30min 18 8 10 12 11.1s

6 12 4 8 16 5 11 5 Specification inconsistency, 0.53s

7 12 4 8 15 5 10 5 No repair needed, 0.32s
B: benchmarks; UB: minimum cost upper-bound predicted with lemma 3;
σ: the corresponding repair; |Q|: # states; |E|: # transitions; s: seconds;

be used for performance comparison. For interested readers, we have left the
procedure to a full version of the paper in our tool website.

We have applied our tool to a few examples. Table 1 summarizes the result
of the experiment. All data are collected in Java runtime environment 1.6.0
with Intel Pentium-M 1.6 GHz processor and 512MB RAM. Here ‘σ’ denotes
the repairs we construct. As can be seen, for benchmarks 1 to 5, the PTIME
algorithm runs much faster than the repair-space exploration algorithm. For
benchmarks 2, 4, and 5, our PTIME algorithm also yields a repair cost lower
than the upper-bound predicted by lemma 3 in the column under ‘UB.’

For all benchmarks, our heuristic algorithm constructs a repair in less time
than the exploration procedure. For benchmarks 1 and 2, our heuristic algorithm
constructs repairs with costs greater than the minimum repair costs. But still for
benchmarks 2, 4, and 5, the repair costs of our heuristic algorithm are lower than
the predicted theoretical upper-bound. In contrast, the exploration procedure did
not construct the minimum repairs for benchmarks 3, 4, and 5 in a reasonable
amount of time.

8 Conclusion and Future Directions

Our work focuses on the automatic generation of repair suggestions with a cost
evaluation that could be useful in controlling the budget for program debugging
and preserving the original design intention. We feel that our work could be used
as a general foundation for the future research in this direction. One thing is that
bisimulation-based repair suggestions may sometimes be based on too strong an
assumption. Some program faults may destroy non-trivial bisimulation relations
between a model and a specification. In such a case, our algorithm may yield
worst-cost repairs. In the future, we may need to investiage what kind of repair
suggestions we should make in such a case.
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