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Abstract: An important ability for mobile robots is to process multiple tasks in complex environments. Since the sensor resources
on a robot are limited, it is necessary to distribute the sensors attention to different tasks along the time scale. This paper proposes
a temporal attention control method which aims at detecting multiple objects and estimating their poses with a single actuated
camera. The proposed method is based on three criteria which are partially inspired by human behavior: (i) minimization of the
overall object poses perception uncertainty and minimization of the variance of the perception uncertainty of different objects;
(ii) minimization of the camera movements for completing the tasks; (iii) maximization of the number of objects in the cameras
field of view.The proposed approach use Kalman filters to estimate object poses and to determine the perception uncertainty. The
method was evaluated with both simulation and experiment on actual robot. The results show that the proposed approach is able
to switch the camera’s attention according to the objects poses and movements efficiently with a low frequency of the camera
movements.
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1 Introduction

Attention is the cognitive process of selectively concen-

trating on one aspect of the environment while ignoring the

others. Similarly, computational visual attention systems

aim to detect regions of interest. It is widely used in the re-

search area of mobile robots [1–4]. With limited resources,

a mobile robot system should be able to switch the sensors

attention temporally for multiple tasks. The authors in [5]

present a multi-camera view direction planning strategy to

complete two concurrent tasks: robot self-localization and

object tracking. In [6], an approach on tracking multiple

moving objects with a mobile robot in populated environ-

ments is proposed and the tracking of moving objects with a

mobile robot are extended in [7]. A goal-oriented attention

guidance model is proposed in [8] to detect entities that are

salient and relevant to the task. The method was introduced

in [9] to track multiple moving targets using a camera and

a laser range finder. However, the above mentioned works

either used multiple sensors to achieve the multiple tasks or

only dealt with the objects that exist in the cameras field of

view (FOV). Approaches for selecting the viewpoint based

on entropy were proposed in [10, 11]. A similar temporal

attention control approach based on perception uncertainty

minimization is introduced in [12]. However, the poses of

the camera were limited to directions towards the objects.

Apart from the choice of the optimal direction, another

important issue is the definition of the performance crite-

rion. This paper proposes a temporal attention control sys-

tem (TAC) with the following criteria: (i) the overall object

poses estimation uncertainty minimization and the percep-
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project.eu, the Institute for Advanced Study (IAS), Munich and the Chinese
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tion uncertainty variance minimization of different objects;

(ii) minimizing camera movements for completing the task;

(iii) maximizing the number of objects in the camera FOV.

The possible camera direction is illustrates in Fig.1 (In this

paper we consider a 2D tracking problem, but the results can

be easily generalized to the 3D case). The paper is organized
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Fig. 1: Temporal attention control: due to the limited field of

view, the camera direction is switched to achieve an optimal

tracking performance. Some possible directions and fields of

view: towards a single object (black dash dot line); covering

multiple objects (red solid line).

as follows: Section 2 introduces the related psychological

models and the system model. Details of the proposed al-

gorithm are described in Section 3. Experimental results are

discussed in Section 4. Conclusions are given in Section 5.

2 Insight from human behavior and proposed ap-
proach

2.1 Temporal attention control in humans
Human achieve a high efficiency when processing mul-

tiobject tasks based on different strategies. The author in
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[12] present an experiment on human eye movements when

considering various relevant aspects for attention planning.

In the experiments, three participants first stood randomly

around an object. They were asked to move around the

object and distribute themselves equally. The participants’

movements and gaze switching were recorded and analysed.

The results showed that humans try to minimize the percep-

tion uncertainty for observing objects according to multi-

object tasks.

Human is able to track multiple objects at the same time

was presented in [13–15] . For the experiments in [14], sub-

jects were asked to track multiple items as the objects moved

independently and unpredictably about the display. The re-

sults showed that the performance to track multiple objects

was not impaired even when the items were briefly (but com-

pletely) occluded at various times during their motion. This

suggested that human are not only able to track multiple ob-

jects at the same time, but also able to track and predict the

locations when they were briefly occluded. It was proposed

that a mechanism with both parallel and serial processing

and temporary spatial memorywas involved in the multiple

object tracking in [15] according to their experiments. They

examined the tracking task with both identical and distinct

objects (visually and semantically different), and the results

showed that tracking performance deteriorated as a function

of tracking time and set size.

Psychology experiments on switching cost for multitask-

ing are described in [16–18]. Switching-time cost for mul-

tiple tasks such as solving math problems or classifying ge-

ometric objects were presented in [16]. It is found that the

switching time cost can be reduced according to the com-

plexity of the tasks but not eliminated. Effects of task and

location switching on the accuracy of the reporting target

characters in an attentional blink paradigm are examined in

[17]. The perceived accuracy is affected by both task switch-

ing cost and location switching. According to these results,

the optimal attention control should consider the minimum

of switching in order to have less switching time cost and

increase the perception accuracy.

2.2 Proposed method
Inspired by the human behavior results presented above,

we propose a single camera attention control method which

control the robot worked in a more efficiency way. Three cri-

teria were considered as follows: (i) minimization of overall

perception uncertainty and minimizing the variance of per-

ception uncertainty of different objects; (ii) maximization of

the number of objects in the camera field of view; (iii) mini-

mization of camera movements.

The structure of the system proposed in this paper for

achieving the above requirements is shown in Fig. 2. It in-

cludes the initialization, object detection and poses estima-

tion and TAC. In the initialization step, the camera is con-

trolled to scan the world to search and compute the initial

poses of the task related objects. Object detection and pose

estimation are prerequisites of the system which provides

the measurement of the objects at different time steps. In

this paper, however, we will focus on the TAC which is the

main contribution of our work. TAC includes two steps: (i)

Optimal camera direction computation step with the aim of

the current object poses estimation and computation of the

optimal camera angle for the next time step; (ii) Switching

attention step with the purpose of changing the cameras di-

rection to the desired value for capturing new information

from the environment. To switch between these two steps,

we proposed a strategy to control the camera states. Kalman

filter is used to estimate the object poses from the measure-

ment data and compute the perception uncertainty. Details

are discussed in the next section.

Fig. 2: Structure of the proposed system

3 Temporal attention control strategy

3.1 Camera states control strategy
The camera states control strategy is designed as the

switching between optimal camera direction computation

step and switching attention step. Based on a performance

criterion, only images captured in the first step are processed.

We defined the switching criterion according to the over-

all perception uncertainty of objects: If the overall percep-

tion uncertainty of the objects in the camera’s FOV is low

enough, or the overall perception uncertainty of objects out

of camera’s FOV is large enough, the system will switch to

the second step. Otherwise, the system will stay at the op-

timal camera direction computation step to improve the es-

timation results for the objects in the camera’s current FOV.

The switching condition for the TAC strategy is:

Sign =

⎧⎨
⎩

1 if
∣∣pseenk

− pseenk−1

∣∣ ≤ Th1

or punseenk
≥ Th2

0 otherwise

(1)

The system keeps at switching attention step when Sign =
1, and keeps at the optimal camera direction computation

step when Sign = 0 ; pseenk
is the perception uncertainty

of the objects in the current cameras FOV, and punseenk
is

the perception uncertainty of the objects that are out of the

current camera’s FOV. Th1 and Th2 are thresholds for per-

ception uncertainty.

3.2 Kalman filter for perception uncertainty estimation
We use a Kalman Filter (KF) which is parameterized by

measurement noise covariance R and the process noise co-

variance Q to estimate perception uncertainty [12, 19]. The

system states are chosen as poses and velocities of the ob-

jects X = (x y z ẋ ẏ ż)T .

We assume that object j’s measurement noise, i.e. Rj de-

pends on the camera properties and the object poses in the

camera coordinates [12]. It decreases linearly with the dis-

tance from the object to the optical axis and the distance be-

tween the object and the camera.

Rj =
(
kc1xjc kc2yjc kc3zjc

)T
(2)
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where kc1, kc2, and kc3 are the parameters that express the

relationship between the measurement error covariance and

the objects poses and
(
xjc yjc zjc

)T
is the object j’s

position in the camera’s coordinate.

The process noise of object j, i.e. Qj is biased by the

speed and acceleration of the objects’ movements. It is de-

fined as in [12]:

Qj =

(
Qj,k,pos 0n

0n Qj,k,vel

)
(3)

where Qj,k,pos, Qj,k,vel are defined as,

Qj,k,pos ∝ Ẋjc and Qj,k,vel ∝ Ẍjc. (4)

where Xjc =
(
xjc yjc zjc

)T
.

The perception uncertainty of object j is:

Ej =

n∑
l=1

√
e2j,l (5)

where ej,l are the first n eigenvalues of the covariance matrix

P j , n = 3 is the dimension of the objects position and l =
1...n denotes x, y, z directions.

3.3 Computing the optimal camera direction
Computing the optimal camera direction for the next time

step is one of the key issues of TAC. To simplify the com-

putation, instead of searching in the continuous space of all

possible directions, we first compute a discrete set of direc-

tion candidates. Then the final optimal direction is computed

among these candidates.

3.3.1 Computing the direction candidates

The possible directions are chosen as follows: First of

all, the directions where the camera faces directly towards

the objects are important since the measurement error of the

current attended object is low. The second set of the pos-

sible directions are the directions that cover several objects

at the same time if these objects are close enough. The last

candidate is the current camera direction which aims at min-

imizing the camera movements. The whole set of candidates

Ωk+1|k can be described as:

Ωk+1|k =

⎧⎪⎪⎨
⎪⎪⎩

Ω0
k

Ωargmin(
m∑
j=1

djc)

Ω∗
k

(6)

where Ω0
k includes the angles that the camera directly

faces the objects, Ωargmin(
m∑
j=1

djc) considers the angles that

cover several objects in FOV at the same time, and Ω∗
k in-

cludes the optimal angle from the last time step. j = 1...m
is the number of the objects that exist in the cameras FOV,

djc is the distance from the object j to the cameras optical

axis.

3.3.2 Computing the final optimal camera direction

This part aims at finding the final optimal direction Ω∗
k+1|k

for the time step k + 1 from the optimal direction candi-

dates. According to the above description, Ω∗
k+1|k is com-

puted from:

Ω∗
k+1|k = argmin

Ωk+1|k
(J) (7)

where the objective function J is composed by four sub-

objective functions J1, J2, J3 and J4 which are described

in the following part. Before weighting the sub-objective

functions, they are normalized.

J(Ωk+1|k) = w1 ·Norm(J1(Ωk+1|k))
+w2 ·Norm(J2(Ωk+1|k))
+w3 ·Norm(J3(Ωk+1|k))
+w4 ·Norm(J4(Ωk+1|k))

(8)

The overall perception uncertainty J1 is defined as [12, 20]:

J1(Ωk+1|k) =
1

n

m∑
j=1

Ej(Ω(k+1|k)) (9)

where Ej(Ω(k+1|k)) is the perception uncertainty of object

j and m is the number of task-relevant objects. Only consid-

ering the minimization of the overall perception uncertainty,

the system could reach the state where a few object percep-

tion uncertainties are very high while the others are very low.

In this way, the overall perception is still low enough to be

taken as the optimal view direction for the next time step.

However the system may lose the information of the ob-

jects with high perception uncertainty. It is very important

to manage all the object poses estimation in a good stage

at the same time when facing the multiple objects attention

planning problem. Considering this issue, function J2 aims

at minimizing the variance of the perception uncertainty of

the objects:

J2(Ωk+1|k) = V AR(E(Ωk+1|k)) (10)

where

E(Ωk+1|k) =
(
E1(Ωk+1|k), E2(Ωk+1|k) · · ·Em(Ωk+1|k)

)T
(11)

As described in the previous section, the TAC should also

include the minimization of attention switching and switch-

ing cost. J3 aims at minimizing the cameras movements to

realize the switching minimization:

J3(Ωk+1|k) =
∣∣∣Ω∗

k+1|k − Ωk+1|k
∣∣∣ (12)

The view coverage function J4 is defined to maximize the

number of the objects in the cameras FOV. It is the ratio of

the number of objects located in the cameras view (Mseen)

and the number of the task related objects (M ):

J4(Ωk+1|k) = −Mseen/M (13)

The weighting parameters w1, w2, w3, w4 in equation(8)

(w1 + w2 + w3 + w4 = 1) are used to define the influ-

ence degree of each criterion on the overall performance.

In our experiments, we compute an adaptive setting of the

weights according to average values of overall perception

uncertainty J1(Ωk+1|k) and the variance of perception un-

certainty J2(Ωk+1|k) (expressed as J̄1 and J̄2):

(i) When J̄1 is too large, increase w1 and decrease the

other parameters, in this way, the object function J is mainly
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biased by J1 which aims at minimize the perception uncer-

tainty; (ii) When J̄1 is small but J̄2 is large, w2 should be

increased to balance the perception uncertainty of different

objects; (iii) When both J̄1 and J̄2 are small enough, the per-

ception results is acceptable. w3 and w4 should be increased

to minimize the camera movements and enlarge the number

of the objects in the camera’s FOV.

The final optimal camera direction is chosen from the op-

timal angle candidates according to the above functions.

4 Simulation and experiments

The proposed approach was tested both in simulations in

Matlab and in an implementation on a system with a camera

mounted on an actuation unit.

As described in Section 3, the performance of the

proposed approach varied by the value of weights

(w1, w2, w3, w4). An adaptive way of choosing weights for

simulations is presented (shown in Table 1). In the table,

the columns show different condition of J̄1 and the rows

show different condition of J̄2. The thresholds according

to the simulation environments are defined as th1 − th7.

The other parts in the table show the value of w1 and

w2 according to J̄1 and J̄2. w3 and w4 are computed by

w3 = w4 = (1− w1 − w2)/2.

Table 1: Weights Computation

(w1, w2) J̄2 ≥ th2 th2 ≥ J̄2 ≥ th1 th1 ≥ J̄2 ≥ 0

J̄1 ≥ th7 (0.6 0.4) (0.6 0.3) (0.6 0.2)

th7 ≥ J̄1 ≥ th6 (0.5 0.4) (0.5 0.3) (0.5 0.2)

th6 ≥ J̄1 ≥ th5 (0.4 0.4) (0.4 0.3) (0.4 0.2)

th5 ≥ J̄1 ≥ th4 (0.3 0.4) (0.3 0.3) (0.3 0.2)

th4 ≥ J̄1 ≥ th3 (0.2 0.4) (0.2 0.3) (0.2 0.2)

4.1 Simulation with static objects
A similar attention planning (AP) is proposed in [12]

which also aims at minimizing the overall perception uncer-

tainty. However, AP did not consider the minimization of

the variance of the perception uncertainty and could not at-

tend to several objects at the same time. To compare with

attention planning (AP), a simulation similar to the one pre-

sented in [12] is designed to detect four static objects in the

environment.

Objects O1, O2, O3 and O4 are located at (1.5, 4)m,

(1.75, 3)m, (3, 2)m, (0.5, 1.74)m, and the camera is located

at the zero point (0, 0)m. Random Gaussian noise is added

on the objects poses to simulate the actual environment. The

weights parameters are set according to the adaptive ap-

proach described above.
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Fig. 3: Simulation results with static objects. Circles: the

actual objects poses; Stars: the predicted objects pose
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Fig. 4: Camera angle of simulation with static objects: Blue

star line: actual pan angle with TAC; Green circle line: ac-

tual pan angle with AP; Other lines: the directions when the

camera faces directly towards objects.

The first eight time step of the cameras observations (the

sequence of the images is from up-left to the down-right

and the triangles represent the cameras FOV) was shown in

Fig.3. The camera direction barely changes in this simula-

tion. Fig. 4 shows the actual attention direction (expressed

as pan angles) of 20 time steps and compared with the re-

sults from AP. The blue star line is the current attention di-

rection with TAC. The green circle line is the current atten-

tion angle with the AP method, and the other four lines are

the directions where the camera directly points towards the

objects. Table 2 shows the mean and variance of the pose

estimation error and Table3 shows the number of camera

switching times and the overall camera movements distance

in the whole time scale. The results show that the attention

switches less and moves smaller with TAC than with AP. The

poses estimation uncertainty is also smaller.

Table 2: Poses estimation error of simulation with static ob-

jects

x direction y direction

mean[m] var[m] mean[m] var[m]

TAC 0.48 0.05 0.42 0.03

AP 0.47 0.09 0.55 0.24

Table 3: Camera movements of simulation with static ob-

jects(Switch Times: The number of times for the camera

switching; MoveDist: The overall move distance of the cam-

era in the whole time scale)

Switching Time Move Dist(Degree)

TAC 3 50.90

AP 20 173.41

4.2 Simulation with dynamic objects
In order to evaluate the dynamic performance of the ap-

proach, we also tested the system with dynamic objects.

Fig.5 shows the objects movements in the dynamic simu-

lation scenario. This simulation takes 20 time steps. The

arrows in the image show the movement directions of each
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object while the data in the brackets shows the speeds in the

current situation. For example, object 1 (black solid line)

first moves at the speed 1.0 m/frame in the x direction and

0.5m/frame in the y direction, after a certain period of time

(5 frames), the speed changes to -0.5m/frame in the x di-

rection, and 0.25m/frame in the y direction, then the speed

changes again. Noises are added to the object movements.

To compare the results of the proposed approach, differ-

ent simulations were done with AP method and TAC with

varied weights. Fig. 6 shows the camera angles at differ-

ent time steps with different methods. The black dashed

lines with triangles shows the angles for the camera faces

directly towards the objects. The green solid line with cir-

cles shows the current camera directions computed by AP

method. The blue dash dot bold line shows the current cam-

era direction using TAC method with adaptive weights while

the red dashed line and the black solid line shows the di-

rections with fixed weights ((w1;w2;w3;w4) = (1; 0; 0; 0)
and (w1;w2;w3;w4) = (0.5; 0.5; 0; 0)). Table 4 shows

the mean and variance of the overall estimation error of

the four objects in X and Y directions over 20 time steps

(AW: simulation using TAC method with adaptive weights,

FW1: simulation using TAC method with fixed weights

as (w1;w2;w3;w4) = (1; 0; 0; 0); FW2: TAC with fixed

weights as (w1;w2;w3;w4) = (0.5; 0.5; 0; 0)). Table 5

shows the sum estimation error for both X and Y directions.

Table 6 shows the number of times of the camera attention

switching and the overall moving distance in the whole time

scale (Switch Times: The number of the camera switching

times; Distance(Deg): The overall move distance of the cam-

era in the whole time scale). TAC shows a better perfor-

mance than AP in the following aspects: (i) TACneed less

number of times for the camera movements and less overall

movements distance. (ii) The means and variances estima-

tion error are lower with TAC.
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Fig. 5: Object’s movements

As described in Section 3, TAC performs differently with

different weights. With adaptive weights, TAC performed

optimally with both lower estimation error and lower camera

movements. When only considering J1 (the overall percep-

tion uncertainty), the tracking results of the system is better

than AP, but worse than when both minimization of J1 and

J2 are considered.

4.3 Experiment on actual robot
We tested the method on an experimental setup using a

PointGray Bumblebee XB3 camera (with 66o FOV) which
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Fig. 6: Camera angles for simulations with varied weights:

Blue dash dot bold line with stars: actual camera angle

with adaptive weights; Red dashed line with squares: cam-

era pan angle with fixed weights (f = J1); Black solid

line with diamonds: actual camera angle with fixed weights

(f = 0.5J1 + 0.5J2); Black lines with triangles: the direc-

tions when the camera faces directly towards objects.

Table 4: Poses estimation error for dynamic simulations

with varied weights (AW: TAC with adaptive weights; FW1:

TAC with fixed weights as (w1, w2, w3, w4) = (1, 0, 0, 0);
FW2: TAC with fixed weights as (w1, w2, w3, w4) =
(0.5, 0.5, 0, 0))

x direction y direction

Method mean[m] var[m] mean[m] var[m]

AP 2.17 2.03 1.77 1.23

TAC

AW 1.11 0.67 1.21 1.28

FW1 1.78 1.19 1.50 1.34

FW2 1.44 1.11 1.67 1.30

was mounted on a pan-tilt unit. A marker-based tracking task

was used to evaluate the system shown as Fig. 7. Markers

for the experiment were placed in such a way that the camera

could not capture all the markers at the same time. The de-

tection of the markers was implemented using the [21]. The

sub-images in the right corner of Fig. 7 show the images

captured by the camera at different time steps. From these

two images, we can see that the system needs to switch the

cameras directions from time to time to monitor all the three

markers in the environment. The results show that the pro-

posed system provides a good performance with a low per-

ception uncertainty as well as a low frequency of attention

switching.

4.4 Conclusion
A temporal attention control strategy to monitor multi-

objects is proposed. The overall perception uncertainty of

the objects is estimated by Kalman filter. To provide an op-

timal control, four sub functions are considered to optimize

the perception objective and camera movements. An adap-

tive way for computing the weights is given in the simulation

part. Simulations and experiment on robots were performed

to test the proposed method. The results show a good per-

formance with a low perception uncertainty and low energy

cost for switching attention.
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Table 5: The overall mean of poses estimation error for dy-

namic simulations with varied weights

AP TAC(AW) TAC(FW1) TAC(FW2)

Error 3.94 2.32 3.27 3.11

Table 6: Camera movements for dynamic simulation with

with varied weights (Switch Times: The number of times for

the camera switching; MoveDist: The overall move distance

of the camera in the whole time scale)

Method Switch Times Move Dist(Degree)

AP 20 1471.3

TAC
AW 11 598.7

FW1 19 1375.1

FW2 20 960.7
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