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ABSTRACT

After utilizing robots for more than 30 years for classic industrial automation applications, service robots form
a constantly increasing market, although the big breakthrough is still awaited. Our approach to service robots
was driven by the idea of supporting lab personnel in a biotechnology laboratory. After initial development
in Germany, a mobile robot platform extended with an industrial manipulator and the necessary sensors for
indoor localization and object manipulation, has been evaluated by our group located in Berkeley, CA, USA. The
determined goal of the mobile manipulator is to support the off-shift staff to carry out completely autonomous or
guided, remote controlled lab walkthroughs, which we implement utilizing a recent development of our computer
vision group: OpenTL - an integrated framework for model-based visual tracking.

Keywords: Service Robotics, Visual Tracking.

1. INTRODUCTION

A mobile robot, initially developed for sample management in a dedicated biotechnology pilot plant was suc-
cessfully installed in a normal cell culture development laboratory for routine monitoring of multiple high cell
density perfusion bioreactors. After demonstrating initial process robustness of 100 error-free and highly precise
sampling cycles the project scope was extended towards versatility and usability of the mobile robot platform.1
Figure 1 shows the robot in the first, dedicated laboratory on site at Bayer HealthCare LLC to carry out a
complete sample management process.

The robot consists of a battery driven, wheeled platform and a mounted industrial robot arm with a two-
finger gripper attached to it. The proper interaction with the analysis and sample devices in the biotech lab is
given by the use of a color camera for object recognition, a force/torque sensor to prevent damages and laser
range finders at the front and the backside of the robot for localization. The on-board computer is responsible for
localizing and navigating the platform with respect to the sensor data from the laser range finders. Furthermore
the computer controls the mounted robot arm’s movements. Precise device interactions with an accuracy of less
than 1 mm are performed by pattern and object detection, utilizing the camera and dedicated computer vision
algorithms in combination with realtime sensor feedback of a force-/torque sensor in between the robot’s tool
and its arm.2–5 Figure 2 presents an overview of the robot platform and the involved sensors and effectors.
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Figure 1. The mobile robot platform in its dedicated sample management laboratory for demonstration of process robust-
ness.

Figure 2. The mobile robot platform with its sensors and a close-up of its tool.



2. MOTIVATION

The mobile robot platform has also been evaluated in a laboratory where it is sharing the lab space with human
personnel. Within the extended project scope, the robot is monitoring high cell density perfusion reactors that
typically operate for 3–6 months providing 24/7 coverage, hence reduces the burden on off shift personnel.

The new environment however raises new challenges: modifications on the bioreactor stations which can occur
on a daily basis, require an adaptive environment mapping and path planning, where the robot could use static
mapping and path planning in the dedicated lab before. Human personnel moving in the lab require the robot to
stop instantly and to replan a desired route for safety reasons. Novel algorithms like Simultaneous Localization
and Mapping (SLAM) based on the distance measurements of the laser rangefinders and model based visual
tracking algorithms based on the high resolution images from the camera enable the robot to discover and map
an unknown laboratory without preprogramming detailed knowledge about the environment and to update it,
as changes occur. Initial teaching of the lab walkthroughs is realized by utilizing a visual person tracker and
gesture recognition. This way a dedicated programmer becomes obsolete.

In this paper we describe, how the model based visual person tracker has been realized to enable regular lab
personnel to guide the robot through the lab for automatic map generation and for teaching positions of interest
to carry out a repetitive, defined monitoring task of fermentor stations.

3. BACKGROUND

Visual object tracking is the process of locating moving objects in video sequences in real-time, by exploiting
redundant frame-to-frame context information through model-based computer vision techniques. Recent surveys
cover many state-of-the-art tracking methodologies.6,7 The Open Tracking Library (OpenTL) is an approach to
unify many of the state-of-the-art model based visual tracking methodologies in a single software framework.8,9

3.1 The OpenTL Architecture

The software architecture of OpenTL is based on the elementary concepts of every visual tracking system. A
scene with more or less prior information about it is recorded by one or multiple image sensors. The prior
information enables creation of a model, which at first needs to be detected and in subsequent images needs to
be tracked. Figure 3 depicts the generic flow diagram for a model-based tracking application.
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Figure 3. Generic flow diagram for a model-based visual tracking application.

3.2 Functional Class Architecture

The main classes that our library provides are building blocks for this kind of applications. They have been
organized in functional layers representing an increasing level of abstraction: from base utilities, image acquisition
devices and data structures, up to application-related functionalities (see Figure 4).



Figure 4. The layered software architecture of OpenTL with the currently implemented components.

4. REQUIREMENTS

The scenario in the real world Life Sciences Laboratory is as follows: lab personnel without a dedicated back-
ground shall be able to guide a mobile robotic platform through an unknown lab and to teach positions of interest,
in particular fermentor stations. As the robot follows the human guide, the robot records the environment with
its laser range finders to generate a map automatically via a particle filter based Simultaneous Localization and
Mapping (SLAM) algorithm as described in.10,11 Based on this map the robotic platform will be able to localize
itself in the lab afterwards for repetitive walkthroughs. Positions of particular interest for the monitoring task
are taught by the human guide through gestures.

When starting the human guided teaching phase, the robot is required to detect the human guide and to
create a multi part model based on sub-images containing the face and hands of the teacher. When the teacher
moves too fast, loss-detection is required, to trigger a ’Wait for me’ message. When the teacher points to a region
of interest with his hand, that means, if the tracked hand is displaced horizontally from the body by a certain
distance, the robot is required to record the current position as a waypoint for the repetitive walkthrough. Then,
additional image processing components can detect, localize and diagnose given equipment in the lab.

This way a user friendly and robust teaching process can be realized without requiring the lab personnel to
program locations of interest in a time consuming way.



5. IMPLEMENTATION

The visual tracking software component for this application was designed and implemented following the layered
architecture of Figure 4.

5.1 Image input

The scene is recorded by an AVT Marlin Firewire camera, that provides RGB color images. The models in
this case consist of single sub-images containing the face, the hand and the upper part of the body as well as
additional reference images of known lab equipment.

5.2 Image pre-processing

The recorded images as well as the reference sub-images are transformed into the HSV color space to create two
dimensional color histograms zcol for the color-based likelihood.

5.3 Tracker

Each tracker holds a state-space representation of the 2D model pose, given by a planar translation (x, y) and
scale h of the respective rectangular model in the image plane. Considering a single person tracker consisting of
a hand, a head and an upper body tracker, the three particle filters provide the sequential prediction and update
of the respective 2D states s1 = (x1, y1, h1), s2 = (x2, y2, h2) and s3 = (x3, y3, h3).

Every particle filter generates several prior state hypotheses si
t from the previous particle distribution (si, wi)t−1

through a Brownian motion model.
si

t = si
t−1 + vi

t (1)

with v a white Gaussian noise of pre-defined covariance in the (x, y, h) state variables. A deterministic resampling
strategy12 over the previous weights wi

t−1 is employed every time in order to keep a good distribution of the
particle set.

For each generated hypothesis, the tracker asks for a computation of the likelihood values P (zcol|si
head) for

the head, P (zcol|si
hand) for the hand and P (zcol|si

body) for the upper body tracker.

5.4 Color likelihood

The rectangular reference image boxes defining the teacher’s shape model are warped onto the HSV image at the
predicted particle hypotheses si

t; for each patch p, underlying H and S color pixels are collected in the respective
2D histogram qp

�
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t

�
, that is compared with the reference one q∗p through the Bhattacharyya coefficient13
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where the sum is performed over the (N ×N) histogram bins (currently implemented with N = 10).
The color likelihood is then evaluated under a Gaussian model in the overall residual

P (zcol|si
t) = exp(−

�

p

B2
p/λcol) (3)

with given covariance λcol

5.5 Estimated state

Afterwards the average state st

st =
�

i

wi
ts

i
t (4)

is computed for each tracker.
In order to ensure jitter-free operations the trackers’ outputs are finally filtered by a temporal low-pass filter

with higher cut-off frequencies with respect to the expected covariance of motion parameters.



5.6 Loss detection

An important feature of our system is the loss-detection, as a face or a hand disappears when the teacher turns
around to lead the robot and to re-initialize the trackers as the teacher faces the robot and points at locations
of interest.

In principle, target losses can be detected by checking the likelihood and covariance for the particle set. A
covariance test is independent of the actual likelihood value, but it may fail to detect a loss when the particle
set concentrates on a false positive which has a low covariance as well. On the other hand, the likelihood test is
dependent on the likelihood value, which can vary under changing illumination conditions, however the changes
would occur relatively slow considering the large amount of frames in a certain period of time.

Therefore we implemented a likelihood test on the estimated state st of each tracker and declare a loss
whenever P (zcol|st) decreases below a minimum threshold value Pmin. This threshold is set as a percentage (e.g.
≤ 10%) of a reference value Pref , initially set to the maximum likelihood value.

In order to provide adaptivity to variable postures as well as light or shading variations, Pref is being slowly
adapted if the last likelihood P (zcol|st−1) is comparable to Pref (e.g. ≥ 60%). When a track loss occurs, the
affected particle filter are re-initialized with the diffuse prior, until the target becomes visible again and the
likelihood increases above the threshold.

5.7 Action States

By evaluating the losses and re-detections of the desired targets, the robot can distinguish between the following
possible cases and take the appropriate actions:

1. teacher out of sight: don’t do anything

2. teacher facing the robot: wait for 3. or 4.

3. teacher facing the robot and pointing at an object of interest: identify, localize and map object

4. teacher not facing the robot: follow teacher as he moves

6. RESULTS

Based on the previously described method we implemented a multi target tracking system for a Teaching Process
to guide a mobile robot through an unknown laboratory and to teach positions of interest for subsequent,
repetitive walkthroughs. Figure 5 shows the tracking system in action. When following the human teacher, the
robot is learning the surrounding environment with its laser range finders for automatic map generation and for
localization within this map. Figure 6 shows the map, that the robot learned in the real life sciences laboratory.

7. CONCLUSIONS

Autonomous vehicles became popular during the DARPA racing challenges, however mobile platforms equipped
with a manipulator for increased flexibility also have been used successfully in biotech laboratories for sample
management as shown on the well-known ESACT meetings.14 In this paper we have shown, how modern
electronic image processing techniques on sequences of images can also be used to improve the user friendliness
and versatility of a mobile robot. By the utilization of a mounted machine vision camera and visual tracking
algorithms, the robot can be introduced to completely unknown locations without requiring the user to program
detailed knowledge about the environment into the robot system.

ACKNOWLEDGMENTS

This work is funded by the German Ministry of Education and Research and Bayer HealthCare LLC.



Figure 5. The multi target person tracker in action. The upper images show the face and hand tracker, while the lower
images also show an identified fermentor that the scientist is pointing at. The images on the right depict the activated
trackers and show the evaluated hypotheses as white rectangles and the estimated positions of the tracked targets as green
rectangles.
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tested.
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