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Abstract

We discuss the importance of making a fuzzy controller human interpretable and give

an overview of the existing models and structures for that purpose. We then summarise

our approach to designing fuzzy controllers based on the B-spline model by learning. By

using an optimal partition algorithm and linguistic modificators like ‘‘between’’, ‘‘at

most’’, ‘‘at least’’, etc., the rule base can be reduced to the minimum. This helps to avoid

the over-fitting problem and improves the interpretability of the model. We tested the

controller on different benchmark problems and achieved a rule compression ratio of up

to 71%. � 2002 Published by Elsevier Science Inc.

Keywords: Rule extraction; Neuro-fuzzy system; Genetic algorithms (GAs); Interpret-
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1. Introduction

Until recently, a large part of current science and technology was based on
analytical methods which are usually specialised for pre-defined domains.
However, for a human-being it is time-consuming to get acquainted with a
model, to devise a model, even difficult to explain a model clearly to someone
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else. On this problem, physicist Richard P. Feynman mentioned ‘‘the way we
have to describe nature is generally incomprehensible to us’’. Nevertheless
Albert Einstein believed ‘‘it should be possible to explain the laws of physics to
a barmaid’’.
Among the mechanisms to interpret the nature of a process like equations,

tables, flow charts, stories, etc., fuzzy linguistic rules and relation descriptions are
easy to understand. For buildingmodels with training data, certain types of fuzzy
rule systems like the B-spline model [13] have been developed, which can ap-
proximate any low-dimensional to middle-dimensional input–output functions.
There are good reasons for making such a controller model symbolically

interpretable:
• Linguistic modelling provides a way of transferring skills from one human
expert to other non-experts or to an artificial system. The transferred rules
and human knowledge can be used to accelerate the model-building and
to patch the model in the case of data deficiencies.

• Automatic learning of transparent models makes the analysis, validation
and supervision in the model development easier. This way, a large part
of design expenses can be shifted from humans to the computer.

• Transparent models will have wide applications in decision-support systems.
In the next years, most of the control of complex systems will still be semi-
autonomous. Moreover, ‘‘human-in-the-loop’’ is based on compact and
summarising descriptions of a system model.
New control and modelling approaches will make good use of the rapid

increase of computation power and memory brought about by recent computer
technology. Advances have been made in the theory and applications of neural
networks and fuzzy control approach to the control of complex systems which
cannot be adequately modelled by differential equations. The fuzzy rule de-
scription of a system has the advantage over neural networks that it is not just
a ‘‘black-box’’. Neuro-fuzzy models integrate automatic feature extraction and
learning of membership functions (MFs) into a fuzzy control structure. To-
gether with optimisation algorithms, which deal with local minima, semi-au-
tomatic procedures can be designed for constructing non-linear models and
controllers which can be understood by human users.

2. State of the art

2.1. Structure of interpretable models

Variants of fuzzy rule systems are: additive, multiplicative and hierarchical.
Figs. 1 and 2 illustrate these structures. The solution with hierarchical structure
assumes that the input information can be classified into groups [12].
Within each group the inputs determine an intermediate variable, they can be
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decoupled from inputs of other groups. To realise such a grouping, heuristics
based on the fusion of physical sensors usually have to be applied.
As application areas grow, the systematic design of an optimal fuzzy con-

troller becomes more and more important. Classical fuzzy controllers of the
Mamdani type [7] are based on the idea of directly using symbolic rules for
diverse control tasks. Another important type of fuzzy controllers is based on
the Takagi–Sugeno–Kang (TSK) model [10]. Recently, TSK type fuzzy con-
trollers have been used for function approximation and supervised learning
[11]. However, it is pointed out that the TSK model is a black-box based on a
multi-local-model. In the following section, we describe an approach that can
build MFs for linguistic terms of the IF-part systematically, then optimise them
by genetic algorithms (GAs). Our approach is based on the B-spline model
which can be classified as a zero-order TSK model. However, we define lin-
guistic terms for input variables with B-spline basis functions and for output
variables with singletons. Such a method requires fewer parameters by adding
MFs than other set functions such as trapezoid, Gaussian function, etc. The
output computation is very simple, and the interpolation process is transpar-
ent. We have also achieved good approximation capabilities and rapid con-
vergence of the B-spline controllers.

Fig. 1. Fuzzy system with four inputs and each with five linguistic terms: (a) complete fuzzy system

(54 rules); (b) additive fuzzy system (35 rules); (c) multiplicative fuzzy system (35 rules).
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3. Constructing a fuzzy rule system with B-splines

3.1. Basic concept

Our B-spline model provides an ideal implementation of ‘‘Cerebellar Model
Articulation Controller’’ (CMAC) proposed by Albus [1]. The CMAC model
provides a neural interpretation of the B-spline model. B-spline models employ
piecewise polynomials as MFs.

3.1.1. Definition of univariate B-splines
The B-splines are employed to specify the linguistic terms. To compute

B-splines, the universe of discourse of each input is divided into a number of
intervals, where each interval is delimited by breakpoints called knots. In our
control and modelling applications, knots are chosen to be different from each

Fig. 2. Hierarchical fuzzy systems: (a) hierarchical fuzzy system with four inputs, each with five

linguistic terms – resulting in 75 rules; (b) behaviour blending using a two-step hierarchy. ‘‘Situ-

ation Evaluation’’ uses rules to determine the weight of each monolithic controller [14].
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other (periodical model). Visually, the selection of order of the B-splines, de-
noted by k, determines the appearance and position of each B-spline (Fig. 3).
Assume x is a general input variable of a system that is defined on the

universe of discourse ½x1; xm�. Given a sequence of ordered knots: x1; x2; . . . ; the
ith B-spline Ni;k of order k (degree k � 1) is recursively defined as follows:

Ni;kðxÞ ¼
1 for x 2 ½xi; xiþ1Þ
0 otherwise

�
if k ¼ 1;

x�xi
xiþk�1�xi

Ni;k�1ðxÞ þ xiþk�x
xiþk�xiþ1

Niþ1;k�1ðxÞ if k > 1;

8<
: ð1Þ

where 16 i6m� k. m knots x1; . . . ; xm form l ¼ m� k B-splines (for an ex-
ample see Fig. 4).

Fig. 3. Univariate B-splines of order 1–4: (a) order 1; (b) order 2; (c) order 3; (d) order 4.

Fig. 4. Nine B-splines of order 3 defined over 12 non-uniformly distributed knots.
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3.1.2. Properties
Recursive definition is one basic property of B-splines, which enables the

generation of basis functions of arbitrary orders with the incremental
smoothness for a given set of knots. The other important properties of
B-splines with respect to modeling and control are:
Partition of unity:

Pl
i¼0 Ni;kðxÞ ¼ 1.

Positivity: Ni;kðxÞP 0 for all x.
Local support: Ni;kðxÞ ¼ 0 for x 62 ½xi; xiþk�.
Ck�2 continuity: If the knots fxig are pairwise different from each other, then
Ni;kðxÞ 2 Ck�2, i.e., Ni;kðxÞ is ðk � 2Þ times continuously differentiable.
Fig. 4 shows the non-uniform B-splines which are computed with unevenly

distributed knots. To compactly model and control a system, it is desirable that
the minimal number of basis functions be used. Non-uniform B-splines are the
most important model in these applications. They coincide with the psycho-
logical investigations that human linguistic terms are often non-symmetrical.

3.2. Lattice

In our previous work, we compared splines and a fuzzy controller with
single-input–single-output (SISO) structures [15]. In the following, the MISO
model is considered.
Fig. 5 illustrates the partition of a two-dimensional B-spline model with 8

MFs on each uniformly subdivided input interval and the activated B-splines

Fig. 5. A two-dimensional illustration of the B-spline model.
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(slightly shaded) for a given input. Since learning one new part of the input
space affects only a given number of system response values (darkly shaded area
of Fig. 5), fast on-line learning can be implemented. Due to these advantages,
B-spline models are proposed to be applied to control and modelling systems
[13]. By using the B-spline model, the approximation ability is only limited by
the number of knots distributed over the input intervals. Regarding that most
observed data contain certain noises, the problem of over-fitting may occur.
GA-optimised B-spline models are a promising approach to find sparse models,
which are able to bridge the gap between high bias and high variance of a model.
Each n-dimensional rectangle ðn > 1Þ of the lattice is covered by the jth

multivariate B-spline NjðxÞ which is formed by taking the tensor product of n
univariate B-splines:

NjðxÞ ¼
Yn
j¼1

Nj
ij;kjðxjÞ: ð2Þ

Therefore, the shape of each B-spline, and thus the shape of multivariate ones
(Fig. 6), is implicitly set by their order and their given knot distribution.

Fig. 6. Bivariate B-splines formed by the tensor product of two univariate B-splines: (a) tensor

product of two univariate B-splines of order 2; (b) tensor product of one univariate B-spline of

order 3 and one of order 2; (c) tensor product of two univariate B-splines of order 3.
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3.3. Use of B-splines in a fuzzy inference system

Under the following conditions, the computation of the output of such a
fuzzy rule system is equivalent to that of a general B-spline hypersurface
[13]:
(1) periodical B-spline basis functions are used as MFs for inputs,
(2) fuzzy-singletons (called control vertices) are used as MFs for outputs,
(3) ‘‘product’’ is used as fuzzy conjunction,
(4) ‘‘weighted means’’ is used as defuzzification method,
(5) ‘‘virtual linguistic terms’’ are added at both ends of each input variable,

and
(6) the rule base for the ‘‘virtual linguistic terms’’ is extended by copying the

output values of the ‘‘nearest’’ neighbourhood.
Generally, if we consider a MISO system with n inputs x1; x2; . . . ; xn, a rule

ði1; i2; . . . ; inÞ with the n conjunctive terms in the premise is given in the fol-
lowing form:
IF (x1 is N 1i1;k1 ) and (x2 is N

2
i2;k2
) and . . . and (xn is Nn

in;kn
)

THEN y is ci1;i2;...;in
where
• n: the number of the input dimensions,
• xj: the jth input ðj ¼ 1; . . . ; nÞ,
• kj: the order of the B-splines used for xj,
• Nj

ij;kj : the ith linguistic term of xj defined by univariate B-splines,
• ij ¼ 1; . . . ; lj: represents the index of the linguistic term of xj (lj denotes the
number of B-splines), and

• ci1;i2;...;in : the coefficients of the rule ði1; i2; . . . ; inÞ, called control vertices in the
following. 1

Then the output y of a MISO fuzzy model is:

y ¼
Pl1

i1¼1 � � �
Pln

in¼1 ci1;...;in
Qn

j¼1 N
j
ij;kjðxjÞ

� 	
Pl1

i1¼1 � � �
Pln

in¼1
Qn

j¼1 N
j
ij;kjðxjÞ

� 	 ð3Þ

¼
Xl1
i1¼1

� � �
Xln
in¼1

ci1;...;in
Yn
j¼1

Nj
ij;kjðxjÞ

 !
: ð4Þ

This general NUBS hypersurface possesses the following properties:
• If the B-splines of order k1; k2; . . . ; kn (>2) are employed to specify the lin-
guistic terms of the input variables x1; x2; . . . ; xn, it can be guaranteed that
the output variable y is ðkj � 2Þ times continuously differentiable with re-
spect to the input variables xj; j ¼ 1; . . . ; n.

1 Corresponding to de Boor points in CAGD.
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• If the input space is partitioned fine enough and at the correct positions, the
interpolation with the B-spline hypersurface can reach a given precision.
The transformation from (4) to a rule base is conceptually important be-

cause it provides a construction method for data approximation using fuzzy
rule systems. The resulting advantage over the pure B-spline interpolation lies
mainly in its linguistic modeling ability: interpolation data can be prepared by
using natural language with the help of expert knowledge. Furthermore, the
interpolation procedure becomes transparent because it can also be interpreted
in fuzzy logic ‘‘IF–THEN’’ form.

3.4. Generating the THEN-part

Determining optimal coefficients of a B-spline model with fixed knot vector
is generally simpler than finding the optimal knot vectors. Applying methods of
B-spline theory in Computer Aided Graphic Design (CAGD), the coefficients
can be estimated by solving an over-determined linear system. Another method
based on gradient descent can also be used. Although being an iterative so-
lution, this learning method is conceptually easier to understand. In the gra-
dient descent approach, fuzzy singletons represented by control vertices can be
initialised with the values acquired from expert knowledge. These parameters
will be fine-tuned by a learning algorithm.
In the following, we show that for supervised learning the squared errors

with respect to the control vertices are convex functions. Therefore, rapid
convergence for supervised learning is guaranteed. The control space changes
locally due to the ‘‘local support’’ property of B-splines while the control
vertices are modified. Based on this feature, the control vertices can be opti-
mised gradually, area-by-area.
Assume that ðxr1; . . . ; xrn; yrdesiredÞ is a set of training data. The output value

computed by a B-spline model is denoted with yrcomputed. By defining the mean
square error (MSE) criterion as

E ¼ 1
2
� ðycomputed � ydesiredÞ2 MIN; ð5Þ

the derivation of each coefficient ci1;...;ik is

Dci1;...;ik ¼ ��
oE

oCi1;...;ik

¼ ��ðyrcomputed � yrdesiredÞ �
Yn
j¼1

Nij;njðxrijÞ; ð6Þ

where � denotes the learning rate. Since the second partial derivation of
cr1; . . . ; c

r
k is always positive, the error function (5) is convex in the weight space.

If the inputs ðxr1; . . . ; xrnÞ are linearly independent, due to the convexity of the
MSE performance surface, there exists only one global minimum and no local
minima. On the other hand, if the auto-correlation matrix is singular, which
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occurs when the inputs xr are linearly dependent, there exists an infinite number
of global minima (Fig. 7), but still no local minima in the weight space.

3.5. Adaptive modelling of the IF-part

Based on the granularity of the input space and the distribution of extrema
in the control space (if known), the fuzzy sets can be initialised using the re-
cursive or explicit computation of B-splines. These fuzzy sets based on non-
uniform B-splines can be further adapted during the generation of the whole
system by using GAs.
By freeing the knots, the task of finding control vertices and accurate knot

vectors to fit training data becomes a non-linear minimisation problem. To
solve this problem we follow a strategy of problem splitting. We first con-
sider the underlying model dðkÞ of the controller and then compute the
control vertices to minimise dðcÞ. Instead of using constrained least-square
methods (constrained because of avoiding to ‘‘ride’’ on the gradient edge of
coincident knots [5]), the knots are estimated by using GAs. GAs are both
theoretically and empirically proven to provide the means for efficient search,
even in complex spaces [3]. Therefore, each individual, e.g. each B-spline
fuzzy system with its special knot distribution, represents one point in the
search space.

3.5.1. The genetic algorithms
We applied the basic GA introduced by Holland [4] with some modifications

as follows (Fig. 8):
• We used gray coding instead of standard binary code for representing coded
chromosomes, a common modification.

Fig. 7. A singular MSE performance surface.
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• To bypass the undesirable effect of the increasing probability along the de-
scendent chromosome-string to receive a changed allele (bit) (thus the con-
jointly heredity of genes decreases when the distance of their position
increases) while using n-point crossover, we used uniform crossover. This
kind of crossover has no positional and a high distributional bias, so that
a high blending rate between participant chromosomes is granted. This leads
to an algorithm producing permanently solutions which explore new loca-
tions by bridging even great distances of the search space.

• Instead of using fitness-proportional selection it is advantageous to use tour-
nament selection. This selection schema draws n individuals ð26 n6 lÞ with
a probability 1=l from the current population and copies the individual with
the best fitness into the mating pool. Besides saving computational power as
a result of no need to sort the population (as in ranking based selection
schemes), it is easier to bias the takeover time.

3.5.2. Chromosome encoding for knot placement
To minimise dðkÞ each individual consists of n knot vectors, where n is the

problem dimension. Each encoded knot vector consists of 32 knots and a so-
called activation string of 32 bit length. Which knots are in use to define the
current model is encoded through the activation string. Activated knots are
represented by 1, and inactivated knots are represented by 0.

Fig. 8. Flowchart of the applied GA (BSM: B-spline model).
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Every knot is encoded by 16 bit (see Fig. 9) and therefore each knot can be
placed on its respective input interval ½a; b� with an accuracy of 1=ð216Þ�
ðb� aÞ. The fitness values for each individual are simply computed by deter-
mining the control vertices of the controller. Using these control vertices the
MSE is evaluated and the fitness for one individual is set equal to 1=MSE .

4. Optimal number of MFs

An easy way to reduce the number of fuzzy rules is to minimise the number
of linguistic terms. However, the approximation error increases when de-
creasing the number of MFs. We studied the problem how many linguistic
terms are needed to minimise both the number of linguistic terms and the
approximation error.
We analysed the approximation of 12 functions [8] with several fuzzy con-

trollers. Six functions have one input, three have two inputs and three have
three input dimensions. For approximating the functions, several fuzzy con-
trollers with different numbers of linguistic terms were trained with the algo-
rithms described in Section 3. Then the approximation errors were analysed.
An example shows the approximation results of function g2. This function is

defined in (Eq. (7)):

g2ðx; yÞ ¼ f4ðxÞ � 2 expð
�

� ððy � 0:1Þ=0:25ÞÞ2

� 0:8 expð � ððy þ 0:75Þ=0:15ÞÞ2

� 0:4 expð � ððy � 0:8Þ=0:1ÞÞ2
	
with� 16 x; y6 1: ð7Þ

Fig. 10 shows the relationship between the number of linguistic terms and the
MSE of the approximation. The approximation error function has a typical

Fig. 9. Encoded B-spline model.
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shape. While increasing the number of linguistic terms the error first decreases
fast, later on it decreases more slowly. A good compromise between a minimum
number of linguistic terms and a minimum approximation error is using eight
terms for input x and three terms for input y. More terms would not improve the
approximation substantially, fewer terms would increase the error sharply.
Fig. 11 shows function g2. Its projections on the x- and y-axis in Figs. 12 and

13 show why we get these numbers for the optimal number of linguistic terms.
The extrema of the function lie on a grid. If the extrema are projected on the
axes, several extrema will cover each other. On the x-axis we find eight groups
of extrema and on the y-axis three groups that are just the same numbers we
found as the optimal number of linguistic terms.
Furthermore, it is interesting to observe how the GAs arrange the MFs on

the input axes (Figs. 14 and 15). The MFs cover nearly all the groups of ex-
trema we found in Figs. 12 and 13. They lie on the same grid as the function’s
extrema. Lastly we point out that a human would describe this function with
fuzzy rules in the same way. For each extrema he would use one fuzzy rule. For
the other functions we found exactly the same results.

5. Optimal partition algorithm

If an application demands a high precision, a lot of fuzzy rules will be
necessary. This large number of rules will have a negative effect on the inter-

Fig. 10. Relationship between the number of linguistic terms and the MSE of the B-spline fuzzy

system (function g2ðx; yÞ).
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pretability of the model. This section describes an optimal partition algorithm,
which helps to explain how a system with a large number of rules can be best
interpreted.

5.1. Basic idea

A fuzzy controller divides the universe of inputs and outputs in fuzzy sets.
These fuzzy sets are arranged e.g. in ‘‘small’’, ‘‘middle’’ and ‘‘large’’. This in-
formation is useful to reduce the size of the fuzzy rule base. Table 1 shows a
simple example of a fuzzy controller with two inputs [2]. Each input is covered
by five fuzzy sets (‘‘NB’’, ‘‘NS’’, ‘‘Z’’, ‘‘PS’’, ‘‘PB’’).

Fig. 11. The function g2.

Fig. 12. Projection of g2 to the x-axis.
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A simple way to reduce this rule base is to combine neighbouring rules with
the same consequences, e.g. the three rules
IF e IS ‘NB’ AND _ee IS ‘NB’ THEN f IS ‘NB’
IF e IS ‘NS’ AND _ee IS ‘NB’ THEN f IS ‘NB’
IF e IS ‘Z’ AND _ee IS ‘NB’ THEN f IS ‘NB’

can be replaced by the rule

Fig. 15. Arrangement of three B-spline MFs on the y-axis.

Fig. 14. Arrangement of eight B-spline MFs on the x-axis.

Fig. 13. Projection of g2 to the y-axis.
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IF e IS ‘at most Z’ AND _ee IS ‘NB’ THEN f IS ‘NB’.
Another possibility is to replace the four rules
IF e IS ‘NB’ AND _ee IS ‘NB’ THEN f IS ‘NB’
IF e IS ‘NS’ AND _ee IS ‘NB’ THEN f IS ‘NB’
IF e IS ‘NB’ AND _ee IS ‘NS’ THEN f IS ‘NB’
IF e IS ‘NS’ AND _ee IS ‘NS’ THEN f IS ‘NB’

by the rule
IF e IS ‘at most NS’ AND _ee IS ‘at most NS’ THEN f IS ‘NB’.

In this example the modifier ‘‘at most’’ is used to combine several rules into one
rule. Other modifiers are ‘‘at least’’, and ‘‘between’’. For a definition of these
modifiers see [2].
There are several possibilities to combine neighbouring rules in a rule table.

Not all of these possibilities lead to the minimum of rules. The question is
how to find the optimal partition of the rule base. One step to answer this
question is to find the common features of connectable rules. There are three
of them:
(1) the same consequences,
(2) direct neighbourhood, and
(3) the rules have to form rectangular regions in the rule table.
The result of features (1) and (2) is that the search can be restricted to re-

gions with identical consequences. These regions form polygons in the rule
table which are composed of squares (one square per rule). These polygons are
called rectilinear polygons. If this polygon is a rectangle, then it will be a valid
rule (feature (3)). The way to reduce the rule base with two inputs to the
minimum is to find a partition of all of these polygons in a minimum number of
rectangles. If there are more then two inputs there will be hyperpolygons
composed of hypercubes. For this hyperpolygons a partition in hypercuboids is
searched.

5.2. Minimum partition of a polygon in rectangles

There are several algorithms to solve the problem of partitioning a
polygon in a minimum number of rectangles [6,9]. The main idea is: The

Table 1

The rule table of an example controller

e n _ee NB NS Z PS PB

NB NB NB NB NS Z

NS NB NB NS Z PS

Z NB NS Z PS PB

PS NS Z PS PB PB

PB Z PS PB PB PB
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difference between a rectilinear polygon and a rectangle is that a complex
polygon is not convex. Every convex rectilinear polygon is a rectangle. The
goal is to intersect the polygon horizontally and vertically that all concave
vertices are removed. Every intersection increases the number of rectangles
by one and decreases the number of concave vertices by one if the cut goes
through one concave vertice or by two if the cut goes through two concave
vertices. The optimal partition will be reached if first a maximum of cuts
through two concave vertices and then the cuts through one concave vertice
are made.
The optimal partition of a rule base takes the following steps:

(1) Find all connected areas with the same consequences in the rule table. Then
a set of polygons is generated.

(2) For all polygons: find the maximum number of cuts through two concave
vertices.

(3) Perform these cuts.
(4) Intersect the polygons through the remaining concave vertices.
(5) For all rectangles: find the corresponding fuzzy rules.
Fig. 16 shows all possible partitions of an example polygon.

Fig. 16. Minimum partitions of a polygon.
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5.3. Applying the algorithm on B-spline fuzzy systems

The described algorithm is easy to apply to fuzzy rule bases whose conse-
quences are real fuzzy sets (like the rules of Mamdani controllers). The con-
sequences of B-spline controller rules are fuzzy singletons. Every singleton is
learned by the approach described in Section 3.4 and the possibility that two
singletons have the same value is very small. Before the algorithms can be
applied to a B-spline rule base the number of possible fuzzy singletons must be
reduced, e.g. with a clustering algorithm like the fuzzy c-means algorithm.
The second problem is that the singletons will not be the interpolation points

of the curve (see Fig. 17) when B-spline systems with order three or higher are
used. If the rule base is to be interpreted, it will be reasonable to use the in-
terpolation points. These points can easily be calculated using the established
B-spline model.
Before the partition algorithm can be applied to a B-spline rule base, the

fuzzy singletons must be replaced by the interpolation points, then the inter-
polation points must be clustered.
Table 2 shows the original rule table, Table 3 the rules with interpolation

points as consequences and Table 4 the resulting rule table with clustered
consequences.

Fig. 17. Function f4ðxÞ (dashed), control vertices (+), interpolation points ð�Þ.
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5.4. Examples

Two examples show how a fuzzy rule base can be simplified. The first ex-
ample is the well-known MPG-Problem. 2 We trained a uniform B-spline
system with two inputs (year, weight) and five fuzzy sets per input. The fuzzy
singletons were replaced by the interpolation points and then clustered in five
fuzzy sets. Table 5 shows the rule base with 25 rules.
This rule base can be reduced with our partition algorithm to 12 rules. This

is a reduction by 52%. Table 6 shows the reduced rule base.
The second example is the inverse kinematics of a two-joint planar robot.

For the angle of the joints, a non-uniform B-spline system was trained. Each
input was covered by 11 fuzzy sets. With the partition algorithm, the rule base

2 The data are available at ftp://ics.uci.edu/pub/machine-learning-databases/auto-mpg.

Table 5

Rule base for the MPG-problem

Yearnweight VS S M L VL

VS M M S S VS

S VL M S S VS

M VL M S S M

L VL L M S S

VL VL L L S VS

Table 4

Rule table for function f4ðxÞ consequences are clustered interpolation points labelled with linguistic
identifiers

IF x IS LM VT T VS S L VL H VH RM

THEN y IS L S VL L VL S VL S VL VS

Table 2

Rule table for function f4ðxÞ
IF x IS LM VT T VS S L VL H VH RM

THEN y IS 6.4 )12.5 11.9 )1.0 11.4 )14.5 14.8 )17.0 15.7 )31.1

Table 3

Rule table for function f4ðxÞ consequences are interpolation points
IF x IS LM VT T VS S L VL H VH RM

THEN y IS 3.9 )7.6 7.9 3.0 7.4 )7.4 8.8 )7.7 7.6 )24.4
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of 121 rules was reduced to 35 rules. This is a reduction by 71%. Table 7 shows
the reduced rule base.

6. Future research topics

Integration of neural networks, fuzzy systems, GAs, chaos theory with the
classical probability theory and statistical pattern recognition will play a cen-
tral role in the future research. We list some important ones:

Table 7

Grouped rule base for the inverse kinematics, joint 1

Table 6

Reduced rule base for the MPG-problem
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• Since the system resources are limited, sensory input needs to be selected by
factor analysis/synthesis, tracking focus of interests and other statistical
methods.

• The sensor capability can be extended by using up-to-date information tech-
nologies such as software robots in WWW, linguistic modelling of human
perception and sensor fusion so that information which is difficult to mea-
sure, incomplete or noisy can be perceived.

• Methods need to be developed for increasing the capability and quality of
reinforcement signals and fitness evaluation of the learning system.

• Symbolic sparse coding, granular computing, fuzzy set, rough set need to be
integrated to enable the arbitrary transition between digital measurements
and concepts.
The model and approaches described in this paper paves the way for lay-

ered-learning to build models of a wide range of modeling and control prob-
lems.
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