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Abstract

We propose a concept for integrating
multiple sensors in real-time robot control.
To increase the controller robustness un-
der diverse uncertainties, the robot sys-
tematically generates series of sensor data
as robot state while memorising the cor-
responding motion parameters. From the
collection of multisensor trajectories, statis-
tical indices like principal components for
each sensor type can be extracted. If the
sensor data are preselected as output rel-
evant, these principal components can be
used very efficiently to approximately repre-
sent the original perception scenarios. After
this dimension reduction procedure, a non-
linear fuzzy controller, e.g. a B-spline type,
can be trained to map the subspace projec-
tion into the robot control parameters.

1 Introduction

Assembly skills like inserting and screw-
ing are part of the most important and
most demanding sensor-based manipula-
tion skills of cooperating robots. The use
of force-feedback is the mostly used sensor
information source in robotics but in recent
years visual feedback and especially the in-
tegration of both have awaken great inter-
est. Conventional techniques try to exploit
a common representation space to achieve
a fused model of the environment [3]. In
[1] vision together with an internal strain
gauge is used to gather information about

the contact forces acting on a hand dur-
ing grasping. In [6] force and vision feed-
back is combined using so called vision and
force resolvabilities. In another approach
presented in [2], the force and vision in-
formation is fused by using a task frame
formalism. As an example a vision algo-
rithm reconstructs the 3D position of a fea-
ture point, using also the distance informa-
tion from a force sensor. The commonness
to nearly all these approaches is an explicit
modelling of the sensor properties in order
to combine the information.

CMAC neural networks may tackle the
problem of dimensionality. In [4] twelve in-
puts represent four joint positions of the
robot, four image parameters and their de-
sired changes. The outputs are the con-
trol signals for the four robot joints. In [5]
learning of vision-based positioning based
on visual appearance information was intro-
duced. The image data set is compressed
using principal component analysis to ob-
tain a low-dimensional input space. A para-
metric eigenspace representation is used
for describing the different objects as well
as object locations. The one-dimensional
positioning problem is thus transformed into
finding the minimum distance between a
point and a manifold in the eigenspace.

As far as we know no work on map-
ping the multiple images direct into “action
values” has been reported. In this work
we fuse visual information from two uncali-
brated cameras as well as from one camera
and a force/torque sensor. We do not use



any explicit models but employ an adap-
tive neuro-fuzzy scheme to learn the ap-
propriate robot motions necessary to per-
form a complex screw-task. We propose
the following learning-based sensor fusion
approach and apply it to a real robot sys-
tem with two arms and multiple vision and
force/torque sensors. These external sen-
sors are used in parallel to control the robot
arm performing insertion and screwing op-
erations. The successful experiments show
that the robustness as well as the preci-
sion of robot control can be enhanced by
integrating multiple additional sensors us-
ing this concept.

2 Problem Description

2.1 Experiment Setup

(a)

(b)

Figure 1: The experimental setup for two-
arm assembly. 1,1’: hand-camera; 2,2’:
force/torque sensor; 3,3’: parallel jaw-
gripper; 4: nut; 5: screw.

The problem scenario (Fig. 1), screwing

a screw (5) into a nut (4) with two coop-
erating robots (Puma 260), originates from
our collaborative project which aims at as-
sembly of aggregates with wooden toy con-
struction sets. The manipulators are in-
stalled upside down and can grasp the re-
quired assembly components from the as-
sembly table. Each robot is equipped with
a force sensor (2,2’) on which a pneumatic
parallel-jaw gripper (3,3’) is mounted. A
small camera (1,1’) is fixed over the grip-
per. Two global view cameras are installed:
one as overhead, the other as side-view in
front of the two arms.

2.2 Uncertainties

For a general-purpose arm/gripper sys-
tem, the following two types of uncertainties
must be taken into account: grasping preci-
sion and slippage of the part in the hand.
These uncertainties can cause the follow-
ing two concrete problems: a). the screw is
not centrically grasped; and b). the screw
is obliquely grasped (Fig. 2).

Figure 2: An inconvenient start-situation for
screwing.

Without using sensors a screwing oper-
ation can fail under each of the uncertain-
ties discussed above. Therefore, sensor-
based compensation motions become nec-
essary. The resulting forces in the normal
and orientation directions should be min-
imised and stable. Additionally, to guaran-
tee a successful screwing-in phase, a con-
stant force in the approach direction should
be exerted. Unlike the first case, the forces
and/or torques give no sufficient informa-
tion about the orientation of the screw. A
supplementary approach is to monitor the



scene with external cameras and correct
the orientation before contact is made be-
tween the screw and the nut.

3 A Neuro-Fuzzy Model for Vision-
Based Control

3.1 B-Spline Model

The controller for force control can be ef-
ficiently realised using the B-spline fuzzy
controllers proposed in our earlier work
[8, 9].

� B-spline basis functions are employed
for specifying the linguistic terms (la-
bels) of the input variables. By choos-
ing the order � of the basis functions,
the output is ���� continuous.

� Each controller output is defined by
a set of fuzzy singletons (control ver-
tices). The number of control vertices
is equal to the number of the rules and
their optimal values can be iteratively
found through learning. This adapta-
tion procedure is equivalent to weight
adjustment in an Associated Memory
Neural Network.

� One problem with learning in conven-
tional fuzzy controllers is that too many
parameters must be adjusted. With B-
spline fuzzy controllers, a simple mod-
ification of control vertices causes the
change of the control surface. As far
as concerned supervised learning, if
the square error is selected as the
quality measure, the partial differential
with respect to each control vertex is a
convex function. As for unsupervised
learning, if the error of the cost func-
tion is approximately piecewise propor-
tional to the error of the control values,
the learning-process descent will also
show stable asymptotic behaviour [8].

3.2 Dimension Reduction

If the dimension of the input space is
small enough, the input variables can be di-
rectly covered by fuzzy sets. Each item of

the rule is human readable and may be in-
terpreted as describing a special instance
of a general situation. If, however, the im-
age of a camera is regarded as a vector,
this high-dimensional sensor image is too
large to build a corresponding rule base.
Fortunately, sensor images are often ob-
served in a local context: the complete situ-
ation is not of particular interest and a sub-
space containing all necessary information
for determining the action values can be
found.

3.3 Projection into Eigenspace

A well-known technique for dealing with
multivariate problems in statistics is the
principal component analysis (PCA). As
shown in [5], this technique is also suit-
able for reducing the dimension of the input
space of a general control problem. It was
introduced for the use of visual learning by
[7].
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Figure 3: The structure of a fuzzy controller
based on eigenspace projection by fusing
images (�� �).

An eigenvector, denoted as ���, is com-
puted as ������ ����� � � � � �����

� . The eigen-
vectors form an orthogonal basis for rep-
resenting the original individual sensor
patterns. Assume that the eigenvectors
�������� � � � are sorted according to their
eigenvalues in a descending order. An
eigenspace with a reduced dimension �

can be formed with the first � eigenvec-
tors. ��� defines the �th dimension in the
eigenspace. The projection of an input vec-
tor �� � ���� ��� � � � � ���

� onto eigenvector
���, called the �th principal component, is
	� � �������������� � � ��������. The com-
plete projection can be represented as:
����� � � � �����

�
� �� � �	�� � � � � 	��

� .



All projections of the sample data se-
quence form a manifold in the eigenspace.
Such a projection can be viewed as a layer
of neural network, see the connection layer
of the two left parts of Fig. 3.

4 Implementation

In this work we implemented two different
controllers to adjust the orientation of the
screw after contact is established:

1. Images from two different cameras are
fused to determine the orientation of
the screw.

2. Information of a force/torque sensor
and the related camera are fused.

In both tasks we use the same B-spline
neuro-fuzzy model [8].

For dimension reduction, we employ
a method that extracts automatically the
needed features from one or two fused im-
ages to compensate the uncertainties. If
the image of a camera is regarded as a vec-
tor, this high-dimensional sensor image is
obviously too large to build a correspond-
ing rule base. Fortunately, sensor images
are often observed in a local context: the
complete situation is not of particular inter-
est and a subspace containing all neces-
sary information for determining the action
values can be found.

The following procedures are needed to
implement a controller:

1. Sampling training data.

2. Calculating eigenvectors.

3. Training the fuzzy controller.

These procedures will be further de-
scribed in our final paper.

5 Experimental Results

The vision-based controller is learned
with 363 training images, shifting the screw

between ���Æ around the N- and O-
direction in steps of �Æ. The learned con-
troller is tested with additional 363 im-
ages. From the sorted eigenvalues of
the covariance-matrix, it can be seen that
most of the information of the images is
contained in the first dimension of the
eigenspace.

5.1 Fusing two cameras

Fig. 4 shows a sequence of typical views
of the scene. We therefore employed
a method that extracts automatically the
needed features from one or two fused im-
ages to compensate the uncertainties.

(a) (b) (c)

(d) (e) (f)

Figure 4: Typical images taken by the exter-
nal cameras (a)–(c) viewpoint from above,
(d)–(f) side view.

To correctly project the images into the
pre-trained eigenspace, the “focus of inter-
est” needs to be first selected. For the task
to correct the screw orientation, rectangu-
lar sub-region of the images are clipped,
Fig. 5.

(a) (b) (c)

Figure 5: Clipped images (a) from cam-
era 1 and (b) camera 2 and (c) the resulting
merged image.

After merging the two images and pro-



Mean
square
error
�Æ��

Maximal
error �Æ�

Worst
case
error �Æ�

N- direction
overhead
camera

���� ���� ��	�

side-view
camera

�
��� ���� ����

fused images ���� ��	� –

O- direction
Overhead
camera

����� ����� �����

side-view
camera

�	�	 ����� �����

fused images ���� ���� –

Table 1: Mean square error, maximal error
and worst case error for angle around N-
and O-direction.

jecting them into the eigenspace, we used
the three largest eigenvectors as input for
the B-spline fuzzy controller. Each eigen-
vector is covered with �� B-splines as mem-
bership functions.

Fig. 6 shows the visualised transform
matrix of the fused image date. The
brighter the pixel the more relevant the
component in the image.

Figure 6: Visualisation of the transforma-
tion matrix: first to third principal compo-
nent.

Our first experiment shows that merging
the images produces a much better con-
troller than the separated controller for each
camera and direction. The mean square
error and maximal error of the test images
around the N- and O-direction are smaller.
The error never grows, Tab. 1.

5.2 Combining visual and force/torque
information

Simular to the first task we also use the
three greatest eigenvectors as input for the
B-spline fuzzy controller. Additional the

torque around the N- and the O- axis of the
tool is used as input. Each eigenvector is
covered with �� B-splines and the torque
with � B-splines as membership functions.
Detailed report on the mean square error
of the controller, the maximal error and the
largest worst case errors of the test im-
ages around the N- and O-direction with
and without additional force will be given by
the following table. This experiment shows
that the fusion of vision and force/torque
data produce better results in comparison
with the unfused case.

Mean
square
error
�Æ��

Maximal
error �Æ�

Worst
case
error �Æ�

N- direction
one camera ���� ���� ��	�

camera +
torque

��� ���� –

O- direction
one camera ���� ����
 ����

camera +
torque

���� ��� –

Table 2: Mean square error, maximal error
and worst case error for angle around N-
and O-direction combining force and vision.

6 Conclusions

We have shown that the B-spline model
in combination with dimension reduction
may be utilised for sensor fusion and
high-dimensional problems such as visually
guided fine-motion. We have implemented
the approach with a two-arm robot system
based on supervised off-line learning with
input of the vision system and force/torque
sensor.

The advantages of our approach are:

� Projecting the high-dimensional input
space into a reduced eigenspace the
most significant information for control
is maintained. A limited number of
transformed inputs can be partitioned
with the B-spline model.



� By merging the different kinds of
sensor data a sufficient precision can
be obtained for determining the robots
orientation correction.

� To solve this problem the statistical
indices provide a suitable solution to
describe the information in images
with a lot of uncertainties.

� A vector in the eigenspace is directly
mapped onto the controller output
based on the B-spline model. This
makes real-time computation possible.

� Designing the controllers is simple and
identical for both low and high dimen-
sional controllers. Both force and vi-
sion controllers are of the same type.
The B-spline fuzzy controller can be
trained in a straightforward manner be-
cause modification of control vertices
only results in local change of the con-
trol surface.

In this approach no complex program-
ming and knowledge about vision and force
control is needed. We have shown that this
approach is very promising for realising ef-
ficient robot assembly skills based on sen-
sorimotor coordinations.
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