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Abstract— This paper presents a new multiple vehicle cooper-
ative localization approach based on Random Finite Set (RFS)
theory. Assuming vehicles are equipped with proprioceptive
and exteroceptive sensors to localize the positions, a solution
based on RFS statistics is therefore proposed to consider the
whole group behavior instead of each vehicle. For this, we rely
on Probability Hypothesis Density (PHD) filtering. Compared
to other methods, our approach presents a recursive filtering
algorithm that provides dynamic estimation of multiple vehicle
states. The proposed method addresses the current challenges
in multiple vehicle cooperative localization domain such as
communication bandwidth issue, data association uncertainty
and the over-convergence problem.

A comparative study based on simulations demonstrates the
reliability and the feasibility of the proposed approach in large
scale environments.

I. INTRODUCTION

Within the past decade, accurate global localization has

become a hot issue in the intelligent vehicle research domain,

not only for developing advanced driver assistance systems,

but also for achieving autonomous driving.

Single vehicle localization is often performed by fusing

both proprioceptive and exteroceptive sensors presented in

[1]. GPS [2][3], cameras [4] and laser scanners [5][6] are

often used for localization. However, with the developed

inter-vehicle communication technology [7], the information

exchange among the vehicles becomes available. With a

wireless communication device, the multiple vehicle coop-

erative localization can be improved by taking advantage

of information sharing. It is obvious that cooperative lo-

calization will present more precise estimation than indi-

vidual localization. Various methods are investigated for

cooperative localization such as Extended Kalman Filter

[8][9][10], Bayesian formalism [11], Markov Localization

[12], Maximum Likelihood Estimation [13] and Maximum A

Posteriori Estimation [14][15]. However, there are still open

issues which are introduced in the following:

• The communication bandwidth issue.

The communication bandwidth issue is introduced by

Nerurkar [16]. The wireless transceivers used for information

exchanging may have low bandwidth due to the restriction

of the power. However, a high communication bandwidth for

transmitting the estimation state including large covariance

matrices, is often required by the standard fusion methods.
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Specially, as the number of vehicles increases, the network

might get overloaded and thus unusable. Therefore, the opti-

mally solution is that the wireless transceiver only transmits

their observations while the system estimates the states with

the corresponding covariances.

• The uncertainty issue.

Data association plays an important role in multiple ve-

hicle localization [17]. With the developing of the V2V

communication systems, vehicles are able to localize and

identify the other members of the group correctly. Various

aspects of inter-vehicle communication are surveyed in [18].

However, in a multiple vehicle cooperative localization sce-

nario, measurements are often consist of clutters which is

hard to identify. In order to build up a more generic local-

ization framework, addressing the association uncertainty is

therefore required. In addition, the localization system should

be more dynamic to the constrains. For instance, sensors

may often delay, or temporarily unavailable. Therefore, the

dynamic structure of the vehicles should be considered-not

only the states, but also the number of the vehicles.

• The over-convergence issue.

Over-convergence often happens in the fusion process

[19]. It is described as follows: Each vehicle can estimate

the pose information of the whole group and broadcast this

information to the others. In the case of circular update,

for example, a scenario in which the vehicle i detects the

vehicle j, the vehicle j can update its pose estimation with

the observation of the vehicle i. However, the observation

from vehicle j cannot be used by the vehicle i to update its

pose estimation. This is due to the stochastic interdependence

between the estimations of the two vehicles. Various methods

are investigated to the over-convergence issue [19], [20].

However, the solutions are with strong assumptions which

doesn’t satisfy the above issues, e.g. bandwidth issue and

data association issue.

In this paper, we propose a method for multiple vehicle

cooperative localization based on Probability Hypothesis

Density (PHD) filter [21]. In the PHD filter, the collection

of individual vehicles is treated as set-valued state, and

the collection of individual measurements is treated as set-

valued observation. Modeling set-valued state and set-valued

observation as RFS provides a new view on the multiple

vehicle cooperative localization.

The general solution of the proposed approach is as

follows: The measurements from both proprioceptive and ex-

teroceptive sensors are projected to a global plane that consist

the observation set. The PHD filter recursively estimates the
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dynamic states according to the observations.

The benefits of the proposed approach are threefold:

First, the communication bandwidth is bounded. Since

the PHD filter is a recursive Bayes filter which operates

on the set space, vehicles only transmit their observations

(thus the amount of exchanged data is greatly reduced),

which promises the communication ability. As mentioned

above, the optimally solution for inter-vehicle communica-

tion only transmits observations which minimizes the band-

width. Compared to other methods, the proposed approach

has the lowest consumption requirements for the communi-

cation bandwidth.

Second, it eliminates the uncertainty problem. Modeling

set-valued state not only allows to dynamically estimate each

vehicle’s state but also the number of the vehicles. The

proposed approach illustrates its flexibility and reliability

under extreme conditions such as sensor delay, or temporarily

unavailable.

Third, it avoids the over-convergence issue. Measurements

are collected as set-valued observation to predict and update

the set-valued state under RFS framework, which avoids

the process of calculating the correlations between differ-

ent sources. Furthermore, the proposed approach addresses

the above three issues simultaneously while takes up little

resources.

The advantages of the proposed method are demonstrated,

especially through a performance comparison with an exist-

ing cooperative localization method [19].

The remainder of this paper is structured as follows:

Sec. II briefly describes the multiple vehicle cooperative

localization. Sec. III introduces the proposed approach with

the implement details. Sec. IV presents experimental results.

Finally, the paper is concluded in Sec.V.

II. BACKGROUND DESCRIPTION

The description of the multiple vehicle cooperative local-

ization is as follows:

• Each vehicle is able to localize itself according to an

absolute reference. Here we assume that the measure-

ments are formatted by the location and the orientation

in a 2D global coordinate.

• Each vehicle is able to measure the relative position of

the other vehicles. Here we assume that the measure-

ments are formatted by the range and bearing in a 2D

local coordinate.

• Vehicles are equipped with communication transceivers

for information exchanging. Here we assume that the

communication can be affected by the delays or can be

temporarily unavailable.

• The communication network does not have the identify

ability regarding to the data association issue. Each

vehicle observes the whole environment and transmits

its observations over the network. There is no prior

information regarding to the data association issue pro-

vided by the inter-vehicle communication.

The goal of multiple vehicle cooperative localization is to

take the whole information into account to acquire the most

accurate positions.

Much work has been done for cooperative localization by

using a centralized extended Kalman filter [8][10]. The state

of the group is viewed as a single system. The localization is

obtained by exchanged data from each vehicle. The Kalman

filter reduces the uncertainty of the localization by informa-

tion sharing. However, the disadvantage is the large quantity

of transmitted data. This quantity grows exponentially with

vehicle increases. In addition, for a dynamic multiple vehicle

structure, the Kalman filter requires an association process

which takes huge resources.

Instead of a centralized architecture, a decentralized so-

lution is investigated, where multiple fusion centers exist

and each of them handles only local information (only the

observed neighbors). However, the computational demand is

very high. In addition, it often leads to the over-convergence

problem when handling inter-estimate correlation among

various sources. Since the over-convergence problem is

caused by inter-estimation correlation, a natural idea for

addressing this problem is investigated-controlling of the data

flow within the vehicle network. Howard [11] maintains a

heuristic method based on a dependency tree to update the

distribution dependencies. However, the author assumes that

distributions are only dependent on the distribution that was

last used and are independent on the others. This assumption

is restrictive as circular updates can still occur. The authors

in [19] propose a state exchange based method which only

allows independent estimates to be shared within the net-

work. However, communication and computation demand is

also increased. The authors in [20] proposed a covariance

intersection filter [22] to handle the inter-estimate correlation

issue. Similar work can also be found in [23][24] which

exploit the advantage of estimation. However, as mentioned

above, the computational complexity becomes an issue when

vehicles increase.

It is still a challenge to address the whole issues, both

centralized and decentralized architectures. In the next sec-

tion we will present the PHD filter under RFS framework to

address the above issues. The proposed approach also takes

into account the possible delays which often appears in real

scenarios.

III. THE PROBABILITY HYPOTHESIS DENSITY

FILTER

The PHD filter based on Random Finite Set theory is

proposed because of its superior performance in multiple

targets tracking domain.

A. Overview on RFS Statistics

The Random Finite Set (RFS) is a hidden markov chain

model with set-valued state and set-valued observation while

the PHD filter is a predict and correct framework for recur-

sive Bayesian filtering in such a RFS formulation. A com-

parison of the RFS approach and traditional multiple-target

tracking methods has been given in [25]. In the PHD filter,

the collection of individual targets is treated as set-valued

state, and the collection of individual observations is treated
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Fig. 1. Set-valued states and set-valued observations

as set-valued observation. Fig. 1 is a basic introduction of

the PHD filter which illustrates that the observations and the

corresponding states are considered on a single valued space

at each step [26]. The PHD filter operates on the set space

and avoids the combinatorial problem which arises from data

association.

The Gaussian Mixture Probability Hypothesis Density

(GM-PHD) filter is a closed form implementation of the PHD

filter, which is based on the Bayesian estimation framework

utilizing random finite sets as the mathematical backbone

[27].

Our previous work was considered the GM-PHD filter as

a solution to visual odometry [4], [28] and lane marking

extraction [29] in urban environment. The proposed approach

estimated the states of the interested features without con-

cerning the association issues on consecutive frames.

B. Kalyan [30] and John. M [31] implemented the PHD

filter in the field of the simultaneous localization and map-

ping (SLAM) problem. Results illustrates that the PHD filter

is an effective solution to the SLAM problem. In addition,

Moratuwage et. al. implemented the PHD filter in multiple

vehicle SLAM problem [32]. However, the above work

neither addresses the bandwidth issue nor considers both

proprioceptive and exteroceptive sensors’ uncertainties. In

this paper, the PHD filter is applied for multiple vehicle co-

operative localization by utilizing the converted measurement

approach [33].

B. Mathematic Background of the PHD Filter

The RFS is an approximation to alleviate the computa-

tional intractability of the optimal multi-target Bayes filter,

proposed by Mahler [21].

The targets in a multi-target scenario at time k are rep-

resented as a finite set of vectors xk,1, . . . ,xk,N(k) which

takes values from the state space X ∈ R
nx . Similarly

the observations are represented as a finite set of vectors

zk,1, . . . , zk,M(k) which takes values from the observation

space Z ∈ R
nz . N(k) and M(k) represent the number of

targets and observations at time k respectively. These finite

sets are known as the multi-target state and observation:

Xk = {xk,1, . . . ,xk,N(k)} ∈ F(X ) (1)

Zk = {zk,1, . . . , zk,M(k)} ∈ F(Z) (2)

where F(X ) and F(Z) denote the sets of all finite subsets

of X and Z , respectively.

The model must encapsulate the time varying numbers

of targets in a multi-target scenario. Also the model must

consider sensor imperfections such as missed detections and

false alarms. The multi-target state is modeled as the union

of different random finite sets:

Xk = [
⋃

ζ∈Xk−1

Sk|k−1(ζ)] ∪ Γk (3)

Sk|k−1 represents the targets that have survived from the

previous time increment k − 1. It is modeled as a Bernoulli

RFS which means targets can either survive with probability

PS,k(xk−1) and take on the new value {xk} with probability

density fk|k−1(xk|xk−1) or die and become the empty set ∅

with probability 1−PS,k(xk−1). Γk represents targets which

are spontaneously born at the current time k. It is modeled

as a Poisson RFS which is specified by a mean birth rate and

spatial birth density, or equivalently by its PHD or intensity

γk(·) where the mean birth rate is
∫

γk(x)dx and the spatial

birth density is γk(·)/
∫

γk(x)dx.

Similarly the set observation Zk can be seen as the union

of two random finite sets:

Zk = [
⋃

x∈Xk

Θk(x)] ∪Kk (4)

Θk represents the measurements that originate from the

targets and is modeled as a Bernoulli RFS which generates

a detection with probability PD,k(xk) and yields the mea-

surement {zk} with probability density gk(zk|xk) or results

in a missed detection yielding an empty measurement set ∅

with probability 1− PD,k(xk).
Kk represents the set of false alarms or clutter and is

modeled as a Poisson RFS, specified by its intensity κk(·)
where the mean clutter rate is

∫

κk(z)dz and the spatial

clutter density is κk(·)/
∫

κk(z)dz.

Using these random finite set models it is possible to

construct multi-target dynamical and observation models

analogous to the single-target case. Randomness in Xk and

Zk can be encapsulated into a multi-target transition density

and multi-target observation likelihood.

Under the above models, the multi-target Bayes filter

propagates the posterior multi-target density πk(·|Z1:k) re-

cursively in time. However, due to its combinatorial nature,

it is intractable in most applications. To alleviate this, the

PHD filter propagates the first moment or PHD Dk(·) of

multi-target posterior density πk(·).
The PHD recursion is given by :

Dk|k−1(xk) =
∫

PS,k(xk−1)fk|k−1(xk|xk−1)Dk−1(xk−1)dxk−1 (5)

+γk(xk)

Dk(xk) = (1− PD,k(xk))Dk|k−1(xk)

+
∑

z∈Zk

PD,k(xk)gk(z|xk)Dk|k−1(xk)

κk(z)+
∫
PD,kgk(z|ζ)Dk|k−1(ζ)dζ

(6)
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Equation (7) illustrates that the integral of the PHD over

a certain domain Ψ yields the estimated number of targets

N(k) in that domain at time k. The PHD is not a probability

density and does not necessarily sum to 1 [21].

N(k) =

∫

Ψ

Dk(xk)dxk (7)

It is to be noted that the PHD recursion has multiple

integrals that have no closed form solutions in general. One

of the common approaches to mitigate this problem is to

use GM-PHD approximations. The GM-PHD filter [27] is

a specialized version of the PHD filter. It assumes that the

target’s motion and observation process can be modeled as:

fk|k−1(x|ζ) = N (x;Fk−1ζ, Qk−1) (8)

gk(z|x) = N (z;Hkx, Rk) (9)

where x refers to the current state, z to the current

measurement, ζ to the previous state, N (·;m, P ) denotes

a Gaussian distribution with mean m and covariance P ,

Fk−1 is the state transition matrix, Qk−1 is the process noise

covariance, Hk is the observation matrix, Rk is the observa-

tion noise covariance. Survival and detection probability are

supposed to be constant on the entire observed area:

PS,k(x) = PS , PD,k(x) = PD (10)

Birth targets γk are modeled by a RFS written as a

Gaussian mixture:

γk(x) =

Jγ,k
∑

i=1

ω
(i)
γ,kN (x;m

(i)
γ,k, P

(i)
γ,k) (11)

where ω
(i)
γ,k,m

(i)
γ,k and P

(i)
γ,k are the weight, mean and covari-

ance of the birth Gaussians and Jγ,k is their amount.

If the posterior PHD at time k− 1 is a Gaussian mixture:

Dk−1(x) =

Jk−1
∑

i=1

ω
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1) (12)

then the predicted PHD (5) of time k is a Gaussian mixture

Dk|k−1(x) = PS

Jk−1
∑

i=1

ω
(i)
k−1N (x;m

(i)
S,k|k−1, P

(i)
S,k|k−1)+γk(x)

(13)

where

m
(i)
S,k|k−1 = Fk−1m

(i)
k−1, P

(i)
S,k|k−1 = Qk−1 + Fk−1P

(i)
k−1F

T
k−1

and the update PHD equation (6) at time k is also a Gaussian

mixture and is given by

Dk(x) = (1− PD)Dk|k−1(x) +
∑

z∈Zk

DD,k(x; z) (14)

where

DD,k(x; z) =

Jk|k−1
∑

j=1

ω
(j)
k (z)N (x;m

(j)
k|k(z), P

(j)
k|k)

ωj
k(z) =

PDw
(j)
k|k−1q

(j)
k (z)

κk(z) + PD

∑Jk|k−1

l=1 w
(l)
k|k−1q

(l)
k (z)

q
(j)
k (z) = N (z;Hkm

(j)
k|k−1, HkP

(j)
k|k−1H

T
k +Rk)

m
(j)
k (z) = m

(j)
k|k−1 +K

(j)
k (z−Hkm

(j)
k|k−1)

P
(j)
k = [I −K

(j)
k Hk]P

(j)
k|k−1

K
(j)
k = P

(j)
k|k−1H

T
k [HkP

(j)
k|k−1H

T
k +Rk]

−1

C. Implement issues

Sec. III-B briefly introduced the mathematic background

of the PHD filter. However, there are still open issues

for multiple vehicle cooperative localization. For instance,

the uncertainties of both proprioceptive and exteroceptive

sensors are different. However, the PHD filter requires that

the observations should have the same uncertainties when

constituting the set-valued observation. With the goal of uti-

lizing the PHD filter, we proposed a converted measurements

solution as following:

For the process model, the state xk =
[px,k, py,k, ṗx,k, ṗy,k]

T of each vehicle consists of position

(px,k, py,k) and velocity (ṗx,k, ṗy,k). Each vehicle has

survival probability PS,k = 0.99, follows the linear

Gaussian dynamics (8) with

Fk =

[

I2 I2

02 I2

]

, Qk = δ2
[

I2/4 I2/2
02 I2

]

, (15)

where In and On denotes, respectively, the n × n identity

and zero matrices, δ is the standard deviation of the process

noise.

For the measurement model we consider the measurements

are originated from both proprioceptive and exteroceptive

sensors projecting to the ground plane. To map the state

to the observation space, the observation matrix is Hk =
[I2,02] while the measurement vector is z = [px, py]

T .

According to the assumptions in Sec. II, measurements

are acquired from both proprioceptive and exteroceptive

sensors which can be considered as Z1
k , Z2

k . Z1
k is from the

proprioceptive sensor acquired by GPS while Z2
k is acquired

by the observations from other vehicles. In this paper, Z2
k

is calculated by utilizing the whole sensors (For instance,

we measure the vehicles’ relative positions according to the

exteroceptive sensors. Measurements are then acquired by

coordinate transformation with the help of the proprioceptive

sensors). In addition, Z1
k is with standard deviation R1 while

Z2
k is with deviation R2 (According to the converted mea-

surement approach [33] by using the combination process,

the uncertainty for each single observation is calculated.

The mean value is then represented as the deviation R2

to the PHD filter). Assuming there are n vehicles for the

cooperative localization, the size of the observation set Z1
k

is n while Z2
k is n(n− 1) at each step.

Regarding to the categories Z1
k and Z2

k , the PHD filter

should be implemented sequentially (since different types
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of measurements have different deviations describing the

uncertainties, which is impossible to calculate the posterior

PHD simultaneously). A method by applying GM-PHD filter

sequentially for each set, which is described as follows [34]:

With the assumptions in III-B, at time k − 1 we have

Dk−1(x) =

Jk−1
∑

i=1

ω
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1)

First, we used assumptions on process equation (8), mea-

surement equation (9) and Dk−1(x) to predict the intensity

D1
k|k−1(x) by using the equation (13). Second, we update

D1
k|k−1(x) with set Z1

k by equation (14) to obtain the PHD

D1
k(x) at time k for set Z1

k . Since Dk−1(x) is a Gaussian

mixture, D1
k(x) is also a Gaussian mixture. Third, for set

Z2
k , we use D1

k(x) as the predicted PHD and in the similar

way to equation (14), we have

Dk(x) = (1− PD)D1
k|k−1(x) +

∑

z∈Z2

k

DD,k(x; z)

Now, we investigate the number of Gaussian components.

For Z1
k , the number of Gaussian components is

J1
k = (Jk−1 + Jγ,k)(1 + |Z1

k |)

while for Z2
k , the number of Gaussian components is

J2
k = J1

k (1 + |Z2
k |)

The size of Gaussian components grows explosively which

leads to huge resources unavailable. In order to avoid the high

computation, Gaussian components that are close together

will be merged into one Gaussian at each step [4].

Based on the above procedure, we address the uncertain-

ties issue for the GM-PHD filter in multiple vehicle cooper-

ative localization scenarios. The corresponding positions are

therefore estimated during the whole process.

IV. EXPERIMENT

The simulation was implemented with a number of four

vehicles on the ground plane. In simulation, vehicles are

equipped with both proprioceptive and exteroceptive sensors

observing the whole environment. The inter-vehicle commu-

nication is also available to exchange the information on

the network. In order to evaluate the performance in real

environment, the communication can be affected with delays,

or can be temporarily unavailable. Furthermore, vehicles are

not able to identify the others according to the V2V com-

munication system. A comparative method in [19] (SECL

approach) was also included to evaluate the performances of

both approaches.

Figure 2(a) represents the true trajectories of the vehicles,

while Fig. 2(b) plots the corresponding measurements. As

we can see from Fig. 2(b), four measurements are used

to represent each vehicle’s position (if sensor delay not

happens). One is from Z1
k while others are from Z2

k . There is

no association process between the vehicle and the measure-

ments in Z2
k . In addition, measurements are often considered
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Fig. 2. The true trajectories and the corresponding measurements
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Fig. 3. The estimated results

as clutter due to the uncertainties. The task of the cooperative

localization is to estimate the positions based on those noisy

measurements.

Figure 3(a) illustrates the estimations compared with the

SECL approach. The estimated PHD states are represented as

circles at each step. Compared with standard target tracking

methods, the PHD operates on the set space and avoids the

association issue. Both, observations and estimations, are set-

valued (for example, although the PHD filter can estimate

the number of the vehicles and the corresponding states, it

does not distinguish them. Thus, the identification of a single

vehicle over the whole process is not available). For multiple

vehicle cooperative localization, keeping the whole trajectory

of each vehicle is out of the scope of this paper.

Figure 3(b) analyzes the performances of both methods by

calculating the RMSE (root mean square deviation) value. As

mentioned above, the PHD filter operates on the set space

which leads to the situation that a comparative result on

each vehicle is unavailable. However, in order to compare

the performance of the proposed approach, a data association

process is implemented to label the PHD estimations with the

corresponding vehicles. Furthermore, an evaluation reference

is proposed by calculating the RMSE value. The total error

is acquired by summing up the RMSE of each vehicle during

the whole process:

Error = (xest − xreal)
2 + (yest − yreal)

2
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Fig. 4. The estimated numbers of the vehicles

total error =

√

∑n

j=1

∑4
i=1 Errorji
n

where i is the index of the vehicles, n is the time index.

From Fig. 3 we can see that either PHD or SECL has a

certain estimation error compared with the true trajectories.

This error is caused by the uncertainties. However, Fig. 3

still illustrates that the overall performance of the PHD filter

is better than the SECL approach.

Figure 4 illustrates the number of vehicles that were

estimated by the PHD filter. Considering the constrains (such

as delay, data association uncertainty, noise, communication

unavailability), the number of vehicles is unknown estimat-

ing by the PHD filter. The proposed approach overcomes

these challenges since the PHD filter operates on the set

space which dynamically estimates the states. However,

much related works skipped this issue by assuming that

prior information was available (e.g. the association between

measurements and vehicles, the structure of the group is

fixed and the communication network worked error free).

Fig. 4 exhibits robustness of the PHD filter for the dynamic

structure of the group.

Regarding to the bandwidth and computation issue, the

PHD filter still keeps its superiority. As mentioned above, the

PHD filter is a predict and correct framework for recursive

Bayes filtering which doesn’t rely on each estimation and the

corresponding covariance for the fusion process. As a matter

of fact, vehicles only transmit the measurements to the PHD

filter as a set-valued observation to update the set-valued

state. The communication bandwidth is therefore reduced.

Assuming each measurement (px, py) takes two commu-

nication bits when transmission happens, the PHD filter

requires at least 2n2 bits bandwidth at each step (There

is a total of n2 measurements acquired by vehicles which

has already mentioned in Sec. III-C, n is the size of the

group). However, for the other approaches, e.g. SECL, a

fusion process is required which takes huge communication

bandwidth. The fusion process utilizes not only the states but

also the corresponding covariances to calculate the results.

Similar to Sec. III-C, each state is a 4 × 1 vector which

takes 4 bits including positions and velocities, while the

corresponding covariance is a 4 × 4 matrix which takes 16
bits respectively. As a conclusion, it requires additional 20n2

bits bandwidth for the fusion process while the PHD avoids

it (each vehicle is a fusion center which contains the whole

states and the corresponding covariances that occupying 20n
bits. The requirement of the bandwidth is therefore 20n2 bits

for the whole vehicles).

In addition, as a recursive Bayes filtering technology,

computation complexity is also reasonable for multiple ve-

hicles. A general analytical form to evaluated the calculation

complexity of the PHD filter is performed in [35], which

illustrates the efficiency of the proposed PHD solution in

real time environment.

Compared with decentralized approaches, the over-

convergence issue is also avoided since the PHD filter

operates on the set space instead of the single state space.

Therefore there is no such circular update during the whole

process.

The benefits of the PHD filter can be concluded as follows:

First, it reduces and bounds the requirements of the

communication bandwidth in a multiple vehicle environment.

The inter-vehicle communication system transmits the mea-

surements to the PHD filter which takes little bandwidth.

Compared to other methods, the proposed approach has

the lowest consumption requirements for the communication

bandwidth since each vehicle only transmits its observations.

Second, it works under extreme conditions which often

happen in real environments (where the association un-

certainty exists, the number of the vehicles is unknown,

sensor delays, communication unavailability occurs and the

measurement is distracted by noise). The PHD filter not only

illustrates the high performance of the localization, but also

exhibits the robustness under the dynamic structure of the

group.

Third, the over-convergence is addressed. Regarding to

the PHD filter, the set-valued state is updated by the set-

valued observation recursively. No fusion process is therefore

required in the PHD filter, which not only bounds the

communication bandwidth and the computation complexity,

but also eliminates the influences of the over-convergence.

Because of the superiority mentioned above, we have

strong reason to believe that the PHD filter has a great poten-

tial in the field of multiple vehicle cooperative localization.

V. CONCLUSION

It is very hard to localize a group of vehicles simulta-

neously. The low communication bandwidth, computational

burdens, and data association uncertainty cause the local-

ization complex and unfeasible. In this paper, a PHD filter

solution is proposed to the multiple vehicle cooperative

localization problem. In comparison to the related work, the

whole group of vehicles is viewed as a single set-valued

state which contains the poses of the detected vehicles. The

measurements are collected as a single set-valued observation

which is used to update the behavior of the set-valued state.

The proposed method has been evaluated in simulation and

a comparative study has also been carried out. Experimental

results exhibit the advantages of the PHD filter for multiple

vehicle localization.
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Future work focuses on the evaluation of the proposed

approach in a non-synthetic environment.
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