
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

 

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Mahmoud Akl, Florian Walter and Florian Röhrbein

TUM-I1534

Learning Spiking Neural Controllers for
In-silico Navigation Experiments



Learning Spiking Neural Controllers for In-silico Navigation Experiments
Mahmoud Akl (mahmoud.akl@tum.de)
Florian Walter (florian.walter@tum.de)

Florian Röhrbein (florian.roehrbein@in.tum.de)
Department of Informatics VI, Technische Universität München

Munich, Germany

Abstract
Artificial neural networks have been employed in many areas
of cognitive systems research, ranging from low-level control
tasks to high-level cognition. However, there is only few work
on the use of spiking neural networks in these fields. Unlike ar-
tificial neurons, spiking neuron models are designed to approx-
imate the dynamics of biological neurons. In this work, we
developed a virtual environment to explore solving navigation
tasks using spiking neural networks. We first used an exper-
imental setup inspired by Floreano and Mattiussi (2001) and
compared the results to validate the developed environment.
An evolutionary approach is used to set the parameters of a
spiking neural network controlling a robot to navigate without
collisions. In a second set of experiments, we trained the net-
work via reinforcement learning which was implemented as a
reward-based STDP protocol. Our results validate the correct-
ness of the developed virtual environment and demonstrate the
usefulness of using such a platform. The virtual environment
guarantees the reproducibility of our experiments and can be
easily adapted for future research.
Keywords: spiking neural networks; navigation; learning;
neurorobotics; simulation; in-silico experiments

Introduction
Work on building cognitive artifacts has always been inspired
by biological systems. It is well established that biological
brains, whether human or not, process information in a dif-
ferent manner than computers do today. Although Artificial
Neural Networks (ANNs) are rapidly progressing, they are
still not capable of performing computations on a time scale
comparable to a biological brain. ANNs abstract from bio-
logical neurons by assuming that neurons communicate real
values rather than discrete spikes. From a biological perspec-
tive, the real value is interpreted as the firing rate of the neu-
ron. Even with this abstraction, learning algorithms applied
to these models have proven to be very successful in certain
applications (Mnih et al., 2013; Sutskever, Martens, & Hin-
ton, 2011).
Despite being successful in certain tasks, they remain incom-
petent compared to human intelligence. In (Nguyen, Yosin-
ski, & Clune, 2014), unrecognizable images to humans were
classified as recognizable objects with over 99% confidence.
Moreover, in (Szegedy et al., 2013), imperceptible perturba-
tion to test images were shown to possibly alter the network’s
prediction. The incompetence of ANNs in some domains and
the fact that they are not biologically plausible gave rise to
Spiking Neuron Models (SNMs), also referred to as the third
generation of neural networks (Maass, 1997).
In this work a virtual environment was developed to host ex-
periments for learning spiking neural controllers to solve nav-
igation tasks. The advantages of building an experimental en-
vironment for simulations are twofold. Firstly, modifications

in the environment are easily worked out, e.g. changing the
size and shape of the environment as well as adding obsta-
cles or visual cues. Additionally, experimenters could choose
different agents, neural networks, neuronal models, or sensor
models to explore with. Secondly, running simulations of an
experiment in a virtual environment is much faster than con-
ducting the experiment physically.
In order to investigate the correctness of the developed virtual
environment, we first carried out trials of the experimental
setup described in (Floreano & Mattiussi, 2001). This experi-
ment shows superiority of evolving Spiking Neural Networks
(SNNs) over ANNs to solve a very simple autonomous navi-
gation task. Furthermore, we tested the effects of modifying
some parameters of the original experiment, e.g. neuronal
model and initial positions, on the results. We also carried
out the same experiment in the virtual environment using a
reinforcement learning model instead of the evolutionary ap-
proach originally used.
To simulate spiking neurons, the Neural Simulation Tool
(NEST) was used (Gewaltig & Diesmann, 2007). Even
though it contains several neuronal and synaptic models, it
does not include a reinforcement learning model for spiking
neurons. The foundations for the model found in (Izhikevich,
2007) have therefore been implemented and the effectiveness
of the implemented model has also been tested in first exper-
iments.
The next section gives a brief background of spiking neural
networks with emphasis on the neuronal models used in the
experiments conducted here.

Background
The characteristics of biological neurons form the basis for
artificial and spiking neural models. The state of a neuron
is described by the potential difference across its membrane.
At rest, a neuron is negatively polarized and its membrane
potential vrest is approximately −70mV. A spike is emitted
only when the neuron’s membrane potential crosses a thresh-
old θ. Typically, spikes last about 1-2 ms and have an ampli-
tude of ∼ 100mV. A spike’s effect on the postsynaptic neu-
ron’s membrane potential, also called the Postsynaptic Po-
tential (PSP), depends on the properties of the synapse and
on the time the spike took to reach the postsynaptic neuron.
If the PSP causes the postsynaptic neuron to depolarize, then
it is referred to as Excitatory Postsynaptic Potential (EPSP).
Otherwise, if it causes the postsynaptic neuron to hyperpolar-
ize, then it is referred to as Inhibitory Postsynaptic Potential
(IPSP). Figure 1 illustrates the difference between EPSP and



Figure 1: The first dot indicates the arrival of a spike from
an excitatory synapse. The EPSP depolarizes the neuron
by raising its membrane potential from its resting value to
∼ −64mV. The second dot indicates the arrival of a spike
from an inhibitory synapse. The IPSP hyperpolarizes the
neuron by dropping its membrane potential below its resting
value.

IPSP.
After a neuron has emitted a spike, it enters absolute refrac-
toriness for a few milliseconds, where it is impossible to emit
another spike right away. After that, the membrane potential
recovers gradually to its resting value. This recovery period is
referred to as the relative refractory period, where it possible
but hard for a neuron to fire.
Several SNMs have been developed that hold to the nature
of biological spiking neurons. They are, however, considered
to be simplified models because they do not imitate biologi-
cal neurons in full detail, like the Hodgkin-Huxley model for
example. Due to the facts that spikes are the only method
of communication between biological neurons, and that all
spikes have the same characteristics (amplitude and duration),
they cannot possibly convey important information. There-
fore the exact timing of spikes must play the important role
of encoding data. In the experiments conducted here, two
neuronal models were used.
The first model examined was the Leaky Integrate-and-Fire
(LIF) model with alpha-shaped synaptic currents. The LIF
model has a refractory period parameter tre f which defines,
in milliseconds, the duration of the refractory period. During
this period no spikes are emitted by the neuron and the mem-
brane potential is clamped to a predefined value Vreset . The
differential equation defining the dynamics of the membrane
potential in the LIF model behavior is

d
dt

Vm =
−(Vm −EL)

τm
+

Isyn(t)
Cm

(1)

where EL is the resting membrane potential, Cm is the capac-
ity of the membrane, τm is the membrane time constant and
Isyn(t) denotes the sum of the input synaptic currents. In the
absence of input synaptic currents (Isyn = 0), the membrane
potential gradually returns to the resting potential EL.
The second model used was the Multi-timescale Adaptive
Threshold (MAT) model developed by (Kobayashi, Tsubo,

Figure 2: The virtual arena where experiments took place
viewed from above. The robot is placed at the center of the
arena and the dashed lines represent the view borders accord-
ing to the 36◦ view angle.

& Shinomoto, 2009). In this model, the membrane poten-
tial never resets. Instead, after the neuron emits a spike, the
threshold jumps to a very high value and then gradually re-
turns to its resting value according to

θ(t) = ∑
j

α1et j−t/τ1 +ω (2)

where ω is the threshold’s resting value, α1 is the weight, t j
denotes spike times and τ1 is the time constant with which the
threshold decays back to its resting value.
In the next section, the characteristics of the virtual environ-
ment and the setup of the experiments will be detailed. The
two following sections will discuss the results of evolving and
learning the spiking controllers in this experimental setup.

Experimental Setup
The virtual environment in which the experiments took place
is a rectangular arena with black and white vertical stripes
painted on the walls. The widths of the stripes were drawn
randomly from the range [0.5 - 5] cm. The dimensions of the
arena were chosen to be 687x371 mm2.
A two-wheeled robot was placed at random initial poses in
the arena. The robot was equipped with a camera module
consisting of 64 photoreceptors and permitting a visual angle
of 36◦. The experimental setup is seen in Figure 2.
A SNN of fixed size, consisting of 10 neurons and 18 recep-
tors, was interfaced to the robot. 16 of the receptors trans-
mitted vision signals, while the remaining two transmitted
the error between the desired and the actual speeds of the
wheels. Each wheel was assigned two neurons, one setting
the forward speed while the other sets the backward speed.
The overall wheel speed was then determined by the algebraic
sum of both speeds, which was then mapped to a maximum
speed of 80 mm/s. The four neurons controlling the wheels’
speeds are referred to as motor neurons. An illustration of the
neural network is seen in Figure 3.
An experiment’s duration was 40 seconds divided into 100
ms chunks. At the beginning of each 100 ms interval the pho-
toreceptors’ values are preprocessed and used to set the fir-
ing probabilities of the receptors. The neural network, how-



Figure 3: Illustration of the spiking neural network with ar-
bitrary connections. Black circles indicate excitatory neurons
and white circles indicate inhibitory neurons.

ever, gets only 16 visual signals as input. To achieve this,
16 equally spaced pixel values are read from the receptors.
Uniform random noise is then added to the pixel values in an
attempt to model the irregularities of the physical world. The
noisy values are then convolved with a Laplace filter span-
ning three adjacent photoreceptors in order to detect contrast.
Finally, the absolute resulting values are scaled to the range
[0, 1] and used to set the probabilities of the corresponding
16 neural receptors to emit a spike at that time step. Based on
this process, high stripe frequency results in high firing prob-
abilities. In Figure 4, the 16 visual receptors’ firing probabil-
ities are shown for high and low stripe frequencies. Visible
stripe frequencies depend on the robot’s pose in the arena.
After setting the probabilities for the neural receptors to emit
a spike at the corresponding time step, the neurons commu-
nicate via spikes during the 100 ms interval and at the end of
the interval the wheels’ speeds are set by reading out the firing
rates of the motor neurons. These speeds remain constant dur-
ing the whole interval. The robot then moves according to the
assigned speed to each wheel. A kinematic model based on
differential drive is used to translate the wheel speeds (vl , vr)
into linear and angular speeds and eventually into the robots
new pose (x, y, θ). If the new pose happens to collide with
one of the walls, then the robot remains stuck in this pose for
the remaining time of the simulation.In Figure 5 the trajectory
and speed profile of a colliding robot are shown to illustrate
this behavior.
The speeds of the wheels, which are read out from the motor
neurons, represent the desired values. To simulate an error
between the desired and the actual speeds, each wheel speed
read out from the corresponding motor neurons was multi-
plied by a uniform random variable in the range [0.7, 1]. The
error signals were also fed as input to the neural network, set-
ting the probabilities of the two remaining receptors to fire.
The MAT and LIF neuronal models were parameterized with
the values found in Table 1 and Table 2 respectively. Noise
was added to the models’ refractory functions at each time-
step. In the LIF model, the parameter tre f was set to a uniform
random variable in the range [0 - 1], while the parameter Vreset
was also set to a uniform random variable in the range [-0.1
- 0]. In the MAT model, however, the parameter α1 was set
to a uniform random variable in the range[0 - 1] at each time

(a) Distant view

(b) Close view

Figure 4: Probabilities of the 16 visual receptors of emitting
a spike when multiple stripes are visible (distant view) and
when only one stripe is visible (close view).

step.

Results Evolutionary Learning
In the evolutionary experiments, the connections of the net-
work were encoded in a binary genetic string consisting of
290 bits. The genetic string was divided into 10 blocks,
one for each neuron. The first sign of each block indicates
whether a neuron is excitatory or inhibitory. The remain-
ing 28 bits of the block indicate the presence or absence of
connections from the 10 neurons and the 18 receptors to the
corresponding neuron of that block. In the experiments con-
ducted here, sensory receptors were always excitatory. An
illustration of the connections encoded in an arbitrary genetic

Table 1: Values assigned to the MAT model parameters in
NEST during the simulations.

EL τm τsyn Vm Cm τ1 α1 ω

0.0 4.0 3.0 0.0 10.0 4.0 1.0 0.1



(a) Trajectory during simulation. The red dot indicates the
initial position and the black line is the path of the robot dur-
ing simulation.

(b) Speeds of the left and right wheel at each time-step dur-
ing the simulation. The speeds decrease to zero after colli-
sion.

Figure 5: Illustration of a collision scenario. The robot col-
lides and remains stuck for the remaining simulation time.

Table 2: Values assigned to the LIF model parameters in
NEST during the simulations.

EL τm τsyn Vm Cm tre f Vth Vreset
0.0 4.0 1.0 0.0 10.0 1.0 0.1 -0.1

string is shown in Figure 7.
Three populations were generated randomly, each contain-

ing 60 individuals, and were evolved for 30 generations us-
ing one-point crossover, bit-mutation and elitism. The fitness
function used was an averaged sum of both wheel speeds at
all time-steps. A comparison of the fitness values achieved by
both neuronal models tested is seen in Figure 6. Both mod-
els achieve similar average fitness results, but the MAT model
achieves better best fitness results. A comparison between the
resulting paths of the best performing individual after 30 gen-
erations of both models is seen in Figure 9.
The evolved fitness values were found similar to those found
in (Floreano & Mattiussi, 2001), even though a different neu-
ronal model was used. Other behaviors were also found to
be similar. For example, it was observed, by checking the
firing rates of the neurons (see Table 3), that the neural net-

Figure 6: Comparison between fitness values achieved by
both neuronal models. Thin lines represent average fitness
per generation. Thick lines represent best fitness per genera-
tion.

Table 3: Average firing rates of the 10 neurons of the best in-
dividual after 30 generations using the MAT model in arena1.
Neuron 10 is responsible for setting the backward speed of the
right wheel.

Neuron 1 2 3 4 5 6 7 8 9 10
Spikes/Sec. 490 382 294 349 5 177 489 359 498 0

work keeps one wheel rotating forwards with constant speed,
while controlling the turning angle of the robot by setting the
speed of the other wheel. This behavior was also described
in (Floreano & Mattiussi, 2001). Moreover, because popu-
lations were randomly generated binary strings, they showed
initial average connectivity of 50%. This value, however did
not change much as the population evolved, which was also
mentioned in (Floreano & Mattiussi, 2001).
Further evolutionary experiments were run in different setups
to see how changing the setup affects the results. For exam-
ple, two sets of experiments were run to test whether always
starting the evolutionary experiment from a fixed pose is dif-
ferent from starting it from a random initial pose at each run.
While the evolved populations’ fitness value indicate that a
fixed initialization is better (see Figure 8), the best evolved
individual was not able to navigate in the environment when
starting from a different pose.

Results Reinforcement Learning
The reinforcement learning model implemented here is de-
scribed in detail in (Izhikevich, 2007). Weights are updated
whenever rewards are issued according to the equation

d
dt

w ji(t) = c ji(t)d(t) (3)

where c ji(t) is the eligibility trace between neurons i and j
and d(t) is the reward signal. The value of the eligibility trace
depends on the firing of the pre- and postsynaptic neurons and



Figure 7: Illustration of connections encoded in a binary ge-
netic string. The black squares indicate the presence of a
synaptic connection. Red dots indicate inhibitory outgoing
connections from the corresponding neuron while blue dots
indicate excitatory ones.

is updated based on the Spike Timing Dependent Plasticity
(STDP) rule. The dynamics of the eligibility trace are defined
by the equation

ċ =−c/τc +STDP(τ)δ(t − tpre/post) (4)

Here, δ is the Dirac delta function that step-increases the vari-
able c, where tpre/post are the firing times of pre- and postsy-
naptic neurons respectively. The magnitude of change in the
variable c is determined by the STDP rule, which in turn is
influenced by the inter-spike interval τ = tpost − tpre. The eli-
gibility trace decays to zero exponentially with the time con-
stant τc. Positive inter-spike intervals indicate causal firing
between the pre- and the postsynaptic neurons and hence am-
plify the variable c. Negative inter-spike intervals, however,
indicate acausal firing, i.e. the postsynaptic neuron emits a
spike before the presynaptic neuron does, and hence decrease
the value of c.
In the reinforcement learning experiments, the network was
fully connected, i.e. there were 280 synaptic connections.
Initial weights were randomly chosen from a uniform dis-
tribution in the range [0 - 1.5] for the connections between
receptors and neurons, and in the range [-1.5 - 1.5] for inter-
neuron connections. Maximum values for weights were cho-
sen to be -3.0 and 3.0 for inhibitory and excitatory synapses
respectively.
The experiment consisted of 10 runs, each lasting for 40 sec-
onds and divided into 400 chunks just as in the evolutionary
experiments. After 100 ms of simulation, when the speeds of
the wheels are set for the next interval, the eligibility traces
for all 280 connections were also calculated based on the
spike trains of the previous 100 ms.
Rewards, however, were issued every second of simulation.
The reward signal is analogous to the fitness function de-

Figure 8: Comparison between fitness values achieved when
starting from fixed and random poses.

scribed in the evolutionary experiments. It is the averaged
sum of wheel speeds over the previous second of simulation.
If the wheels were not moving or rotating backwards, then a
negative reward was issued to penalize the behavior. More-
over, if the wheels were moving forwards but the robot ended
up colliding with one of the walls, then a negative reward was
also issued.
After one run was completed, the robot was returned to its
initial position to start another run without modifying the
weights adapted so far. In Figure 10 the trajectories of the
first and tenth run are shown. After 10 runs the robot’s path
is much more smooth and achieves, in an evolutionary sense,
a higher fitness value.

Discussion and Outlook
The aim of this work was to develop a virtual environment
that should serve as a platform for testing learning techniques
with various SNMs in navigation experiments. Validation
of the virtual environment was done by conducting the
same experiment found in (Floreano & Mattiussi, 2001)
and observing huge similarities in the results. There were,
however, small differences in the results, which are attributed
to the subtle differences between both setups. For example,
the exact size of the arena used in the original experiment
was not mentioned, and different neuronal models were used.
Furthermore, different experimental setups were explored to
study their effects on the results. Based on these explorations
it was concluded that starting the evolutionary experiments
from fixed poses achieves higher fitness values but does not
generalize. Such explorations and findings are much easier
to be carried out in a virtual environment. For example, a
simulation of a 40 second experiment takes only 4 seconds to
complete.
Moreover, the basis for reinforcement learning has been laid
in this work by the implementation of the eligibility trace
between neurons. The implementation of the model has also



Figure 9: Comparison between paths of the best perform-
ing individuals after 30 generations using LIF (top) and MAT
(bottom) neuronal models.

been tested in a first experiment that proved the effectiveness
of the model. Even though the experiment showed that
the robot started adapting to the desired behavior after 10
runs, more thoroughly designed experiments are required to
explore the reinforcement learning technique in the task at
hand. For example, the frequencies with which rewards are
issued were chosen arbitrarily in this experiment.
To conclude, the developed environment provides a suitable
basis for the development of a sophisticated platform that
allows for testing behavior adaptation techniques using
SNNs, and the implemented reinforcement learning model
provides a suitable basis for a comparison between the
effectiveness of evolutionary algorithms and reinforcement
learning for solving an autonomous navigation task.

Acknowledgments
The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 604102 (HBP).

References
Floreano, D., & Mattiussi, C. (2001). Evolution of spiking

controllers for autonomous vision-based robots. In T. Gomi
(Ed.), Evolutionary robotics. from intelligent robotics to ar-
tificial life (Vol. 2217, p. 38-61). Springer Berlin Heidel-
berg.

Figure 10: Comparison between trajectories of the first (top)
and tenth (bottom) run when applying reinforcement learn-
ing.

Gewaltig, M.-O., & Diesmann, M. (2007). Nest (neural sim-
ulation tool). Scholarpedia, 2(4), 1430.

Izhikevich, E. M. (2007). Solving the distal reward problem
through linkage of stdp and dopamine signaling. Cerebral
cortex, 17(10), 2443–2452.

Kobayashi, R., Tsubo, Y., & Shinomoto, S. (2009). Made-
to-order spiking neuron model equipped with a multi-
timescale adaptive threshold. Frontiers in computational
neuroscience, 3.

Maass, W. (1997). Networks of spiking neurons: the third
generation of neural network models. Neural networks,
10(9), 1659–1671.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Nguyen, A., Yosinski, J., & Clune, J. (2014). Deep neural
networks are easily fooled: High confidence predictions for
unrecognizable images. arXiv preprint arXiv:1412.1897.

Sutskever, I., Martens, J., & Hinton, G. E. (2011). Generating
text with recurrent neural networks. In Proceedings of the
28th international conference on machine learning (icml-
11) (pp. 1017–1024).

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I., & Fergus, R. (2013). Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199.


