
A Formal Model for Constraint-Based

Deployment Calculation and Analysis
for Fault-Tolerant Systems

Klaus Becker1, Bernhard Schätz1, Michael Armbruster2, and Christian Buckl1

1 fortiss GmbH, An-Institut Technische Universität München,
Guerickestr. 25, 80805 München, Germany
{becker,schaetz,buckl}@fortiss.org

2 Siemens AG, Corporate Research and Technologies,
Otto-Hahn-Ring 6, 81730 München, Germany

michael.armbruster@siemens.com

Abstract. In many embedded systems like in the automotive domain,
safety-critical features are increasingly realized by software. Some of
these features are often required to behave fail-operational, meaning that
they must stay alive even in the presence of random hardware failures.

We propose a new fault-tolerant SW/HW architecture for electric ve-
hicles with inherent safety capabilities that enable fail-operational fea-
tures. In this paper, we introduce a constraint-based approach to calculate
valid deployments of mixed-critical software components to the execution
nodes. To avoid harm, faulty execution nodes have to be isolated from the
remaining system. We treat the isolations of execution nodes and the re-
quired changes to the deployment to keep those software components alive
that realize fail-operational features. The affected software components
have to be resumed on intact execution nodes. However, the remaining
system resources may become insufficient to execute the full set of soft-
ware components after an isolation of an execution node. Hence, some
components might have to be deactivated, meaning that features might
get lost. Our approach allows to formally analyze which subset of features
can still be provided after one or more isolations. We present an arith-
metic system model with formal constraints of the deployment-problem
that can be solved by a SMT-Solver. We evaluate our approach by show-
ing an example problem and its solution.

Keywords: Fault-Tolerance, Fail-Operational, Mixed-Critical, Deploy-
ment, Dependability, SMT-Solver.

1 Introduction and Motivation

Many embedded systems are operated in safety-critical environments, in which
unhandled faults could cause harmful system failures. This requires that those
systems react on faults properly. However, handling faults by invalidating faulty
data and going into a fail-safe state may cause the loss of some provided features.
This is not acceptable for features that require fail-operational behavior.

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 205–219, 2014.
c© Springer International Publishing Switzerland 2014



206 K. Becker et al.

To increase their dependability, systems must be able to resume affected fea-
tures without any service interruption. If system resources get lost due to hard-
ware failures, the remaining resources should be used efficiently to keep alive
those features with the highest demand with respect to safety, reliability and
availability, as defined in [1]. For instance, if an execution node becomes faulty
and has to be isolated from the remaining system, another execution node has to
be able to provide that features that were provided by the faulty node. However,
as the remaining system-resources may become insufficient to provide the full set
of features, it may be needed to explicitly deactivate some low priority features.
This results in a graceful degradation of the system.

We propose a new centralized HW/SW platform for vehicles, that provides in-
herent safety properties and supports fail-operational features without requiring
mechanical fallbacks. In this paper, we address the calculation and analysis of the
deployment of software components to the execution nodes inside the proposed
architecture. However, with a rising number of software and hardware compo-
nents, this deployment configuration becomes more and more complex and hard
to manage manually. We therefore provide an automated configuration support
for deployment decisions, ranging from a semi-automated to a fully-automated
approach. Our approach is based on a formal system model and a set of formal
constraints describing the validity of deployments with respect to the safety-
concept. Model and constraints characterize an arithmetic problem that can be
solved for instance by SMT-solvers.

The main contribution is an approach to calculate and analyze different re-
configurations of the deployment to become active after execution nodes become
isolated. The set of active software components – and thus also the set of pro-
vided features – is automatically reduced when the remaining system resources
become insufficient to provide the initial set of components. Components are
deactivated based on their priorities, which can either be assigned manually or
derived automatically. Our approach allows to formally analyze at design-time
if the desired system and feature properties can be fulfilled, like which set of
features can still be provided after one or multiple isolations. Analyzing the
deactivations of single features allows to analyze the entire system degradation.

In section 2 we present the basic concepts of the proposed platform. Section
3 shows the main contribution of this paper, which is a formal model and a
constraint-based approach to calculate valid deployments and to analyze which
features can be provided after isolations of nodes. Section 4 contains an auto-
motive example, evaluating the applicability of our approach. Related work is
discussed in section 5 and the conclusion and future work is given in section 6.

2 Proposed System Architecture and Safety Concept

Fault-tolerance is the ability of a system to maintain control objectives despite
the occurrence of a fault, while degradation of control performance may be ac-
cepted [2]. If a system should support fail-operational features, it has to be
capable to absorb loss of execution nodes. We deploy multiple instances of soft-
ware components redundantly to the execution nodes. This enables the system



Deployment Calculation and Analysis for Fault-Tolerant Systems 207

to absorb loss of execution nodes and results in features being fail-operational,
meaning that features can continue operation in the presence of a limited num-
ber of hardware failures, while ensuring the absence of harm to the users or the
environment. In the following sections we briefly introduce the main ideas of the
proposed platform, needed to follow the deployment concept and constraints.

2.1 System Architecture

We tackle the development of a scalable, uniform, open and thus easily expand-
able base platform with the aim to reduce the complexity of automotive HW/SW
architectures. The basic principles of this platform have been already presented
in [3] and [4].

The proposed platform is composed by a scalable set of central execution
nodes (also called Duplex Control Computers (DCCs)) and a set of peripheral
execution nodes providing the physical sensing and actuating (also called Smart-
Aggregates). The DCCs assemble the Central Platform Computer (CPC) and
are connected to each other and to the Smart-Aggregates by redundant switched
Ethernet-Links. The DCCs are homogeneous for flexibility in the deployment.

The proposed system has two different power supplies, named red and blue.
Each execution node is supplied by either the red or the blue power supply.
Hence, if one power-supply fails, only a subset of the execution nodes get lost
and the residual nodes can continue the operation. As scheduling policy, we follow
the concept of logical execution times [5], meaning that the software components
are executed within fixed cycles. Each execution node provides a certain budget
of time per cycle that can be used to execute application software components.
In this paper, we assume a simplified model in which all software components
are scheduled with the same rate in every cycle.

2.2 Fault-Model and Safety Concept

In this paper, we focus on so called random hardware failures, as defined in the
ISO 26262 [6] as failures that can occur unpredictably during the lifetime of
a hardware (HW) element and that follows a probability distribution. If such a
random hardware failure exists in an execution node, this node has to be isolated
from the remaining system to avoid harm. Our proposed platform ensures the
detection of random hardware failures with a sufficient failure detection coverage.
Sufficient means that the probability to become out-of-control is acceptably low
to meet the quantitative safety-requirements of the ISO26262 [6]. We focus on
how to handle detected failures by performing adaptions to the deployment to
meet the requirements w.r.t. fail-operationality. We assume a state-transition
time of 0s from a faulty to an isolated state. Only if these assumptions hold,
the deployment considerations shown later in section 3 can be applied. More
information about the Fault-Model is also provided in [7].

In the safety concept of the proposed platform, application software com-
ponents (ASWCs) are grouped into so called ASWC-Clusters. This is done to
reduce the complexity of fault detection and handling mechanisms at runtime.



208 K. Becker et al.

The ASWC-Clusters get deployed to the execution nodes. Those ASWCs are
mapped to the same ASWC-Cluster that have the same Automotive Safety In-
tegrity Level (ASIL) and the same requirements to behave fail-operational.

Each ASWC has multiple safety goals, while each safety goal has an assigned
fault-tolerance time (FTT ). The FTT defines the time period that a component
can fail to deliver its service without harming the safety goal. The smallest of
these FTTs is the so called minFTT of an ASWC. The minFTT of an ASWC-
Cluster is the smallest minFTT of the ASWCs that are mapped to this cluster.

Each ASWC-Cluster has at least one actively deployed instance in the ini-
tial deployment. If the cluster is required to be fail-operational, a second in-
stance is deployed. In this case, the first instance is called the master and the
second instance is called the slave. We distinguish between hot-standby and
cold-standby slaves (also known as hot/cold spare). A hot-standby is active
(executed in schedule), while a cold-standby is passive (only in memory, not
executed in schedule). In the deployment, we consider this by distinguishing
between activations (active deployments, ASWCs are executed) and allocations
(inactive/passive deployments). The decision whether to create a hot- or a cold
standby slave depends on the minFTT of the ASWC-Cluster compared to the
fault-recovery time (FRT) of the proposed platform. We assume the FRT to be a
defined constant, as a maximum FRT can be shown because the platform ensures
a worst-case time between fault-detection, confirmation and reconfiguration. In
this paper, we neglect the time that is required to switch a cold-standby slave
to become a master. With the proposed platform, a maximum switchover time
can be verifed. We actually aim on a switchover-time of max. 50ms.

There exist several constraints for the deployment given by the safety concept.
For instance, if an ASWC-Cluster has a master and a slave, master and slave
have to be deployed onto two execution nodes with different power-supplies to
avoid that both instances get lost simultaneously when a power-supply fails.

Depending on the required level of fail-operationality, meaning how many
HW-failures have to be survived, additional inactive instances of a cluster are
deployed. If the execution node of the master gets isolated, the slave becomes the
master and if required, a passive instance becomes the new hot-standby slave.
These mechanisms are presented in section 3 in a more detailed formal model.

3 Deployment Calculation and Analysis

We define the system properties and the deployment problem as shown in the
following sections.

3.1 Formal System and Deployment Model

Definition 1. A Vehicle V = 〈F, SA, HA, Φ〉 comprises a set of Functional
Features F , an Application Software Architecture SA, an Execution Hardware
Architecture HA and a Configuration Φ.



Deployment Calculation and Analysis for Fault-Tolerant Systems 209

Definition 2. An Application Software Architecture SA = 〈S, SC〉 is composed
by a set S = {s1, ..., sn} of Application Software Components (ASWCs) and a
set SC = {sc1, ..., scq} of ASWC-Clusters with sci ⊆ S while ∀i, j : sci∩ scj = ∅
and

⋃ q
i=1 sci = S. We describe the mapping of s ∈ S to sc ∈ SC with α(s) −→

{sci ∈ SC | sci contains s} and α(sc) −→ {si ∈ S | si is mapped to sc}.
Definition 3. The set of functional features F = {f1, ..., fm} contains the fea-
tures of the vehicle that can be recognized by the user. A feature is realized by one
or more ASWCs and the involved Sensors and Actuators, while each ASWC con-
tributes to realize one or more features. For s ∈ S and f ∈ F , we define this rela-
tionship as χ(s) −→ {fi ∈ F | s contributes to realize fi} and χ(f) −→ {si ∈ S | f
is partly realized by si}.
Definition 4. An Execution Hardware Architecture HA = 〈E,L〉 comprises ex-
ecution nodes E and communication links L = E × E between these nodes.
The set of execution nodes E = EC ∪ EA is composed by a set of central ex-
ecution nodes EC = {e1, ..., ek} and a set of peripheral Smart-Aggregate nodes
EA = {ek+1, ..., el} with attached physical Sensors and Actuators. The set EC

is also called the Central Platform Computer (CPC).

Definition 5. The Configuration Φ = 〈δP (SC), δA(SC), δ(SC)〉 defines how
ASWC-Clusters SC are deployed to execution nodes E, either passively (δP ) or
actively (δA). For sc ∈ SC, we define δP (sc) −→ {ei ∈ E | sc is in memory of ei,
but not executed on ei}, δA(sc) −→ {ei ∈ E | sc is in memory of ei and executed
on ei} and δ(sc) = δA(sc) ∪ δP (sc).

Our deployment approach can either be applied to ASWCs or to ASWC-
Clusters. The motivation to think in clusters and not in single ASWCs is that
the definition of clusters reduces the complexity with regard to the amount
of combinations to be considered for deployment and master-slave switchovers.
Furthermore, the ASWCs within a cluster have a kind of stronger binding to
each other. Thus, we aim on a deployment of ASWCs which are bound to one
cluster within the same execution node. An example for a binding quality is
data-transport delay.

Fig. 1 shows a visualization of the given definitions, based on an example.
Two features are realized by overall three ASWCs, while the third ASWCs s3
contributes to both features. The three ASWCs are mapped to two different
ASWC-Clusters, depending on a property failOp that defines the level of required
fail-operationality of an ASWC. As cluster sc1 contains ASWCs that are not re-
quired to behave fail-operational, it is deployed only once (δA(sc1) = {e1}). The
other cluster sc2 contains an ASWC that is required to behave fail-operational
(α(sc2) = {s3} and failOp(s3 ) = 1). Hence, this cluster is deployed twice
with one active Master (δA(sc2) = {e2}) and one passive cold-standby slave
(δP (sc2) = {e1}). If a hot-standby slave would have been required, then it would
hold that δA(sc2) = {e1, e2}, δP (sc2) = ∅.

ASWCs might contain invisible sub-components and internal communication
channels. We don’t model external communication channels between ASWCs in
this paper for simplicity.



210 K. Becker et al.

Cluster-Deployment δ

Cluster-Mapping α

Feature-Relationship χ

ASWC-Cluster sc1

failOp=0

ASWC-Cluster sc2

failOp=1

e1 (DCC 1)

sc1 (Active)

sc2 (Passive)

e2 (DCC 2)

sc2 (Active)

ASWC s1

failOp=0

ASWC s2

failOp=0

ASWC s3

failOp=1

Feature f1

failOp=0

Feature f2

failOp=1

χ(f2) = {s3}

χ(f1) = {s1, s2, s3}

α(sc1) = {s1, s2} α(sc2) = {s3}

δA(sc1) = {e1} δA(sc2) = {e2}

δP (sc2) = {e1}δP (sc1) = ∅

Fig. 1. Example for the definitions

3.2 Fixed Properties of the Deployment Model

Each ASWC si ∈ S is defined by several properties. Property wcet(S) → N
+

defines the Worst-Case Execution Time. Property asil(S) → {0..4} defines the
Automotive Safety Integrity Level (ASIL) of an ASWC [0: Quality-Management
(QM), 1: ASIL-A, 2: ASIL-B, 3: ASIL-C, 4: ASIL-D]. Property failOp(S ) → N0

defines the fail-operational level [0: non fail-operational, n: si has to be provided
after n isolations]. The minimum of the fault-tolerance times of an ASWC for
its different safety goals is defined by minFTT (S) → N

+.
As defined in section 2.2, the vehicle property frt(V) → N

+ defines the fault-
recovery time of the vehicle V. The frt has influence on whether the slaves are
deployed as hot or as cold-standby slaves, depending on their minFTT .

For execution nodes e ∈ E, the following properties are defined. The property
totalTimeBudget(E ) → N

+ defines the budget of time that is provided in each
cycle to execute the ASWCs. We assume here that ASWCs are executed in every
cycle. The property powerSupply(E) → {0, 1} defines the power supply of the
execution node [0: Blue, 1: Red]. Finally, the property isolated(E) → {0, 1}
defines if the execution node ei ∈ E is isolated in the current solution instance.
We do not model the amounts of required and provided volatile and non-volatile
memory here for simplicity. These are handled in a similar manner as the WCET
and the time-budget.



Deployment Calculation and Analysis for Fault-Tolerant Systems 211

3.3 Solution Properties of the Model

In this section we describe the model-properties that represent the solution of
the deployment problem.

The properties of ASWC-Clusters sc ∈ SC depend on the mapped ASWCs.
Properties asil(SC) → {0..4} and failOp(SC ) → N0 define the ASIL and the
fail-operational level of a cluster. It is ensured by constraints that ∀si ∈ α(sc) :
asil(sc) = asil(si) and failOp(sc) = failOp(si ). Property minFTT (SC) → N

+

is the minimum of all the minFTT (si) for si ∈ α(sc). Property sumWcets(SC )
is defined to be equal to

∑
si∈α(sc) wcet(si). To cover deactivation scenarios that

might be required after isolations of central execution nodes, each sc ∈ SC has
additionally the following properties:

– hotStandbySlaveReq(SC ) → {0, 1}: indicates if a hot-standby slave is re-
quired. The valuation is derived by considering minFTT (sc) and frt(V)

– hotStandbySlavePresent(SC ) → {0, 1}: indicates if a required hot-standby
slave can be established

– masterPresent(SC ) → {0, 1}: indicates if the master can be established

The last two properties may change after isolations of execution nodes. Finally,
each cluster has the properties prioPointsMaster(SC) → N

+ and
prioPointsHotSlave(SC) → N

+ storing priorities of actively deployed instances
of clusters. These are used to construct an order in which the cluster instances
should be deactivated in case resources become insufficient. We derive the prior-
ities depending on asil(SC) and failOp(SC ) (cf. Listing 3). However, they could
also be set in a different manner depending on the user’s needs.

For execution nodes e ∈ E, usedTimeBudget(E ) → N0 is defined to be equal
to

∑
scj∈SC | e∈δA(scj)

sumWcets(scj ), which is the sum of the wcet(s) of those
ASWCs that are active on execution node e. A constraint ensures that ∀e ∈ E :
usedTimeBudget(e) ≤ totalTimeBudget(e).

On vehicle-level, the property prioSumAllSCs(V) → N is defined as the sum of
the priorities of the actively deployed ASWC-Clusters in the initial deployment
without any isolation. In addition, the property prioSumActiveSCs(V) → N is
the sum of the priorities of all ASWC-Clusters SC′ ⊆ SC that are actively
deployed in the current system situation with some isolations.

Finally, the following two properties define the solution matrices that contain
the mapping of ASWCs S to ASWC-Clusters SC and the deployment of the
ASWC-Clusters SC to the execution nodes E.

– map(S, SC) → {0, 1}: Mapping of ASWCs s ∈ S to ASWC-Clusters sc ∈
SC. [0: s /∈ α(sc), 1: s ∈ α(sc)].

– deploy(SC,E) → {0, 1, 2, 3}: Deployment of ASWC-Clusters sc ∈ SC (and
it’s ASWCs si ∈ α(sc)) to execution nodes e ∈ E. [0: e /∈ δ(sc), 1: e ∈ δP (sc),
2: e ∈ δA(sc) while sc is a master on e, 3: e ∈ δA(sc) while sc is a hot-standby
slave on e]



212 K. Becker et al.

Notice that the decision if an ASWC-Cluster instance becomes a master or
a hot-standby slave is done dynamically at runtime by a Platform-Management
component of the Runtime-Environment (RTE) of the proposed vehicle platform.
This is, because there are also other reasons beside node-isolations that may lead
to the deactivation of a master. Hence, the calculated master/slave deployments
as shown in this paper are not used as predefined runtime-configuration, but at
design-time to statically analyze the fail-operational runtime-behavior. It can be
analyzed under which circumstances it is possible at runtime to keep a master
respectively a slave alive in the presence of faults that lead to the isolation of
execution nodes.

3.4 Basic Deployment Constraints

In this section we describe some exemplary constraints that limit the solution
space of the calculated deployments to ensure the properties listed in section 2.2.

To define the constraints, we setup an arithmetic model. We use two condi-
tional functions in the constraints. Function Ite(I, T, E) has three parameters.
The first parameter describes an if-clause I. If I is true, then the second pa-
rameter T is used in the constraint, else the third parameter E. The second
function that we use is Implies(I, T ), which is true for (¬I ∨T ). Both functions
are provided by the SMT-Solver.

Listing 1 shows some basic constraints of the described deployment model.

1 ∀sc ∈ SC :
2

∑
e∈E Ite(deploy(sc, e) �= 0, 1, 0) = failOp(sc) + 1

3

4 hotStandbySlaveReq(sc) = Ite(
5 And(failOp(sc) > 0,minFTT (sc) ≤ frt(V)), 1, 0)
6

7 Implies( masterPresent(sc) = 1,
8

∑
e∈E Ite(deploy(sc, e) = 2, 1, 0) = 1)

Listing 1. Some basic constraints

The constraint in line 2 ensures the correct number of allocations of ASWC-
Clusters. Clusters with failOp(sc) = n have to be allocated n+ 1 times. Hence,
|δ(sc)| = n+ 1.

Lines 4-5 show the constraint that defines when a hot-standby slave is required
for a ASWC-Cluster. If the cluster contains fail-operational ASWCs and has a
minFTT smaller or equal than the vehicle’s fault-recovery time (frt), then a
hot-standby slave is required for that cluster.

The constraint in lines 7-8 controls the presence of the master for each cluster.
If a master is present, it is ensured that it exists exactly once. To deactivate a
master, masterPresent(sc) has to become 0. This allows to give feedback that
sc cannot be executed in the current solution.

The hot-standby slaves are handled similarly by considering the property
hotStandbySlaveReq(SC ). Additional constraints ensure for instance that if both
the master and the hot-standby slave are present, then they have to be active
on two execution nodes with different power-supplies.



Deployment Calculation and Analysis for Fault-Tolerant Systems 213

3.5 Reconfigurations after Isolations

Let EC
f ⊂ EC be the set of isolated execution nodes. For all ei ∈ EC

f , we set
isolated(ei) = 1. It is ensured by constraints that no ASWC-Cluster is activated
anymore on one of the isolated execution nodes.

Definition 6. A Platform-Availability-Graph (PAG) is a directed acyclic graph
G = (V,E). Each vertex V represents a set of alive central execution nodes
EC

a = EC \EC
f . The edges E describe a transition between two vertices, meaning

that some ei ∈ EC move from EC
a to EC

f . A transition happens due to an
isolation or if a power-supply disappears.

Fig. 2(a) shows an example CPC containing four central execution nodes
(DCCs) and the two power-supplies (red and blue).

DCC
1

DCC
4

DCC
2

DCC
3

Blue 
Power Supply

Red 
Power Supply

B R

Ethernet

(a) An example Central Platform
Computer (CPC) with 4 DCCs

1,2,3,4

2,3,4 1,3,4 1,2,4 1,2,3 1,3 2,4

-1 -2 -3 -4 -R -B

(b) Example PAG considering only one fault

Fig. 2. Platform-Availability-Graph (PAG)

When considering only one fault, the PAG looks like shown in Fig. 2(b).
The vertices are labeled with the Ids i of the alive nodes ei ∈ EC

a . The edges
are labeled with the Id i of that ei ∈ EC

f which has recently been isolated
respectively with the power-supply (R,B) that has recently been broken down.

Fig. 3 shows how the deployment from Fig. 1 is reconfigured in case DCC 2 has
to be isolated. The passive cold-standby slave of cluster sc2 has to be activated,
because the former master gets lost. Assuming that sc1 and sc2 cannot run
simultaneously on e1 due to resource constraints, sc1 has to be passivated. This is
allowed as sc1 contains ASWCs that have no requirement to be active after a fault
(failOp = 0). However, as sc1 becomes passivated, feature f1 cannot be provided
anymore, because two of the three ASWCs that realize f1 are passivated. Notice
that all requirements concerning fail-operationality are met in this example.

We now show some formal constraints that describe the validity of follow-up
deployments that become active after isolations of execution-nodes, forcing a
transition in the PAG.



214 K. Becker et al.

e1 (DCC 1)

sc1 (Active)

sc2 (Passive)

e2 (DCC 2)

sc2 (Active)

s1
failOp=0

s2
failOp=0

s3
failOp=1

sc1
failOp=0

sc2
failOp=1

Passive
Cold-Slave

Active
Master

Active

e1 (DCC 1)

sc1 (Passive)

sc2 (Active)

e2 (DCC 2)

sc2 (Isolated)

e2 CC 2)

sc d)

e2 (DCC 2)

sc2 (Isolated)

Feature f1
failOp=0

Feature f2
failOp=1

s1
failOp=0

s2
failOp=0

s3
failOp=1

sc1
failOp=0

sc2
failOp=1

Active
Master

IsolatedPassive

Feature f1
failOp=0

Feature f2
failOp=1

c

failOp=0

sc1
failOp=0

failOp=0p

s1
failOp=0p failOp=0p

s2
failOp=0p

Feature f1
failOp=0

Feature f1
failOp=0

Fig. 3. Example of a gracefully degraded system after an isolation

The constraints shown in Listing 2 ensure that no present allocation or acti-
vation of an ASWC-Cluster changes unnecessarily during a PAG-transition. The
notation mapprev(s, sc) and deployprev(sc, e) denote the mapping of ASWC to
clusters respectively the deployment of clusters to nodes that were previously
active before the PAG-transition.

1 ∀s ∈ S, ∀sc ∈ SC :
2 Implies(mapprev(s, sc) = 1, map(s, sc) = 1)
3

4 ∀sc ∈ SC, ∀e ∈ E :
5 Implies(deployprev(sc, e) = 0, deploy(sc, e) = 0)
6

7 ∀sc ∈ SC, ∀em, es ∈ E :
8 Implies(And(deployprev(sc, em) = 2, deployprev(sc, es) = 3,
9 isolated(em) = 1, isolated(es) = 0,

10 masterPresent(sc) = 1),
11 deploy(sc, es) = 2)

Listing 2. Constraints for valid post-isolation deployments

Lines 1-2 ensure that the mapping of ASWCs to the ASWC-Clusters does not
change. Lines 4-5 ensure that no reallocation of an ASWC-Cluster is performed
after a PAG-Transition. Lines 7-11 ensure that if a master and a hot-standby
slave were present but the execution node of the master has been isolated, then
the former hot-standby slave should become the new master. The other cases,
like when only a master is required, are handled in a similar manner.

In order to decide about the deactivation order for the ASWC-Clusters, each
instance of a cluster gets assigned a priority. Listing 3 exemplarily shows how the
cluster-priorities can be calculated and how these are summed up to the vehicle
priority-points prioSumAllSCs(V) and prioSumActiveSCs(V).



Deployment Calculation and Analysis for Fault-Tolerant Systems 215

1 ∀sc ∈ SC :
2 prioPointsMaster(sc) = asil(sc) + failOp(sc) + 2
3

4 prioPointsHotSlave(sc) = Ite(hotStandBySlaveReq(sc) = 1 ,
5 asil(sc) + failOp(sc) + 1 , 0))
6

7 prioSumAllSCs(V) =
∑

sc∈SC(prioPointsMaster(sc)
8 + prioPointsHotSlave(sc))
9

10 prioSumActiveSCs(V) =
∑

sc∈SC

∑
e∈E(

11 Ite( deploy(sc, e) = 2 ,
12 prioPointsMaster(sc),
13 Ite(deploy(sc, e) = 3, prioPointsHotSlave(sc), 0)))

Listing 3. Calculation of the priority points of the single deployed instances

Finally, these priority-points can be used to decide which cluster instances
have to be deactivated when the system resources become insufficient. Listing 4
depicts one simple algorithm to do this.

1 pr io r i t yReduct ion := 0
2 whi le True :
3 s . push ( )
4 s . add ( prioSumAllSCs (V) − pr io r i t yReduct ion
5 = prioSumActiveSCs (V ) )
6 r e s u l t := s . check ( )
7 s . pop ( )
8 i f r e s u l t = sat : break
9 pr io r i t yReduct ion := pr io r i t yReduct ion + 1

10 i f prioSumActiveSCs (V) = 0 : e x i t

Listing 4. Determine the set of deployable instances

Before executing this algorithm, all deployment constraints and the set of
isolated execution nodes are defined. When a PAG-transition is calculated, some
solution properties of the former deployment are set as fixed properties for the
follow-up deployment, e.g., to avoid undesired changes in the deployment.

Line 3 pushes the already set constraints onto a stack. Line 4-5 add a new
constraint defining the desired value of prioSumActiveSCs in the solution. Af-
terwards, the problem is checked and the additional constraint is removed again
in line 7. If there exists a solution for the problem, line 8 evaluates to True and
the algorithm terminates successfully with a valid follow-up deployment. If no
solution exists, prioSumActiveSCs is decreased until a valid solution is found.
Decreasing the value of prioSumActiveSCs allows to deactivate those cluster in-
stances whose priorities sum up to prioSumAllSCs(V)− prioSumActiveSCs(V).
This mechanism is repeated as long as the property prioSumActiveSCs(V) be-
comes zero. When this is the case, the algorithm exits unsuccessfully, meaning
that no valid follow-up deployment exists (line 10). Instead of this linear search,
also a more efficient binary-search or other algorithms could be applied, but this
was not in focus of our work. We implemented the system model, constraints
and algorithms using the Z3 SMT-Solver [8].



216 K. Becker et al.

4 Evaluation and Example

In this section we show the applicability of our approach on a simplified example
from the automotive domain. Consider the following features and ASWCs:

Feature fi ASWCs si of χ(fi) asil(si) failOp(si) wcet(si)
in ms

f1 : Infotainment s1 : Infotainment QM 0 2
f2 : Energy-
Management

s2 : RemainingRangeCalc
s3 : EnergyEfficiencyAssist

A
A

0
0

0.7
0.3

f3 : ADAS-A s4 : AdasSwc1
s5 : AdasSwc2

C
D

0
1

1.7
1

f4 : ADAS-B s5 : AdasSwc2 D 1 1
f5 : Manual-
Driving

s6 : ManualAcceleration
s7 : ManuelBraking
s8 : ManualSteering

D
D
D

3
3
3

1
1
0.5

The features f3 and f4 are placeholders for some Advanced Driver Assistance
Systems (ADAS), like an ACC or automatic parking. Let f4 be required to stay
active after a failure, but f3 is not required to be active after a failure. As ASWC
s5 contributes to realize both f3 and f4, it has failOp(s5 ) = 1. As ASWC s4
only realizes f3, it is sufficient that failOp(s4 ) = 0.

In this example, five ASWC-Clusters {sc1, ..., sc5} are established. The clus-
ters are: α(sc1) = {s1}, α(sc2) = {s2, s3}, α(sc3) = {s4}, α(sc4) = {s5} and
α(sc5) = {s6, s7, s8}. Notice that ASWC s5 is only in one cluster, although it
contributes to two features.

Considering a CPC with four execution nodes (DCCs) as shown in Fig. 2(a),
a valid initial deployment for the example is shown in Fig. 4(a). Fig. 4(b) shows
the follow-up deployment for the case that DCC 1 has been isolated. The colors
(red/blue) of the execution nodes denote their attached power-supply.

We assume here that minFTT (si) ≤ frt(V) for the fail-operational ASWCs.
Hence, hot-standby slaves are required. As provided execution time of the ex-
ecution nodes per cycle, we assume totalTimeBudget(ei ) = 4ms. It can be
seen in both Fig. 4(a) and Fig. 4(b) that ∀ei ∈ E : usedTimeBudget(ei ) ≤
totalTimeBudget(ei ).

In the initial deployment, all clusters can be deployed as required. After the
isolation of e1 (= DCC 1), the master of cluster sc4 gets lost and its slave on e2
becomes the new master. As failOp(sc4 ) = 1, no new slave is created as it is not
required that sc4 is still present after the next isolation. Furthermore, the slave
of cluster sc5 gets lost. As failOp(sc5 ) = 3, an inactive instance of sc5 must be
activated to serve as new slave to prepare for the next isolation. The new slave
of sc5 can only be activated on e3 and not on e2, because master and slave must
not depend on the same power-supply. However, to be able to execute cluster
sc5 on execution node e3, cluster sc3 has to be deactivated as the sum of the
WCETs of sc3 and sc5 would exceed the time-budget of e3. The deactivation of
sc3 forces the deactivation of feature f3, as α(sc3) = {s4} ⊆ χ(f3).



Deployment Calculation and Analysis for Fault-Tolerant Systems 217

e1 (DCC 1)

usedTimeBudget: 
3.5 ms

e2 (DCC 2)

usedTimeBudget: 
3 ms

e3 (DCC 3)

usedTimeBudget: 
1.7 ms

e4 (DCC 4)

usedTimeBudget: 
3.5 ms

sc5 (HotSlave)

asil: D
failOp: 3
sumWcets: 2.5 ms
ASWCs: s6,  s7,  s8

sc4 (Master)

asil: D
failOp: 1
sumWcets: 1 ms
ASWCs: s5

sc1 (Master)

asil: QM
failOp: 0
sumWcets: 2 ms
ASWCs: s1

sc4 (HotSlave)

asil: D
failOp: 1
sumWcets: 1 ms
ASWCs: s5

sc5 (Inactive)

asil: D
failOp: 3
sumWcets: 2.5 ms
ASWCs: s6,  s7,  s8

sc3 (Master)

asil: C
failOp: 0
sumWcets: 1.7 ms
ASWCs: s4

sc5 (Inactive)

asil: D
failOp: 3
sumWcets: 2.5 ms
ASWCs: s6,  s7,  s8

sc2 (Master)

asil: A
failOp: 0
sumWcets: 1 ms
ASWCs: s2,  s3

sc5 (Master)

asil: D
failOp: 3
sumWcets: 2.5 ms
ASWCs: s6,  s7,  s8

prioSumAllSCs(V): 40
prioSumActiveSCs(V): 40

Deactivated Masters: --

Deactivated Features: --
Deactivated required hot-standby Slaves: --

(a) Initial deployment for the example

e1 (DCC 1)

ISOLATED

e2 (DCC 2)

usedTimeBudget: 
3 ms

e3 (DCC 3)

usedTimeBudget: 
2.5 ms

e4 (DCC 4)

usedTimeBudget: 
3.5 ms

sc5 (Inactive)

asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6,  s7,  s8

sc4 (Inactive)

asil: D
failOp: 1
sumWcets: 1 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 0
ASWCs: s5

sc1 (Master)

asil: QM
failOp: 0
sumWcets: 2 ms
hotStandbySlaveReq: 0
hotStandbySlavePresent: 0
ASWCs: s1

sc4 (Master)

asil: D
failOp: 1
sumWcets: 1 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 0
ASWCs: s5

sc5 (Inactive)

asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6,  s7,  s8

sc3 (Inactive)

asil: C
failOp: 0
sumWcets: 1.7 ms
hotStandbySlaveReq: 0
hotStandbySlavePresent: 0
ASWCs: s4

sc5 (HotSlave)

asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6,  s7,  s8

sc2 (Master)

asil: A
failOp: 0
sumWcets: 1 ms
hotStandbySlaveReq: 0
hotStandbySlavePresent: 0
ASWCs: s2,  s3

sc5 (Master)

asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6,  s7,  s8

Deactivated Masters: sc3

Deactivated Features: f3

Deactivated required hot-standby Slaves: sc4
prioSumAllSCs(V): 40
prioSumActiveSCs(V): 29

(b) Followup deployment after DCC1 has been isolated

Fig. 4. Example about an initial and a followup deployment



218 K. Becker et al.

The sum of priority points in the initial solution was 40. The loss of the
master of sc3 and the slave of sc4 forces a loss of 11 priority points, because
prioPointsMaster(sc3) = 5 and prioPointsHotSlave(sc4) = 6. Hence, when
DCC1 is isolated, only 29 priority points can be provided by the system (cf. Fig.
4(b)). When this procedure is continued by isolating more DCCs in arbitrary
order, the cluster sc5 always has a master instance, even if only one DCC is left.
This is important as failOp(sc5 ) = 3.

The designer can analyze the system’s fail-operational behavior by considering
the set of deactivated features for each situation. This allows to analyze if all
desired system and feature properties can be fulfilled, without executing the
system. A valid initial deployment is calculated automatically, but can also be
changed manually in order to analyze the systems graceful degradation scenarios
depending on different initial deployments.

5 Related Work

In this section, we discuss related work of deployment approaches with focus on
safety and fail-operationality.

In [9], the authors show an approach to analyze graceful degradation. They
use a utility function to measure the set of active features. This can be seen
as quite similar to our sums of priorities. To reduce complexity, they group
components by defining subsystems based on the interfaces of components. We
group components by their dependability requirements. This allows separation
of mixed-critical components. The main differences are that they consider a
fail-silent fault-model, while we consider fail-operational behavior of features.
Furthermore, we focus more explicitly on deployment constraints that ensure
fail-operational behavior. Another difference is that we consider the explicit de-
activation of components to be able to keep alive other components that are
required to behave fail-operational. They consider a fixed hardware configura-
tion, while we consider a HW-Architecture whose provided resources decrease
after random hardware failures due to execution node isolations.

In [10], fault-tolerant deployments with focus on the trade-off between perfor-
mance and reliability are optimized using a MILP-Solver. However, the approach
does not consider mixed criticalities explicitly, and also at most 1 replication is
supported due to the single node failure model. The analysis of deployments
after hardware-faults is also not considered.

6 Conclusion and Future Work

In this paper, we introduced a formal model of mixed-critical systems includ-
ing the relationship of functional features and software components realizing
the functional features. A set of formal arithmetic constraints describe valid de-
ployments of the software components to a fault-tolerant HW/SW platform for
vehicles. Based on the model and the constraints, an approach to calculate and
analyze valid deployments of mixed-critical components was provided.



Deployment Calculation and Analysis for Fault-Tolerant Systems 219

The analysis focuses on the fail-operational behavior of features in the pres-
ence of random hardware failures. It can be analyzed which features can be
uphold depending on the available set of execution nodes. We implemented the
model as input for an SMT-Solver, which calculates the deployment solutions.
We analyzed which components and features have to become inactive after cer-
tain failures. An evaluation was shown by an automotive example.

As future work, we are going to include communication channels between com-
ponents into the model. Also, we want to treat the integration of new software
components into existing deployments during the use case of extensions of the
vehicle by new functional features. Finally, we want to evaluate the scalability
of our approach based on the layout of a concept car that we construct.

Acknowledgments. This work is partially funded by the German Federal Min-
istry for Economic Affairs and Energy (BMWi) under grant no. 01ME12009
through the project RACE (Robust and Reliant Automotive Computing Envi-
ronment for Future eCars) (http://www.projekt-race.de/).

References

1. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. on Dependable and Secure
Computing (1), 11–33 (2004)

2. Blanke, M., Staroswiecki, M., Wu, N.E.: Concepts and methods in fault-tolerant
control. In: Proceedings of the American Control Conf., vol. 4. IEEE (2001)

3. Sommer, S., Camek, A., Becker, K., Buckl, C., Knoll, A., Zirkler, A., Fiege, L.,
Armbruster, M., Spiegelberg, G.: Race: A centralized platform computer based ar-
chitecture for automotive applications. In: IEEE Vehicular Electronics Conference
/ Int. Electric Vehicle Conference (VEC-IEVC) (2013)

4. Armbruster, M., Fiege, L., Freitag, G., Schmid, T., Spiegelberg, G., Zirkler, A.:
Ethernet-Based and Function-Independent Vehicle Control-Platform: Motivation,
Idea and Technical Concept Fulfilling Quantitative Safety-Requirements from ISO
26262. In: Adv. Microsystems for Automotive Applications (AMAA), pp. 91–107
(2012)

5. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for
embedded programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001.
LNCS, vol. 2211, pp. 166–184. Springer, Heidelberg (2001)

6. International Organization for Standardization: ISO/DIS 26262-1 - Road vehicles
- Functional safety, Part 1 Glossary. Technical report, ISO/TC 22 (2011)

7. Becker, K., Armbruster, M., Schätz, B., Buckl, C.: Deployment Calculation and
Analysis for a Fail-Operational Automotive Platform. In: 1st Workshop on Engi-
neering Dependable Systems of Systems (EDSoS) (2014)

8. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Shelton, C., Koopman, P., Nace, W.: A framework for scalable analysis and de-
sign of system-wide graceful degradation in distributed embedded systems. In:
Int. Workshop on Object-Oriented Real-Time Dependable Systems (WORDS), pp.
156–163. IEEE (2003)

10. Boone, B., De Turck, F., Dhoedt, B.: Automated deployment of distributed software
components with fault tolerance guarantees. In: 6th Int. Conf. on Software Engineer-
ing Research, Management and Applications (SERA), pp. 21–27. IEEE (2008)


	A Formal Model for Constraint-Based Deployment Calculation and Analysis for Fault-Tolerant Systems
	1 Introduction and Motivation
	2 Proposed System Architecture and Safety Concept
	2.1 System Architecture
	2.2 Fault-Model and Safety Concept

	3 Deployment Calculation and Analysis
	3.1 Formal System and Deployment Model
	3.2 Fixed Properties of the Deployment Model
	3.3 Solution Properties of the Model
	3.4 Basic Deployment Constraints
	3.5 Reconfigurations after Isolations

	4 Evaluation and Example
	5 Related Work
	6 Conclusion and Future Work
	References




