
CHROMOSOME: A Run-Time Environment for
Plug & Play-Capable Embedded Real-Time Systems

Christian Buckl, Michael Geisinger, Dhiraj Gulati, Fran J. Ruiz-Bertol
fortiss GmbH

Cyber-Physical Systems
Munich, Germany

Email: {buckl, geisinger, gulati, ruiz}@fortiss.org

Alois Knoll
Technische Universität München
Department of Computer Science

Robotics & Embedded Systems
Email: knoll@in.tum.de

Abstract—Developers of embedded systems are increasingly
facing requirements concerning adaptivity. The term adaptivity
covers several different aspects. In this paper, we present an
innovative open-source run-time system that enables adding and
removing applications and adapting to changes in the hardware
topology while still guaranteeing traditional requirements of
embedded systems such as real-time or safety. The system
uses a data-centric approach to achieve a modular application
design and to enable the interaction of application components
created by independent developers. Using a requirements-centric
approach, the system can reserve the resources such as processor
time, memory or network bandwidth required by application
components. New applications can only be added if enough
resources are available. The paper details these concepts and
presents the architecture of the run-time system.

I. INTRODUCTION

Adaptivity is becoming an important requirement for em-
bedded systems. While in the past embedded systems were
designed once and then remained unchanged until the end of
their life cycle several years later, modern embedded systems
and especially their software need to be adapted frequently.
Adaptivity might be used to achieve design goals such as
system integration, system dynamics and reflection.

System integration: In the past, embedded systems were
often isolated and typically implemented one unique func-
tion, e.g., a control task. Due to performance advances of
modern embedded hardware and network technologies, the
resulting systems have become increasingly complex. As a
result, embedded systems today implement several features
in a distributed system. A prominent example is automotive
software running on up to one hundred electronic control
units inside a single car and executing thousands of different
functions ranging from driving to infotainment. However, these
functions and domains have different life cycles and customers
are increasingly demanding the ability to update or even add
new functions [1], [2].

System dynamics: One more reason to require adaptivity
is the dynamics of embedded systems. For example, in sensor
networks where nodes appear and vanish, the configuration
should adapt to the topology to deliver the best possible
performance. A similar requirement can be derived for fault-
tolerant systems. In the past, reconfiguration was designed
manually. Due to the rising complexity and accordingly the
increasing solution space, an automated solution is desirable.

The paper was presented at APRES 2014. Copyright retained by the authors.

Reflection: Another kind of adaptivity is based on reflec-
tion. If the run-time system is capable of understanding and
interpreting the services that it provides, it can adapt its func-
tionality to deliver the optimal performance. For instance, the
system may analyze the data flow in a distributed application
and route the traffic over redundant communication channels
in order to optimize bandwidth usage or safety.

In this paper, we focus on the first two aspects of adap-
tivity: changes of the application induced by the user and
adaption due to topology changes. The idea is to provide
an appropriate run-time environment for embedded real-time
systems that supports plug & play regarding both the software
and the network level. Although many run-time environments
and middleware solutions are available, they do not match the
requirements of adaptive embedded systems. On the one side,
run-time systems known in the embedded domain typically
rely on a static configuration to satisfy requirements such as
real-time behavior or safety. On the other side, middleware
solutions from the web service domain satisfy adaptivity
requirements, but do not guarantee hard real-time capability
or fulfillment of resource constraints. The paper addresses the
challenge of fulfilling adaptivity needs while still guaranteeing
traditional requirements from the embedded systems domain.
For instance, changes of the configuration must not result in
the violation of real-time requirements or resource conflicts.

As a main contribution, the paper presents an approach
for combining these two conflicting requirements. The general
idea is to use a requirements-centric approach in contrast to
the usually applied configuration-centric approach of today’s
embedded run-time environments. In addition, we replace the
commonly used message-centric approach by a data-centric
approach with preceding domain modeling, i.e., we specify
communication requirements based on the data itself. The
approach is implemented in the open-source run-time envi-
ronment CHROMOSOME1 (abbreviated as XME).

The paper starts with a discussion of the basic concepts
in Section II. Section III presents the architecture of the
developed run-time environment. A tool for specification of
application requirements and the according tailoring of the run-
time environment is presented in Section IV. An overview of
related research projects and a discussion of related work is
found in Section V. Section VI summarizes the paper and gives
an outlook of future work.

1http://chromosome.fortiss.org/

mailto:buckl@fortiss.org
mailto:geisinger@fortiss.org
mailto:gulati@fortiss.org
mailto:ruiz@fortiss.org
mailto:knoll@in.tum.de

II. BASIC CONCEPTS

This paper presents a cross-platform run-time environment
(RTE) called XME that provides adaptivity features to the
application layer. Modifications in the application layer may
be triggered either by the end user or by changes in the
system’s topology, i.e., nodes may appear or disappear at run-
time. We assume that changes occur rarely compared to the
regular execution of the system. Following the plug & play
terminology, we therefore focus on an efficient play-phase,
while we assume that efficiency in the plug-phase is not
of great importance. Scheduling, network routing and other
decisions are based on configuration/lookup tables. Reserva-
tion of required resources happens already in the plug-phase.
This guarantees a very efficient execution in the play-phase
in contrast to plug & play capable systems that dynamically
calculate every decision. The drawback is that this reservation
strategy requires a pessimistic system design in which more
resources (e.g., CPU time, memory) have to be available than
initially required.

In the plug-phase, XME calculates the required config-
uration changes as a shadow configuration in parallel to
executing the existing configuration. Therefore, the normal
system execution is not interrupted. XME updates the lookup
tables after finding a valid new configuration. Furthermore, in
order to support real-time reactions to expected changes, an
adequate shadow configuration may be calculated in advance.
This is especially important to achieve fault-tolerance in real-
time systems. The time for system reaction is then limited to
the duration of detecting and verifying a component’s failure
as well as selecting the appropriate shadow configuration. This
is similar to today’s manually implemented error reactions.

The main concept to support the calculation of correct
configurations in the presence of extra-functional requirements
(e.g., timing guarantees) is a requirements-centric approach.
Instead of manual configuration of the RTE with respect to
the application components, system developers directly specify
respective requirements. This can be real-time requirements,
such as end-to-end latency or jitter (as discussed in [3]), or
requirements regarding the safety level if the RTE provides
appropriate mechanisms.

Another key requirement to achieve plug & play is the
existence of a mechanism to integrate new software compo-
nents. Popular mechanisms to achieve this requirement in-
clude service oriented design and data-centric design. Service
oriented design is based on request/response communication
and is used for example in web services. The data-centric
approach, suggested for example by OMG DDS [4], focuses
on specification of communication requirements instead of
defining fixed communication relationships. Since embedded
systems very often communicate in a unidirectional way to
save resources, we implemented XME based on the data-
centric approach. Request/response style communication is
implemented on top of the data-centric framework.

The data-centric approach is based on publish-subscribe
semantics. In a publish-subscribe environment, components
declare the types of data they produce and consume, commonly
referred to as topics [5]. XME sets up a chain of application
components communicating with each other based on this
functional interface description.

To achieve interoperability between components of differ-
ent developers that may even be unaware of each other, it
is required to agree upon common topics. We achieve this
requirement by a domain modeling approach in which so-
called dictionaries predefine the available topics. This ap-
proach ensures that syntax and semantics of exchanged data are
unambiguously defined. Apart from specifying the semantic
types of data items, the dictionary also provides attributes to
describe data items in a more detailed way. Attributes denote,
for example, the possible range of a data value, the precision or
the safety-criticality level. The matching between subscribers
and their potential publishers accounts for attributes as well.

Finally, modularity requirements also affect XME. Embed-
ded systems very often consist of heterogeneous computing
platforms with very different resources and requirements. This
fact must also be taken into account when designing an RTE.
Already in 2006, Buttazzo stated the requirement that:

“A true component-based approach should sepa-
rate mechanisms from policies in order to replace
a scheduling algorithm or a resource management
protocol without affecting the applications and the
others components.” [6]

As a result, XME is designed to be very modular. We
distinguish between different capabilities of XME nodes.
Some resource-constrained nodes might not need to support
plug & play in the sense of installing new software, but may
only need to support its integration into a network of other
nodes. Instead, more powerful nodes might be able to calculate
the system’s topology and decide on reconfiguration actions.
Therefore, the system developer specifies which kind of ser-
vices is added to the RTE instance of a specific node. Further-
more, different implementations of one RTE component might
be available. As an example, the scheduler might be available
as a time-triggered, event-triggered or hybrid scheduler. The
developer or the tooling can then select the most appropriate
implementation.

III. RTE ARCHITECTURE

The XME RTE abstracts from resources such as processor,
memory and communication, and provides a uniform com-
munication mechanism to the application components running
on top of the RTE. We call the federation of computational
nodes running XME with the ability to communicate with
each other an XME ecosystem. Currently, we assume that
an ecosystem has one master node, which orchestrates the
login and plug & play process. Communication between the
application components executed on the different nodes is
performed in a directed fashion, i.e., the publishing node sends
the data directly to the subscribing node(s).

XME assumes that the application itself is composed of
modular and reusable components. The application compo-
nents communicate via publications and subscriptions with
each other. Other interaction mechanisms are excluded due to
safety reasons. The architecture of the XME RTE is depicted
in Figure 1 and described in detail in the following.

A. Components for RTE Play

The three main components that are required to execute
applications and to implement the data-centric communica-

Configuration

EM Execution Manager

Data

Handler

 Broker

 EM

Application

Component

Application

Component
Application

Component

Platform Abstraction Layer (PAL)

Ethernet

Communication

Library

e.g. Ethernet

GPIO, ADC, …

Peripherals

Operating System / Board Support Package

Interrupts

Peripheral

Drivers

e.g. GPIO

Resources

e.g. Memory,

Task Model

Waypoints

(De-)Marshaling

UDP/TCP

Components for RTE Play

Login Client

Login

Manager

Plug & Play

Client

Plug & Play

Manager

Components

for RTE Plug

configures

PAL component

Hardware periphery

Optional component

…

Fig. 1. Architecture of the XME run-time environment.

tion (DCC) on a node are the Data Handler, the Broker and
the Execution Manager. The Data Handler provides an API
for each application component to read its subscribed data
and to write data that it publishes to other components. The
Broker’s configuration lists the data subscription requirements
of each application component. It monitors the availability
of the respective data in the Data Handler and enables the
components for execution in the Execution Manager as soon
as all requirements are satisfied. The Execution Manager is
responsible for executing components enabled by the Broker.
In addition, it monitors the execution of components with re-
spect to their specified worst-case execution time (WCET) and
reports violations. The configuration of these main components
is determined by lookup tables as mentioned in Section II.

B. Waypoints

Depending on the network topology, the RTE performs
several actions to transfer the data. If publisher and subscriber
reside on two different nodes, a message is sent over the
network. This includes converting the data to a common byte
order (marshaling). However, further actions might also be
necessary, such as adding a CRC checksum to detect message
corruption or sending of data in a redundant way in safety-
critical scenarios. One solution to solve this issue would be
the introduction of according network stack layers. However, in
embedded systems, the requirements on the processing of data
during send and receive are very heterogeneous and a layering
approach might result in a huge overhead. Furthermore, some
processing steps are the same for different communication
protocols. Therefore, we introduce a modular concept called
waypoints. Waypoints are lightweight software components
that implement a concrete mechanism, e.g., marshaling. Mul-
tiple waypoints can be configured to form a data processing
chain. This leads to a lightweight yet powerful design to
manage heterogeneous requirements. XME applies a set of
predefined rules in order to select the waypoints to be included
in a specific processing chain during the plug-phase.

C. Platform Abstraction Layer (PAL)

XME offers a platform abstraction layer (PAL) which
consists of a uniform API to access basic services provided
by the underlying operating system. Services covered on all
platforms include memory management, a task model and
communication mechanisms (compare Figure 1). To maintain
platform independence, software components should access
low-level features through the PAL. Currently XME supports
several operating systems, but we also intend to provide a
version that runs without operating system support.

D. Components for RTE Plug

To cope with changes in the XME ecosystem, we provide
several components for the plug-phase, namely login-related
components and plug & play-related components. Adaptivity
features are only available on a node if those components
are present. When an external node logs into (i.e., joins) an
XME ecosystem, the Login Client on that node establishes
an initial communication route to an existing Login Man-
ager, which subsequently enables plug & play and application
components to use DCC. The Plug and Play Client of a
logged-in node is responsible for announcing the “pluggable”
application components on this node to the Plug and Play
Manager. Information exchange happens via manifests that
describe the publications, subscriptions and requirements of the
respective components. The Plug and Play Manager collects
this information and sends it to the Logical Route Manager
(not shown in Figure 1), which calculates all possible com-
munication routes. Subsequently, the Plug and Play Manager
checks the feasibility of the calculated routes in cooperation
with the affected Plug and Play Clients by invoking various
configurators. These configurators include the global Network
Configuration Calculator (not shown in Figure 1) to check
whether enough bandwidth is available, but also configurators
on the affected nodes to guarantee the required resources. Only
if reservation of required resources is successful, the Plug and
Play Manager initiates the switch to the new configuration.
Otherwise, XME rejects the topology change.

IV. TOOLING

The complexity of distributed embedded systems forces
developers to rigorously define the requirements for those
systems. Specialized tools help to map the requirements to the
implementation level. CHROMOSOME Modeling Tool (XMT)
is an Eclipse-based model-driven design tool, which defines
an iterative workflow for specification, implementation and
evolution of distributed embedded systems in various domains
such as industrial automation, automotive and robotics. The
specified requirements include communication patterns, real-
time constraints and sanity criteria and are traceable to the
different steps of the workflow. XMT allows declaring topic
dictionaries, to develop application components and to specify
the structure of the XME ecosystem. The XMT model supports
validation in order to detect design problems early in the
development phase. Finally, we apply code generation to
configure the RTE. This concept also allows to generate a
completely static (i.e., off-line generated) RTE configuration
that has no run-time adaptivity, but also no run-time overhead.

V. APPLICATION AREAS AND RELATED WORK

A. Related Research Projects

The development of XME is influenced by other research
projects from different domains. XME combines those require-
ments and generalizes them in order to provide a domain inde-
pendent RTE. Typical requirements include run-time adaptivity
and time-triggered behavior with real-time guarantees.

The RACE project [7] aims at reducing automotive ar-
chitecture complexity while enabling new adaptivity features.
XME provides RACE with a run-time environment that en-
ables plug & play while giving guarantees on the execution
of applications. For this purpose, the Execution Manager is
configured for hard real-time scheduling based on WCET
of components. RACE requires several new features such as
spatial partitioning of application components and a safety
manager with respective state management. Spatial partitioning
is realized with PikeOS as underlying operating system. XME
runs in a special “master” partition. Addition and removal of
software components is realized by starting/stopping them in
their respective partitions. Hence, applications can be plugged
at run-time without affecting other parts of the system.

In contrast, AutoPnP [8] focuses on providing plug & play
functionality to the industrial automation domain. Today’s
individualization of products makes it necessary to recon-
figure production facilities on demand without stopping the
production process. XME realizes the software aspect of this
reconfiguration. AutoPnP uses an event-triggered “best effort”
execution model with known event arrival rates. Hence, the
Execution Manager is configured to ignore WCET of com-
ponents. Reconfiguration includes the automatic detection of
hardware components and the according activation of software
components. A high-level control monitors and adapts the
data flow on demand. In order to exchange information with
existing systems, XME also interfaces with ROS [9] and PLCs
to fit the setting of AutoPnP.

B. Related Work

XME borrows the concepts of data-centric communication
from OMG DDS [4]. Unlike in DDS, in XME data is delivered
only to the nodes that need the information. This optimizes
the communication bandwidth and safety and security require-
ments are more easily addressed. A subset of the DDS quality
of service constraints is represented in XME in form of explicit
requirements in XMT. In addition, XME provides the attribute
concept for fine-grained publisher/subscriber matching.

The Robot Operating System (ROS) [9] is a well-known
middleware from the robotics domain. Although ROS and
XME share some design concepts, XME provides more guar-
antees with respect to the behavior of the distributed applica-
tion. This is due to the formal specification and requirements
analysis approach in XMT.

FRESCOR [10] is a contract-based framework for real-
time embedded systems, where applications specify their re-
quirements as contracts. The contracts of all applications are
negotiated at run-time. Contracts are similar to XME manifests
and negotiation corresponds to the tasks of the XME Plug and
Play Manager. However, there is no way to statically generate
a configuration from the contracts as it is possible with XMT.

VI. SUMMARY AND OUTLOOK

Although XME shares a number of concepts with existing
run-time environments and middlewares, such as platform
abstraction and communication, it focuses primarily on run-
time adaptivity. For this purpose, explicit requirements are
specified in model-driven tooling that is used at run-time to
assess the possibility of reconfiguration. Dedicated software
components that are transparent to application components
implement adaptivity concepts such as plug & play and lo-
gin/logout of nodes. In order to efficiently run the applications,
the execution of crucial software components is based on
lookup/configuration tables. Both XME and XMT are available
under the Apache License, version 2.0.

The future roadmap of XME includes integration of various
new features: we currently support real-time guarantees only
regarding a single node, but not the related communication. In
the future, we also want to consider end-to-end latency require-
ments. Second, the plug & play capability is currently restricted
to adding or removing complete nodes. In the next versions,
we will enable deployment of new application components
as software binaries. Third, we want to increase the comfort
of developing embedded systems by adding new features that
help the developers to guarantee extra-functional requirements:
health monitoring will be used to continuously monitor the
nodes in an XME ecosystem and adapt the configuration
automatically. Security aspects will be integrated to restrict
the topics software components can subscribe to. Finally, we
will extend our tooling to not only support the development
and deployment phases, but to provide interesting features at
system run-time as well, such as monitoring and visualization.

REFERENCES

[1] C. Buckl, A. Camek, G. Kainz, C. Simon, L. Mercep, H. Stähle, and
A. Knoll, “The software car: building ICT architectures for future
electric vehicles,” in Proceedings of the 2012 IEEE International
Electric Vehicle Conference (IEVC 2012). IEEE, 2012, pp. 1–8.

[2] M. Di Natale and A. Sangiovanni-Vincentelli, “Moving from federated
to integrated architectures in automotive: The role of standards, methods
and tools,” Proc. of the IEEE, vol. 98, no. 4, pp. 603–620, Apr. 2010.

[3] C. Buckl, I. Gaponova, M. Geisinger, A. Knoll, and E. A. Lee, “Model-
based specification of timing requirements,” in Proc. 10th ACM Intl.
Conference on Embedded Software. ACM, Oct. 2010, pp. 239–248.

[4] G. Pardo-Castellote, “OMG data-distribution service: Architectural
overview,” in Proceedings of the 23rd International Conference on
Distributed Computing Systems. IEEE, May 2003, pp. 200–206.

[5] G. Pardo-Castellote, B. Farabaugh, and W. Rick, “An introduction to
DDS and Data-Centric Communications,” RTI, Aug. 2005. [Online].
Available: http://www.omg.org/news/whitepapers/Intro To DDS.pdf

[6] G. Buttazzo, “Research trends in real-time computing for embedded
systems,” SIGBED Rev., vol. 3, no. 3, pp. 1–10, Jul. 2006.

[7] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Zirkler, L. Fiege,
M. Armbruster, G. Spiegelberg, and A. Knoll, “RACE: A centralized
platform computer based architecture for automotive applications,” in
Proc. of the 2013 Vehicular Electronics Conference and the Interna-
tional Electric Vehicle Conference (VEC/IEVC 2013). IEEE, Oct. 2013.

[8] N. Keddis, G. Kainz, C. Buckl, and A. Knoll, “Towards adaptable
manufacturing systems,” in IEEE International Conference on Industrial
Technology (ICIT 2013). IEEE, Feb. 2013, pp. 1410–1415.

[9] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating system,”
in Proc. International Conference on Robotics and Automation, 2009.

[10] FRESCOR project, “Framework for Real-time Embedded Systems
based on COntRacts,” 2008. [Online]. Available: http://www.frescor.org/

http://www.omg.org/news/whitepapers/Intro_To_DDS.pdf
http://www.frescor.org/

	Introduction
	Basic Concepts
	RTE Architecture
	Components for RTE Play
	Waypoints
	Platform Abstraction Layer (PAL)
	Components for RTE Plug

	Tooling
	Application Areas and Related Work
	Related Research Projects
	Related Work

	Summary and Outlook
	References

