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Abstract—Due to growing power density, on-chip temperature
increases rapidly, which has hampered the reliability and
performance of modern real-time systems. This paper studies
how to minimize the peak temperature for hard real-time
systems under hard real-time constraints with periodic thermal
management . A closed-form representation of the peak
temperature for such a periodic scheme is derived to tackle this
problem. Based on this closed-form and the arrival curve model
which is used to model the system workload, two approaches
that can derive periodic thermal management are proposed to
minimize the peak temperature for a given event stream with a
trade-off between complexity and accuracy. Case studies show
that our approaches can achieve similar or better level of peak
temperature but with two or three orders of magnitude lower
computation expense compared to previous work.

I. INTRODUCTION

For a hard real-time system, its operation integrity strongly
depends upon two essential principles [1]: the logical results
of the computation must be correct and the time at which
these results are produced must satisfy certain constraints. The
timing constraints are usually specified as deadlines within
which all the tasks should finish. Meeting deadlines is crucial
for hard real-time systems, otherwise critical failures may be
caused. It is often the case that hard real-time systems are
employed in safety critical applications, such as an automated
flight control system, an artificial heart, etc. In these cases, a
small fault in the correctness of the system timing manner may
cause extremely serious disasters. To ensure deadlines, real-
time system designers need to consider an important factor,
the temperature of the processor, which plays a key role in
determining the allowable execution speed [2]. However, as
the power density in current electronic devices is exponentially
increasing, the temperature on current processors can be
considerably high, which severely harms the reliability and
performance of hard real-time systems.

To control the on-chip temperature, apart from using
hardware cooling devices, alternative technologies which
dynamically detect and alleviate thermal violations have also
been adopted. Such technologies can be generally termed as
Dynamic Thermal Management (DTM) techniques [3]. Since
heat generation directly originates from power consumption,
DTM techniques manage the temperature via controlling the
power consumption of the processor. As power consumption
of processors mainly comes from dynamic and leakage power
consumption, DTM techniques follow two main mechanisms,
i.e., Dynamic Voltage Frequency Scaling (DVFS) [4]–[8], in
which the dynamic power consumption is reduced by adjusting
the supply voltage or frequency of the processor such that
the temperature is lowered, and Dynamic Power Management

(DPM) [2], [9]–[11], which transits the processor to sleep
state to diminish the leakage power such that the on-chip
temperature gets controlled.

As transistor technology is shifting toward sub-micron
domain, the leakage power increases exponentially and
becomes comparable or even greater than dynamic power [12].
According to ITRS2011 [13], leakage power dominates
the total power consumption of 32 nm or more advanced
processors. Therefore, using DPM technologies to optimize
the temperature on modern processors is more effective. In
addition, DPM techniques can also be applied on peripheral
devices such as memories, interconnects, etc. In this paper,
we propose a DPM approach, which switches the processor
between active and sleep modes according to certain patterns,
to minimize the peak temperature.

The main issue of DPM technologies is when and how
long one should turn the processor to the sleep state [14].
Meisner et al. [10] proposed a power management approach,
called PowerNap, to eliminate idle power in servers by
quickly transiting in and out of an ultra-low power state.
The processors are activated from the ultra-low power state
if an activity is detected in the network interface controller.
However, erratically transiting the processor to a low power
state causes predicting the thermal behavior almost impossible.
Furthermore, since the performance of the processor is reduced
when a DPM technology is applied, one should carefully
evaluate the execution time penalty to ensure that all events
finish within their deadlines. This evaluation is also difficult to
complete due to the unpredictability in power state transition.
To make it easy to predict the temperature evolution and
execution time penalty of the processor, one can periodically
put the processor in a lower power mode. Masud Ahmed et
al. [2] presented an offline algorithm for sporadic tasks to
minimize the peak temperature in embedded real-time systems
by utilizing thermal-aware periodic resources . The sporadic
model of the workload causes pessimism for the analysis and
results in higher peak temperature of the system, as this model
cannot model non-determinism like jitter or burst arrivals of
the system workload. In view of this, our DPM technique
designed for hard real-time systems should: (1) guarantee all
events complete within deadlines, (2) work with general event
arrival patterns, (3) explicitly demonstrate the pattern of power
mode transition and how the temperature evolves, (4) minimize
the peak temperature of the processor.

In this paper, we propose the periodic thermal management
(PTM), which holds the properties mentioned above, to
optimize the peak temperature for general events arrivals
while the deadlines are guaranteed. A single core processor
that has two power dissipation modes, ‘active’ and ‘sleep’
mode, is considered. The peak temperature is controlled by978-1-4673-7711-9/15/$31.00 c©2015 IEEE



periodically switching the processor into the sleep mode. The
PTM scheme is derived offline in order to achieve minimum
runtime overhead. Real-time Calculus [15] is employed to
model the non-deterministic event arrivals and service provided
by the processor in the time interval domain. The detailed
contributions of this paper are as follows:

• A closed-form solution of the peak temperature
with respect to the periodic thermal management is
developed.

• Two PTM algorithms that can derive periodic on/off
schemes with a trade-off between accuracy and
efficiency are developed. One offers precise solution
by making thorough searches and the other is a fast
approximation based on bounded-delay function.

• The effectiveness and efficiency of our algorithms are
studied by comparison to two related work [2], [11]
in the literature.

The rest of this paper is organized as follows. The related
work is introduced in the next section. Section III presents
system models, including hardware model, event model and
thermal model, and the problem definition. Section IV derives
the closed-form solutions of the peak temperature. Section V
presents our PTM algorithms. Several cases are studied in
Section VI and Section VII concludes this paper.

II. RELATED WORK

As stated in previous section, the thermal behaviour of a
processor is directly influenced by the power consumption.
Thus researchers in previous work on thermal-aware schedul-
ing have followed two main approaches: DVFS and DPM,
which have already been widely exploited in power-aware
scheduling. In this section, we overview previous work for
thermal-aware scheduling that based on DVFS and DPM.

Sushu Zhang et al. [4] proposed two DVFS approaches: a
pseudo-polynomial optimal algorithm and a fully polynomial
time approximation one. These two approaches can optimally
and approximately improve the system performance for a set
of periodic tasks under thermal constraints, respectively. Jian-
Jia Chen et al. [8] presented two approaches to schedule
periodic real-time tasks under DVFS while the response
time and temperature constraints are satisfied respectively.
Chantem et al. [5] made an observation about maximizing the
workload under thermal constraints. The authors demonstrated
that while working with proactive scheduling, the scheduler
which maximizes the workload under given peak temperature
must be a periodic one [2]. According to this observation, a
speed schedule was proposed to maximize the workload based
on DVFS with discrete speeds and transition overhead under
given temperature constraints. S. Wang et al. [6] presented
a reactive speed control algorithm for tasks that have the
same period to minimize temperature and performed several
schedulability tests. The aforementioned work, however, based
on either a simplified workload model, such as periodic tasks,
or the processor feature of keeping the ‘ideal’ speed, which
may not be found in recent top-of-the-line microprocessors [2].
The periodic thermal management (PTM) proposed in this
paper can handle general event arrival patterns by adopting
real-time calculus [15]. Moreover, lower power state, which
is a basic power management feature, can be conveniently
utilized to implement PTM.

There are also several researches that utilize DPM to
minimize the peak temperature under deadline constraints.
Kumar et al. [9] developed a thermally optimal stop-
go scheduling called JUst Sufficient Throttling (JUST) to
minimize peak temperature within given makespan constraints.
This scheduling is designed only for static order tasks and
is not applicable for non-deterministic tasks. To address the
challenge of determining the real-time guarantees in the
presence of unpredictable dynamic environmental conditions,
Hettiarachchi and et al. [16] proposed a framework and
mechanisms for thermal stress analysis in real-time systems.
Adopting thermal-aware periodic resources, Masud Ahmed et
al. [2] proposed an offline algorithm which minimizes the peak
temperature for sporadic tasks scheduled by earliest-deadline
first (EDF) while guaranteeing all their deadlines can be met.
The workload models of the aforementioned work are also
simplified and lead to pessimistic results, that is, higher peak
temperature since they cannot exhibit non-determinism like
jitter or burst arrivals of the workload. These shortcomings
can also be overcome in PTM since it work with general
event arrival patterns, as mentioned above. In [11], a Cool
Shaper is studied to minimize the peak temperature by delaying
the execution of workload for general events arrivals. It is
an online/offline-combined approach, where the parameters of
the shaper are offline computed and the workload is runtime
orchestrated with the pre-computed shaper. Besides the online
monitoring overhead which can result in a higher temperature,
determining the parameters of the shaper according to the
system specification also requires considerable calculation
effort. In this paper, a closed form of the peak temperature
is derived such that our PTM can easily obtain the peak
temperature offline instead of simulating the online evolution
of the temperature, which saves great quantity of calculation.

III. SYSTEM MODEL

A. Hardware Model

A single core processor that has two power dissipation
modes, i.e., ‘active’ and ‘sleep’ mode, is adopted in this paper.
The processor must be in ‘active’ mode with a fixed speed to
process coming event streams with power consumption Pa and
can be turned to ‘sleep’ mode with a lower power consumption
Ps when there is no event to handle. We consider the time and
power overheads during model-switching. tswo f f and tswon time
units are required to switch the processor from ‘active’ mode to
‘sleep’ mode and back, respectively. During mode switching,
the power dissipation equals Pa but the processor does not
tackle any coming event. The time and power overheads
during mode switching have nontrivial impacts on the resource
providing capability and thermal evolution of the processor.
For example, suppose the processor is switched to ‘active’
mode first and then ton time units later it is turned to ‘sleep’
mode and stays at this mode for to f f time units. As shown
in Fig. 1, in this (ton+ to f f ) units time interval, the length
of the overall time slots in which the processor can handle
coming events is shorter than ton and the time interval during
which the processor consumes power Ps is shorter than to f f .
Therefore, the mode-switching overhead leads to a higher
temperature and a weaker resource providing capability. The
quantitative impacts will be investigated later. Moreover, as
shown in Fig. 1, the time lengths for which the processor is
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Fig. 1. Hardware model.

switched to ‘active’ and ’sleep’ mode must be larger than tswon
and tswo f f , respectively:

to f f > tswo f f , ton > tswon. (1)

B. Event Model

Without loss of generality, we assume that the input events
arrive at the system irregularly. In order to model workload of
such coming events, the concept of arrival curve in network
calculus [17] and real- time calculus [15] is adopted. Before
introducing arrival curve, we briefly present the concept of
cumulative workload R(t). For a single event stream, the
cumulative workload R(t) represents the number of events
arrive at the processor in time interval [0, t) with R(0) = 0 by
convention. According to its definition, R(t) always specifies
one concrete trace of event stream. Therefore, arrival curve
ᾱ(∆) = [ᾱu(∆), ᾱl(∆)], which can bound admissible traces of
event streams, is introduced to provide an abstract model for
event streams. The upper arrival curve ᾱu(∆) and the lower
arrival curve ᾱl(∆) are the upper and lower bound of R(t):

ᾱl(∆)≤ R(t− s)≤ ᾱu(∆),∀t− s= ∆ and s≥ 0 (2)

where ᾱl(0) = ᾱu(0)= 0. With the concept of arrival curve, we
can unify many other common timing models of event stream.
For example, a periodic event stream can be abstracted by a

set of step function where ᾱu(∆) =
⌊

∆
p

⌋

+1 and ᾱl(∆) =
⌊

∆
p

⌋

.

A sporadic event stream can also be modeled by ᾱu(∆) =
⌊

∆
p

⌋

+ 1, ᾱl(∆) =
⌊

∆
p′

⌋

, where p and p′ are the minimal and

maximal inter arrival distance of the event stream, respectively.
Moreover, for an event stream which can be specified by a
period p, jitter j and minimal inter arrival distance d, the upper

arrival curve is ᾱu(∆) =min{
⌈

∆+ j
p

⌉

,
⌈

∆
d

⌉

}.

To model the resource providing capability, we adopt
service curve β(∆) = [βu(∆),βl(∆)] analogously [17]. In the
same way, service curve provides the upper bound and lower
bound of cumulative function C(t), which is the number of
total time slots that the processor provides to handle coming
events in time interval [0, t). The upper service curve βu(∆)
and lower service curve βl(∆) satisfy:

βl(∆)≤C(t− s)≤ βu(∆),∀t− s= ∆ and s≥ 0 (3)

where βl(0) = βu(0) = 0.

It is worth noting that the arrival curve ᾱ(∆) is event-based
and specifies the upper and lower bounds of the number of
input events in any time interval ∆, while the service curve
β(∆) is time-based and specifies the upper and lower bounds
of the amount of available execution time in any time interval
∆. Thus, we transform the event-based arrival curve ᾱ(∆) to
time-based arrival curve α(∆), which describes the amount of
execution time demanded by arrival events. Suppose that the
worst-case execution time of one event in arrival stream is

c, then the arrival curve transformation can be performed as
αu(∆) = c · ᾱu(∆) and αl(∆) = c · ᾱl(∆) [18].

Our PTM approaches are designed to handle not only
single event streams but also multi-event streams. For multi-
event scenarios, N event streams are supposed in the input
source, where N ≥ 2. We order the event streams S1,S2, · · · ,SN
according to their relative deadlines, where Di, the relative
deadline of event stream Si, is smaller than that of S j when i<
j. Thus, the input event model of our processor can be depicted
by the tuple EM(N) = (ᾱ(∆)1,c1,D1, · · · , ᾱ(∆)N ,cN ,DN).
Now, a processor with service curve β(∆) satisfies the worse-
case deadline constraints for its workload, which is modeled
by EM(N), when the following condition holds:

βl(∆)≥ βB(∆),∀∆≥ 0. (4)

where βB(∆)=αu(∆−D) for single event scenarios. For multi-
event scenarios, βB(∆) has different formulations with different
scheduling policies, which is detailed later.

C. Thermal Model

In this paper, the temperature model of the processor
is based on the Fourier law of heating [19], which can be
described by the following equation:

C
dT

dt
= P−G(T −Tamb) (5)

where T , C, G and P denote the temperature, thermal
capacitance, thermal conductance and power dissipation of the
system, respectively. Tamb indicates the ambient temperature. In
addition, the absolute temperature (Kelvin, K) is set as the unit
of all temperature variables. We assume the power dissipation
has a linear relationship with respect to temperature in this
paper [19]. Thus the power dissipation is formulated as:

P= ϕT +θ (6)

where ϕ and θ are constants. Rewriting (5), we have

dT

dt
=−mT + n (7)

where m = G−ϕ
C

,n = θ+GTamb
C

. Then the the steady-state
temperature of currently working state can be derived as
T∞ = n/m with dT

dt
= 0. As m and n are constants, a closed-

form solution of the temperature yields:

T (t) = T∞ +(Tinit−T
∞) · e−m·t (8)

where Tinit indicates the initiate temperature. As mentioned
in hardware model, the processor has two power dissipation
modes and consumes power Pa during mode-switching.
Therefore when the processor is in mode-switching or ‘active’
mode, the power consumption is Pa = ϕaT (t)+θa, otherwise
the power consumption is Ps = ϕsT (t) + θs (< ϕa,θa > and
< ϕs,θs > are the corresponding parameters in Eqn. 6).
Thence, the coefficient for Eqn. 8 are given as [11], [19]:

ma =
G−ϕa
C

, ms =
G−ϕs
C

(9)

T∞
a =

θa+GTamb
G−ϕa

, T∞
s =

θs+GTamb
G−ϕs

In addition, we also regulate the thermal model by these
following circumstances.
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Fig. 3. Temperature evolution in policy WC, DT and PTM.

• ma > 0 and ms > 0.

• The steady-state temperature in ‘active’ mode is non-
smaller than the one in ‘sleep’ mode, that is, T∞

a ≥ T
∞
s .

• The initial temperature Tinit = Tamb ≤ T
∞
s .

Thus, the thermal mode of the processor in this paper is
characterized by the tuple TM = (T∞

a ,ma,T
∞
s ,ms).

D. Problem Statement

Dynamically switching the processor into ‘sleep’ mode
according to the event arrivals is an effective way to
minimize the peak temperature. However, this needs vast
calculating efforts, which hampers the efficiency. Periodic
thermal management (PTM), a trade-off between effect and
efficiency, is adopted in this paper to minimize the peak
temperature by periodically putting the system into ‘active’ and
‘sleep’ modes. In each period, the processor stays at ‘active’
mode and ‘sleep’ mode for ton and to f f time units, respectively.
In addition, t = ton+ to f f denotes the length of the period. We
illustrate our approach with an example in which three thermal
management policies are adopted: (a) a work conserving (WC)
execution that with no DTM policy, which means that the
processor stays at ‘active’ mode to process events if there is
(at least) one event in the ready queue, (b) an online DPM
policy called Cool Shaper (CS) which dynamically transits
the processor into ‘sleep’ mode according to the event arrivals,
and (c) periodic thermal management (PTM). The thermal and
hardware parameters are described in Tab. I. The event stream
is set as: period p= 0.2s, jitter j= 0.05s, minimal inter-arrival
distance d = 0.001s, execution time c = 0.11s and relative
deadline D = 1.2p. A concrete trace of events that arrive at
time (0,0.15,0.35,0.55)s is adopted in this example. Fig. 2
and Fig. 3 show the execution of events and the temperature
evolution for the three policies, respectively. As shown in
Fig. 3, the peak temperature in policy PTM is slimly higher
than the one in policy CS and they are both about 9 K less
than the one in policy WC. This indicates that PTM policy can
achieve close results to CS policy in terms of peak temperature
and they are both effective compared to WC policy. From
Fig. 2, we find that PTM can be seen as an approximate policy
of CS, this interprets why the peak temperature of PTM is
slimly higher. Despite of this, PTM requires less resources
for computation with acceptable results and is very convenient
to implement.

This paper considers the temperature varying in a time
interval L, where L >> t and L/t is an integer. Due to the
model-switching overhead, ton and to f f cannot be directly
utilized into thermal mode and service curve. Before giving
the revised solutions, we first define some notations. From
Fig. 1, tact and tsl p denote the time interval that the processor
consumes power Pa and Ps in one period, respectively.
Analogously, tvld denotes the time interval that the processor
can tackle coming events in one period and tinv represents the
rest. Based on hardware model, we formulate them as:

tact = ton+ tswo f f , tsl p = to f f − tswo f f (10)

tvld = ton− tswon , tinv = to f f + tswon. (11)

With these definitions, one can use tact and tsl p to derive the
peak temperature and tvld and tinv to calculate the service curve
of the processor; meanwhile, the time and power overhead of
mode-switching are considered.

Now we define our problem as follows:
Given a system characterized by the power model and the
thermal model TM described in the preceding pages, task
streams that are modeled by EM(N), our goal is to derive
a periodic thermal management depicted by ton and to f f such
that the peak temperature is minimized while all the events
complete within their deadlines.

IV. PEAK TEMPERATURE ANALYSIS

In this section, we derive the formula of the peak
temperature in PTM such that our algorithm can utilize it as
a criterion of the optimal pair of < ton, to f f >.

As PTM periodically transits the system between two
power modes, the values of the parameters in the temperature
model Eqn. 8 change periodically, which causes the general
solution of the transient temperature T very complicated.
Therefore, instead of utilizing the general solution, we derive
the formula of the peak temperature based on some basic
lemmas, which are obtained from close observations of the
temperature evolution and are presented in the following.

Lem. 1: With a periodic thermal management PTM (ton,
to f f ), the temperature of the processor ceaselessly rises in the
opening few periods and then rises in tact and descends in tsl p
in every following period.

Proof: As mentioned before, the initial temperature Tinit =
Tamb ≤ T

∞
s ≤ T

∞
a . Based on Eqn. 7, inequality dT

dt
≥ 0 holds

in the beginning several periods when T ≤ T∞
s . Therefore,

temperature T continuously rises and then reaches T∞
s . It’s

worth noting that T will never surpass T∞
a unless the initial

temperature is higher than T∞
a , as T∞

a is the steady-state
temperature of the ‘active’ mode. Since T has already passed
T∞
s , it also will never drop back below T∞

s until being shut
down. Therefore, one can summarize that PTM will keep the
temperature T change between T∞

s and T∞
a once T passes T∞

s .

Again, based on Eqn. 7, one can observe that dT
dt
≥ 0 in tact

and otherwise dT
dt
≤ 0.

Based on Lem. 1, in the jth period, the temperature T
reaches its local maximum Tj at the end of the time interval
tact . The peak temperature T ⋆ can be defined as the maximum
of all the Tj:

T ⋆ = max(T1, · · · ,TL
t
). (12)
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Fig. 4. Example of temperature varying with PTM(ton = 0.02s,to f f = 0.1s)
while the model-switching overhead is not considered. The thermal and
hardware parameters are described in Tab. I.

As shown in Fig. 4, the local maximum increases in the
beginning and then stays at a stable value in the rest time. This
reveals that the peak temperature can be obtained based on the
difference between two consecutive local maximums, which is
depicted in the following lemma.

Lem. 2: Denoting the local maximal temperature in the
jth period as Tj, the temperature difference between two
consecutive local maximums, Tj+1−Tj, can be formulated as:

Tj+1−Tj =(1− e−matact )T∞
a + e−matact (1− e−mstsl p)T∞

s

− [1− e−matact−mstsl p ]Tj (13)

where tact and tsl p are from Eqn. 10.

Proof:With Tj, tsl p and Eqn. 8, we first derive T
sl p
j , which

is the temperature at the end of tsl p in the jth period. From

Eqn. 8, one can get T
sl p
j = Ts+(Tj − Ts)e

−mstsl p . Then with

tact , Ta and T
sl p
j , Eqn. 8 generates the following equation:

Tj+1 =(1− e−matact )T∞
a + e−matact (1− e−mstsl p)T∞

s + (14)

e−matact−mstsl pTj.

Subtracting Tj from both sides yields Eqn. 13.

With above lemmas, the first main result of this paper is
presented as the theorem below:

Thm. 1: Given a system as stated above and a periodic
thermal management PTM (ton, to f f ), the peak temperature of
the processor is a linear combination of T∞

a and T∞
s , which is

given as:
T ⋆ = λT∞

a +(1−λ)T∞
s , (15)

where

λ =
1− e−matact

1− e−matact−mstsl p
.

Proof: We prove Thm. 1 by contradiction. For brevity,
λT∞
a +(1−λ)T∞

s is denoted as T ⋄. First, suppose that the peak
temperature T ⋆ is reached in the ith period and Ti = T

⋆ < T ⋄.
Rewriting Eqn. 13 yields that Ti+1−Ti > 0, which contradicts
to the presumption that Ti is the peak temperature of the
processor.

Similarly, assume that the peak temperature T ⋆ is reached
in jth period and Tj = T

⋆ > T ⋄. Therefore we have:

Tj−Tj−1 > T
⋄−Tj−1 (16)

According to Lem. 2:

Tj−Tj−1 = (1− e−matact−mstsl p)[λT∞
a +(1−λ)T∞

s −Tj−1]

= (1− e−matact−mstsl p)(T ⋄−Tj−1).

Since (1− e−mt)< 1, the following inequality yields:

Tj−Tj−1 < T
⋄−Tj−1 (17)

which is in conflict with Eqn. 16. In conclusion, T ⋆ = T ⋄.

Next, the boundaries of ton and to f f are explored, then two
approaches are proposed to minimize T ∗.

V. PTM ALGORITHMS

A. Service Bound of PTM

Real-time interface is employed in this paper to ensure that
all events complete within their deadlines. With the hardware
model described before and a given PTM (ton,to f f ), the lower
service curve of the processor is written as:

βR(∆) =max
(⌊∆

t

⌋

· tvld , ∆−
⌈∆

t

⌉

· tinv

)

, (18)

where t is the period, tvld and tinv are obtained from Eqn. 11.
To satisfy the deadline constraints, the lower service curve of
the processor βR(∆) should satisfy the following inequality:

βR(∆)≥ βB(∆), ∀∆≥ 0, (19)

where βB(∆) is the service bound for the workload modeled
by EM(N). For a single event stream (N = 1), βB(∆) can be
formulated as [18], [20]:

βB(∆) = a
u(∆−D) (20)

For multi-event streams (N ≥ 2), the service bound βB(∆)
in Eqn. 19 should be computed based on the scheduling policy.
Note that only the service bound βB(∆) has to be revised.
The other parts of our algorithms can remain untouched.
Suppose the scheduling policy of earliest deadline first (EDF)
is adopted, the service bound for the N event streams is [18]:

βB(∆) =
N

∑
i=1

αui (∆−Di). (21)

It’s worth noting that EDF is not necessarily the only one
scheduling policy can be adopted here. For example, when
fixed priority (FP) scheduling is employed, the service bound
can be calculated according to another formula [20] and fits
in with our algorithms as suitable as EDF.

B. Feasible Region of to f f

In this paper, our goal is to find the optimal < ton, to f f >
under the deadline constraints. Apparently brutal searching
the whole two-dimensional space is the least efficient way
to find the solution. Based on Eqn. 15, one can find that
the derivative of T ⋆ with respect to ton is dT ⋆

dton
= (T∞

a −

T∞
s )mae

−ma(ton+tswo f f )[1−e
−ms(to f f −tswo f f )]

[1−e
−matact−mstsl p ]2

> 0. Therefore, for a

given to f f , T
⋆ can be minimized by searching the minimal

ton under the service curve constraint, Eqn. 19. Based on this
feature, our algorithms generally include two steps: (1) finding
the minimal ton for a given to f f with the real-time constraint,
and (2) varying to f f in its feasible region and getting the
optimum value when T ⋆ reaches its minimum.

In order to discover the minimal ton, the feasible region
of to f f should be determined first such that one can assure



the solution to the minimal ton exists. For example, when the
input is a single event stream and to f f = D, coming events in
worst-case will miss their deadlines before they are processed,
considering additional tswon time units are required to switch
the processor on. According to the hardware model, we directly
know that to f f has to be no less than tswo f f to cover the timing
overhead of model-switching. To avoid situations similar to the
example, to f f must be bounded by an upper bound, which is
calculated according to the maximum service curve in [18]:

tmaxo f f =max
{

to f f : β⊤R (∆)≥ βB(∆), ∀∆≥ 0
}

, (22)

where β⊤R (∆) can be formulated as follows when we take tswon
into account:

β⊤R (∆) =max{0, ∆− to f f − tswon} (23)

Finally, the feasible region of to f f can be depicted as to f f ∈
[tswo f f , t

max
o f f ].

C. Searching the minimal ton

Based on the constraint Eqn. 19, when to f f is fixed, the
precise solution of minimal ton can be calculated as:

t prcon =min
{

ton : βR(∆)≥ βB(∆), ∀∆≥ 0
}

. (24)

This solution can be found by testing the tons starting from
tswon with step ε until the minimal ton satisfying Eqn. 19 is
discovered. By this method, the minimal ton is obtained with
high accurateness while the time consumption is significant.

To reduce the computational overhead, we adopt the
bounded-delay function [18], [21] to calculate an approximate
minimal ton. As shown in Fig. 5, for a given to f f , this approach
first finds an affine-line which originates from point (to f f , 0)
and is also tangent to the service bound βB(∆). The affine-line
is colored red in the figure. The slope of the tangent is denoted
as η(to f f ) and is defined by to f f :

η(to f f ) = inf{ρ : ρ(∆− to f f )≥ βB(∆),∀∆≥ 0} (25)

Then, the bounded-delay function bd f (∆,η(to f f ), to f f ) is
formulated as:

bd f (∆,η(to f f ), to f f ) =max[0, η(to f f )(∆− to f f )] (26)

Therefore, as shown in Fig. 5, βR(∆) ≥ βB(∆) holds as long
as the lower service curve of processor is no less than
bd f (∆,η(to f f ), to f f ).

When the mode-switching overhead is ignored, the approx-

imate minimal ton can be calculated as t
apx
on =

η(to f f )·to f f
1−η(to f f )

(Refer

to Fig. 5 for the derivation). Since we take the time overhead

into account, this equation is revised as t
apx
vld = η(tinv)·tinv

1−η(tinv)
. Based

on Eqn. 11, the revised approximate ton is denoted as:

tapxon = t
apx
vld + tswon (27)

=
η(to f f + tswon)

1−η(to f f + tswon)
· (to f f + tswon)+ tswon

=
η(to f f + tswon)

1−η(to f f + tswon)
· to f f +

tswon

1−η(to f f + tswon)
.

For brevity, we define function RVT (η, t1, t2) =
η·t1
1−η + t2

1−η .

Therefore, the revised approximate ton can be denoted as:

tapxon = RVT (η(to f f + tswon), to f f , tswon) (28)
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Fig. 5. Obtaining approximate minimal ton based on the bounded-delay
function when the mode-switching overhead is not considered.

D. Minimize the peak temperature

Based on the precise and the approximate solutions of
minimal ton, two algorithms with different accuracy and
efficiency are presented to minimize T ⋆, namely PMPT
(precisely minimizes the peak temperature) and AMPT
(approximately minimizes the peak temperature).

Algorithm PMPT For a given to f f , the minimal ton
in this algorithm is calculated based on Eqn. 24, which
derives a precise solution. With t

prc
on , the corresponding peak

temperatures T ⋆ of all the tested to f f s can be computed from
Thm. 1, then the minimal T ⋆ in all the tested points indicates
the optimal solution of to f f . Since there are several local
minima of T ⋆ and T ⋆ has a irregular relationship with to f f ,
a thorough search with a fixed step ε in the feasible region of
to f f is made to find the global minimal T ⋆.

Algorithm 1 PMPT

Input: TM, EM(N), tswon, tswo f f , ε, ξ
Output: t

opt
on , t

opt
o f f

1: calculate βB(∆) based on EM(N) and the scheduling
policy

2: get tmaxo f f from Eqn. 22

3: T ⋆
min = T

∞
a , topton = 0, topto f f = 0

4: for to f f = t
l
o f f to t

u
o f f with step ε do

5: get tinv = to f f +Tswon from Eqn. 11
6: find tminon by testing Eqn. 24 with step ξ
7: compute tminact and tsl p by Eqn. 10
8: T ⋆(tminact , tsl p) = λ(tminact , tsl p)T

∞
a +[1−λ(tminact , tsl p)]T

∞
s

9: if T ⋆(tminact , tsl p)< T
⋆
min then

10: t
opt
on ← tminon , topto f f ← to f f

11: T ⋆
min← T ⋆(tminact , tsl p)

12: end if
13: end for

Algorithm 1 outlines the pseudo-code of algorithm PMPT.
It takes as input the thermal model TM, the input event
model EM(N), the time overheads of mode-switching and the
accuracy coefficients ε and ξ. The service bound is obtained
based on the input and scheduling policy (line 1) and then the
upper bound of to f f is generated (line 2). Then the optimal
solution and minimal T ⋆ are initialized in line 3. Lines 4-13
iteratively discover the t

prc
on and calculate the peak temperature

T ⋆ for all to f f s in the feasible region with a step ε. The tinv is
computed by Eqn. 11 to derive the lower service curve (line
5). Then t

prc
on is found by examining every candidate of ton

from the lower bound, tswon, with a step ξ (line 6). Afterwards,
t
prc
on and to f f are revised based on Eqn. 10 to derive the peak



temperature (line 7). The peak temperature is calculated based
on Thm. 1 (line 8) and then compared to T ⋆

min. If the newly
derived one is lower, the corresponding< ton, to f f > and T ⋆ are
assigned to the optimal solution and T ⋆

min, respectively (lines
9-12).

Algorithm AMPT In this algorithm, the minimal ton is
obtained directly from the approximation in Eqn. 28 with less
computation. Then according to Thm. 1, the peak temperature
can be formulated as a function of to f f :

T ⋆ = PT (to f f ) (29)

= T∞
s +

1− a · e
−matswon

1−η · e
−maη
1−η to f f

1− b · e
−matswon

1−η · e(ms−
−maη
1−η )to f f

(T∞
a −T

∞
s )

where a= e−matswo f f ,b= e(ms−ma)tswo f f and η = η(to f f + tswon).
Based on a set of systemic experiments (the details are
included in appendix), we conjecture that PT (to f f ) is a
unimodal function which has only one minimum in the feasible
region of to f f . Therefore the gold section search can be
utilized to find the optimal to f f instead of searching all to f f s
exhaustively. The pseudo-code is detailed in Algorithm 2.

Algorithm 2 AMPT

Input: TM, EM(N), tswon, tswo f f , ε
Output: t

opt
on , t

opt
o f f

1: calculate βB(∆) based on EM(N) and the scheduling
policy

2: get tmaxo f f from Eqn. 22

3: tbo f f = tswo f f , t
e
o f f = t

max
o f f

4: tao f f ← f1(t
s
o f f , t

e
o f f ), t

b
o f f ← f2(t

s
o f f , t

e
o f f ) ⊲ Two tested

points selected by gold section
5: T ⋆

1 ← PT (tao f f ), T
⋆
2 ← PT (tbo f f )

6: while teo f f − t
a
o f f > ε do

7: if T ⋆
1 > T ⋆

2 then

8: t2o f f ← tbo f f , t
s
o f f ← tao f f , t

a
o f f ← tbo f f

9: tbo f f ← f2(t
s
o f f , t

e
o f f ), T

⋆
1 ← T ⋆

2 , T
⋆
2 ← PT (tbo f f )

10: else
11: t2o f f ← tao f f , t

e
o f f ← tbo f f , t

b
o f f ← tao f f

12: tao f f ← f1(t
s
o f f , t

e
o f f ), T

⋆
2 ← T ⋆

1 , T
⋆
1 ← PT (tao f f )

13: end if
14: end while

Algorithm 2 has the same input as Algorithm 1 except the
accuracy coefficients ξ. The service bound and the upper bound
of to f f are first derived (lines 1-2). Then the two endpoints
of golden section selection are initialized as the lower and
upper bounds of the feasible region of to f f (line 3). Lines 4-5
calculate the two tested points and their corresponding peak
temperature with PT (to f f ). Lines 6-14 purely do the golden
section selection to discover the optimal to f f such that PT (to f f )
reaches its minimum. Since golden section selection is a well
known algorithm, the details are not addressed herein.

VI. CASE STUDIES

In this section, we study the viability and efficiency of
our algorithms and compare them with two approaches in [2],
[11]. The simulations are implemented in Matlab (32 bit) using

TABLE I. THERMAL AND HARDWARE MODEL PARAMETERS

G C ϕi = ϕa θi θa Tamb tswon = tswo f f
0.3 W

K 0.03 J
K 0.1 W

K -25 W -11 W 300 K 0.1 ms

TABLE II. EVENT STREAM SETTING

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
p (msec) 198 102 283 354 239 194 148 114 313 119
j (msec) 387 70 269 387 222 260 91 13 302 187
d (msec) 48 45 58 17 65 32 78 - 86 89
c (msec) 12 7 7 11 8 5 13 14 5 6
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Fig. 6. Normalized Relative Peak Temperature produced by the tested
approaches for single event stream scenarios with χ = 1. The right Y axis
indicates the NRPT of approach TAPR.

RTC-toolbox. All the results are obtained from a simulation
platform with an Intel i7 4770 processor and 16 GB memory.

A. System Description

The thermal and power parameters are set as described in
Tab. I [11], [19]. The task streams set studied in [18], [22] is
used for our case studies and the parameters are summarized
in Tab. II. Earliest deadline first (EDF) is adopted as the
scheduling policy for multi-event scenarios. The (p, j, d, c)
event model is adopted to specified an input stream Si by its
period p, jitter j, minimal inter-arrival distance d of the stream
and the worst-case execution time c. Note that other common
timing models of event streams can also be employed in our
case studies with the concept of arrival curve. We choose the
(p, j,d,c) model because it is a commonly used model and the
arrival curve can be easily generated by an existing formula.
The relative deadline Di is defined as Di = χ ∗ pi and varies
according to the deadline factor χ.

The online approach cool shaper (CS) studied in [11],
which relies on not only the upper arrival curve but also the
actual arrivals of the coming events to dynamically shut down
the processor, and the approach TAPR (thermal-aware periodic
resources) studied in [2] are adopted for the comparison. The
input event model used in TAPR is sporadic task (c, D, P),
which is characterized by a worst-case execution time c, a
(relative) deadline D and a minimum inter-arrival separation
P. This model does not contain all the information of our
(p, j,d,c) event model. Therefore, we revised P in a sporadic
task as max[(p − j), d] to satisfy the worst-case deadline
constraints. With these setups, Our algorithms are compared
for both single and multi-event scenarios.

B. Simulation Results

First, we compare the minimal peak temperature derived
by the four approaches. It is worth noting that the differ-
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Fig. 7. Normalized Relative Peak Temperature produced by the tested
approaches for ten sets of randomly selected four-events stream scenarios
with χ = 1 by applying EDF scheduling. The right Y axis indicates the NRPT
of approach TAPR.

ences between the numerical values of those minimal peak
temperature are hard to distinguish compared to their much
larger absolute values. Thus the Normalized Relative Peak
Temperature (NRPT ), which is defined in the following, is
employed as the index to evaluate the approaches:

NRPTA =
T ⋆
A −T

∞
s

T∞
a −T

∞
s

(30)

where NRPTA and T ⋆
A is the Normalized Relative Peak

Temperature and the minimal peak temperature produced by
approach ‘A’, respectively. From its definition, a smaller NRPT
indicates that the approach can better minimize the peak
temperature.

Fig. 6 describes the NRPT for all the single event streams.
Figures 7-8 reveal the results for four-events and five-events
scenarios, respectively. Fig. 9 shows the derived minimal
peak temperature w.r.t. different relative deadlines for the
four approaches while taking all streams as input. Since
the results of TAPR are much higher than those of the
other three approaches, we display the results of TAPR with
another Y axis in these four figures. Note that in multi-event
scenarios, the arrival curves in CS must be approximated
for EDF scheduling. Otherwise, the arrive curves will be
too complicated and cause memory overflow for the JVM in
Matlab [23].

From Figures 6-9, we state below observations. (1) In all
these cases, approach PMPT generates better or no worse
results than approach AMPT, this is expected because PMPT
brutally searches all the possible solutions to get the precise
ton while AMPT relies on the approximate ton to minimize
the peak temperature. (2) For algorithms PMPT and AMPT,
the minimized peak temperatures in four-events and five-event
scenarios are much higher (NRPT s stay inside [0.2, 0.45])
compared to single event scenarios (NRPT s stay inside
[0.04, 0.16]). This is caused by the fact that the processor
has to handle more workload in multi-event scenarios and
thence generates more heat. (3) As shown in Fig. 9, the
peak temperature decreases as the relative deadline increases,
since the processor can stay at sleep mode longer for each
mode switch. The peak temperature however will not further
decrease after certain threshold is reached. (4) The minimal
peak temperature in CS is generally the lowest in single event
stream scenarios as CS works online and can dynamically
turn off the processor according to actual workload. It’s worth
noting that since the heat generated by online calculating
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Fig. 8. Normalized Relative Peak Temperature produced by the tested
approaches for ten sets of randomly selected five-events stream scenarios with
χ = 1 by applying EDF scheduling. The right Y axis indicates the NRPT of
approach TAPR.
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Fig. 9. Peak Temperature generated by the tested approaches w.r.t. different
relative deadlines for ten-events stream scenario with EDF scheduling.

and monitoring of CS is not considered in our simulation,
the peak temperature in CS will be higher when it comes
to practical application. Moreover, CS approach also has
to pay high penalty of the offline computation time while
PMPT and AMPT approaches can achieve similar effect with
much lower computation expense, which we will show later.
In multi streams scenarios, however, CS yields higher peak
temperature than PMPT and AMPT, which is resulted from
the approximation of input arrival curves. We have made better
approximations to improve the results but with trivial feedback.
(5) By and large, the peak temperature derived by TAPR is
the highest. The reason is the limitation of its event model
where the non-determinism of p jd pattern cannot be properly
modeled and the modified P = max[(p− j), d] overestimates
the incoming workload. As shown in Fig. 6, there exists an
extraordinary point, which is the NRPT of task S4. The reason
is that S4 has the largest jitter j and the second smallest
minimal inter-arrival distance d, which exacerbates the effect
of the event model unsuitableness. Consequently, we can see
that the peak temperature generated by TAPR reaches the upper
bound in the multi-event cases as long as S4 is involved in input
streams.

We also report the timing overhead of deriving a PTM
scheme. Since our PTM approaches are offline computed and
need negligible runtime overhead, only the offline computing
part of CS is taken into account. We adopt the computation
time for finding the optimal Wunit , which is the critical
parameter for CS, as the computational overhead of CS.
Fig. 10 shows the computation expense of the four approaches
for ten sets of randomly selected four-event streams and Fig. 11
demonstrates how the computation expense in ten-event stream
scenario varies as the relative deadline factor changes. We
make below observations: (1) The computation overhead of
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cool shaper is the highest, which is about one up to four
orders of magnitude larger than that of our PTM approaches.
(2) In the second figure, the computation overhead of PMPT
increases w.r.t. the relative deadline. The reason is that the
number of the tested points of to f f and ton increases as the
relative deadline increases when ε and ξ are fixed. (3) The
time consumptions of AMPT are always the lowest and stable,
which are within half a second. (4) Compared to PMPT,
the timing overhead of AMPT is about one or two orders
of magnitude lower. In conclusion, our PTM algorithms are
much faster in terms of computation overhead but generate
peak temperatures close to or even better than the ones of CS
online approach.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present new approaches to minimize
the peak temperature for hard real-time systems in which
the input event streams are characterized by arrival curves.
With the worst case deadline constraints, we propose one
approach that can provide precise solutions and one approach
to yield approximated solutions with lower computation
expense. To verify the effectiveness and efficiency, we present
several implementations of our approaches with single event
and multi-event streams. Experimental results show that our
algorithms can derive periodic thermal management schemes
with negligible runtime overhead while the peak temperature
can be constrained to similar or even better level of online
approach in the literature.

As topics of future work, the periodic thermal management
can be further extended to hyper-period, which combines two
or more patterns of PTM in one hyper-period. Moreover,
we plan to implement our PTM in multi-core platforms and
further demonstrate the benefits of using PTM approaches.
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VIII. APPENDIX

We conducted various experiments to explore how the T ⋆

in function 29 changes w.r.t the to f f in its feasible region.
Since η(to f f + tswon) is effected by the service bound, we
first conducted a set of experiments to discover how different
service bounds influence the function PT (to f f ). In these
experiments, thermal coefficients ma and ms are assumed to
be the same because the difference between them is not the
factor we mainly concerned. We conducted another set of
experiments to reveal how this difference affects the results.
The time overheads of switching the system on and off are
assumed to be same in all experiments.



TABLE III. THE RANGE OF INPUT EVENT STREAMS AND SYSTEM

MODEL COEFFICIENTS IN THE FIRST SET OF EXPERIMENTS

p (msec) j/p d/p c/p χ tswon = tswo f f (msec) ma = ms
from 20 0.1 0.1 0.05 1 0.1 1
to 1000 1.3 0.1 0.7 2 4.1 20
step 20 0.3 - 0.05 0.2 0.5 1
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Fig. 12. Peak temperature of the processor for different transition overheads
with event stream period p= 20ms,c= 3ms, j= 2ms,χ = 2 and ga = gs = 6.77.
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Fig. 13. Peak temperature of the processor for different transition overheads
with event stream period p= 1000ms,c= 100ms, j = 100ms,χ = 1.5 and ga =
gs = 6.77.
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Fig. 14. Peak temperature of the processor for different transition overheads
with event stream period p= 5000ms,c = 1000ms, j = 500ms,χ = 1 and ga =
gs = 6.77.

For the first set of experiments, the system model and
input streams parameters are depicted in Tab. III. Based on the
setup, 3780000 scenarios have been tested in our experiments.
In every scenario, the function PT (to f f ) is sampled with a
step ε = 1ms in the feasible region of to f f . Then the sampled
points are used to determine if the function PT (to f f ) in current
scenario is unimodal. The results demonstrate that PT (to f f )
only has one minimum in the feasible region of to f f . Due to
space limit, we only offer part of the results in the following
figures. In the first three figures, there are nine curves in every
figure. Each of them represents the peak temperature varies as
to f f changes with an individual mode-switching overhead in
{0.1, 0.6, 1.1, · · · ,3.6, ,4.1}(msec).

Based on Tab. IV, we set up the second set of experiments
to discover if PT (to f f ) is still unimodal when ms doesn’t

TABLE IV. THE RANGE OF INPUT EVENT STREAMS AND SYSTEM

MODEL COEFFICIENTS IN THE SECOND SET OF EXPERIMENTS

p (msec) d/p c/p χ tswon = tswo f f ma ms/ma
from 20 0.1 0.05 1 0.1 1 0.5
to 1000 0.1 0.7 2 4.1 20 1.5
step 20 - 0.05 0.2 0.5 1 0.1
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Fig. 15. Peak temperature of the processor for different thermal coefficients
with event stream period p= 200ms,c = 20ms,χ = 1,tswon = tswo f f = 0.6 and
ma = 5.
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Fig. 16. Peak temperature of the processor for different thermal coefficients
with event stream period p = 40ms,c = 4ms,χ = 1,tswon = tswo f f = 0.6 and
ma = 8.
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Fig. 17. Peak temperature of the processor for different thermal coefficients
with event stream period p= 100ms,c= 100ms,χ = 1,tswon = tswo f f = 0.6 and
ma = 8.

always equal ma. The jitter factor j/p is fixed as 0.1 in the
experiments. Part of the results are presented in the following
three figures. In every figure, there are eleven curves and every
curve demonstrates the relationship between peak temperature
and to f f for an particular ms/ma ranging from 0.5 to 1.5 with a
step of 0.1 Each of them represents the peak temperature varies
as to f f changes with an individual mode-switching overhead,
ranging from 0.1 to 4.1 with a step of 0.1.

As shown in the figures, the peak temperature first decreas-
es and then increases as to f f grows, which is an unimodal
function based on the definition. The remaining results of
our experiments have the same conclusion. Therefore, we
conjecture that PT (to f f ) is an unimodal function.


