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Energy optimization is a critical design concern for embedded systems. Combining DVFS+DPM is considered
as one preferable technique to reduce energy consumption. There have been optimal DVFS+DPM algorithms
for periodic independent tasks running on uni-processor in the literature. Optimal combination of DVFS
and DPM for periodic dependent tasks on multi-core systems is however not yet reported. The challenge
of this problem is that the idle intervals of cores are not easy to model. In this paper, a novel technique
is proposed to directly model the idle intervals of individual cores such that both DVFS and DPM can be
optimized at the same time. Based on this technique, the energy optimization problem is formulated by
means of mixed integrated linear programming. We also present techniques to prune the exploration space
of the formulation. Experimental results using real-world benchmarks demonstrate the effectiveness of our
approach compared to existing approaches.
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1. INTRODUCTION
With increasing requirement for high-performance, multi-core architectures such as
MPSoCs (Multiprocessor System-om-Chip) are believed to be the major solution for fu-
ture embedded systems, e.g., electronic vehicle [Lukasiewycz et al. 2012]. Chip makers
have released several MPSoCs, e.g., ARM Cortex-A15 MPCore [ARM 2012], Intel Atom
processors [Intel 2009], and Marvell ARMADA MV78460 multi-core processors [Mar-
vell 2012]. Many real-time applications, especially streaming applications, can be ex-
ecuted on multiple processors simultaneously to achieve parallel processing. When
real-time applications are executed on multi-core architectures, minimizing the en-
ergy consumption is one of the major design goals, because an energy-efficient design
will increase the reliability and decrease the heat dissipation of the system.
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Power consumption of processors mainly comes from dynamic power consumption
due to switching activity and static power consumption due to the leakage current [Je-
jurikar et al. 2004]. In micrometer CMOS technology, dynamic power dominates the
power consumption of processors. As the number of processing cores on a chip increases
(e.g., Intel has produced 48-core x86 Processor as Single-chip Cloud Computer [Intel
2012]), chip density increases, which leads to a dramatic increase of static power. Ac-
cording to the International Technology Roadmap for Semiconductors [ITRS 2011],
leakage power increases its dominance of total power consumption as semiconductors
progress toward 32nm. Thus, both dynamic power consumption and static power con-
sumption need to be considered in overall energy optimization of the system.

To reduce dynamic power and static power consumption, two main mechanisms can
be employed, i.e., Dynamic Voltage Frequency Scaling (DVFS) and Dynamic Power
Management (DPM), respectively. DVFS reduces the dynamic power consumption by
dynamically adjusting voltage and frequency of a processor [Jha 2001]. The disad-
vantage of this technique is the lack of means to reduce static power consumption.
There are two types of DVFS polices, i.e., intra-task DVFS and inter-task DVFS. Intra-
task DVFS allows the processor frequencies can be changed within single task, while
inter-task DVFS only allows frequencies can be changed at inter-task boundaries. We
consider inter-task DVFS in this paper. On the other hand, DPM explores idle inter-
vals of a processor and switches the processor to a sleep mode with low static power
consumption to reduce the static power [Jha 2001]. The limitations of DPM are that
mode-switching in processor causes additional energy and latency penalty. Actually,
it is worthwhile to switch the processor to sleep mode only when the idle interval is
longer than a certain threshold called break-even time [Chen et al. 2013; Cheng and
Goddard 2006].

In principle, DVFS and DPM counteract each other with respect to energy reduc-
tion and a trade-off between them plays a critical role in energy consumption reduc-
tion [Gerards and Kuper 2013]. Concerning DVFS, lower frequencies result in lower
dynamic power consumption, which however prolong the task execution time and
shorten idle intervals. Therefore, DVFS techniques in general reduce the opportuni-
ties of reducing static power. On the other hand, although running the system at
higher frequencies can create longer sleep intervals and reduce more static power,
DPM will cost more dynamic power and mode-switch overheads. In the last decade, the
researchers used to believe that, between DVFS and DPM, DVFS should be exploited
before DPM [Jha 2001; Srinivasan and Chatha 2007]. However, as transistor technol-
ogy is shifting toward sub-micron domains (e.g. Intel has shift its manufacturing tech-
nologies into 22nm in 2011 [Intel 2011]), the static power increases exponentially and
becomes comparable or even greater than dynamic power. According to [Huang et al.
2011], the static power accounts for as much as 50% percentage of the total power dis-
sipation for high-end processors in 90 nm technologies. Thus, DPM technology becomes
more and more important for energy-efficient design. Applying DVFS before DPM will
result in a sub-optimal solution. A motivation example will further elaborate this issue
in Section 4. Therefore, the motivation of our work is to globally integrate DVFS and
DPM and find the best trade-off to reduce the total energy consumption of a system.

In this paper, we present a novel energy optimization technique which optimally
integrates DVFS and DPM in real-time multi-core systems. We consider multi-core
systems that DVFS and DPM can be applied for each core independently and each
core operates at several discrete voltage and frequency levels. For a given set of ap-
plications represented as directed acyclic graphics and a mapping of the applications
on the MPSoC, our approach can generate an optimal time-triggered non-preemptive
schedule and an optimal frequency assignment for each task by which the total energy
consumption of MPSoCs is minimized. Based on this optimal schedule, the tasks can be

ACM Transactions on Embedded Computing Systems, Vol. XX, No. XX, Article A, Publication date: June 2013.



Energy Optimization for Real-Time Multiprocessor System-on-Chip with Optimal DVFS and DPM CombinationA:3

scheduled with insertion of voltage-setting and mode-switching instructions. Energy-
efficient code can be generated by integrating this optimal approach into compilers and
real-time OSs. The contributions of our work can be summarized as:

— The challenge of globally integrating DVFS and DPM is that the idle interval of the
processors cannot be modeled because the scheduling cannot be determined in the
optimization stage. In contrast to the work in [Srinivasan and Chatha 2007], which
firstly only integrates DVFS with scheduling and then separately applies DPM as a
final stage to generate system level low power designs, we propose a key technique to
directly model the idle interval of individual processor and integrate DVFS and DPM
within scheduling.

— We develop an energy-minimization formulation that globally integrates DVFS and
DPM and solve it by means of mixed integer linear programming. In contrast to the
work in [Wang et al. 2011] based on genetic algorithm, our approach can guarantee
to find the optimum.

— A refinement technique is presented to prune the design space of our formulation.
— We conduct simulations using real-life applications and demonstrate the effective-

ness of our approach by extensive experiments, comparing with [Srinivasan and
Chatha 2007].

The rest of the paper is organized as follows: Section 2 reviews related work in the
literature. Section 3 presents basic models and the definition of studied problem. Sec-
tion 4 presents the motivation example and Section 5 describes the proposed approach.
Experimental evaluation is presented in Section 6 and Section 7 concludes the paper.

2. RELATED WORK
DVFS is one of most effective techniques for energy optimization and has been used for
more than a decade. A lot of DVFS scheduling techniques for MPSoCs has been pro-
posed in the literature. For the independent frame-based task set, Chen and Kuo [Chen
and Kuo 2005] proposed approximation algorithm based on a Kuhn-Tucker optimal-
ity condition on homogeneous multiprocessor. Hung et al. [Hung et al. 2006] explored
energy-efficient scheduling of periodic independent real-time tasks in a heterogeneous
multiprocessor. Based on level-packing, Xu et al. [Xu et al. 2012] address energy mini-
mization problem for parallel independent task systems with discrete operation modes
and under timing constraints. For the dependent tasks on MPSoC, Zhang et al. [Zhang
et al. 2002] proposed a two-phase framework that integrates task scheduling and volt-
age selection to minimize energy consumption of real-time dependent tasks on MPSoC.
Based on list scheduling, Gruian et al. [Gruian and Kuchcinski 2001] proposed a DVS
scheduling technology which scales down the delays of all tasks by the ratio of the
timing constraint over the critical path length.

Combined DVS+DPM approach is considered as one preferable techniques for low
power systems [Jha 2001]. However, only a few of literatures have considered the com-
bination of DPM and DVS. For uniprocessors, Devadas and Aydins [Devadas and Ay-
din 2012] addressed energy minimization combining DVFS and DPM only for indepen-
dent frame-based tasks, where DVFS is employed on uniprocessor and DPM is used
for peripheral devices. Based on [Devadas and Aydin 2012], the state-of-the-art work
in [Gerards and Kuper 2013] presented a schedule for independent frame-based tasks
that globally minimizes the energy consumption. However, these approaches can not
be applied to multi-core platform. In the context of MPSoCs, Bhatti et al. [Bhatti et al.
2011] proposed a machine-learning mechanism to adapt on runtime to the DVFS and
DPM policy for independent tasks to achieve energy efficiency. For dependent tasks,
Srinivasan et al. [Srinivasan and Chatha 2007] presented a mixed-integer linear pro-
gramming(MILP) formulation, which integrates DVFS along with pipelining schedul-
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ing, and applies DPM the the final design step. This work applies DVFS before DPM,
which will result in suboptimal solution. Based on task pipelining, Wang et al. [Wang
et al. 2011] proposed a two-phase approach to optimize the energy consumption. In the
first phase, a periodic dependent task graph is transformed into a set of independent
tasks by retiming technology. In the second phase, a scheduling algorithm based on
genetic algorithm is proposed to optimize the energy consumption. However, this work
can not find the exact optimal solution as it is based on genetic algorithm. Besides, the
approaches in [Srinivasan and Chatha 2007; Wang et al. 2011] can only handle one
task graph.

In contrast to prior work, we consider the problem for MPSoCs that globally inte-
grates DVFS and DPM with scheduling, rather than applying DVS before DPM [Srini-
vasan and Chatha 2007], and generate an exact optimal scheduling for dependent
tasks with minimizing the overall energy consumption.

3. MODELS AND PROBLEM DEFINITION
3.1. Hardware Model
In this paper, we consider a typical multi-core system [Wang et al. 2011; Wang et al.
2010] with local memories, as shown in Fig. 1. The multi-core system consists of M
cores P = {p1, p2, · · · , pM}. Every core is connected via a high bandwidth shared bus.
Bus arbiter implements a given bus protocol and assigns bus access rights to individual
cores. In this paper, we adopt a time-triggered bus based on time-division multiple
access (TDMA) protocol.

Core 1 Core 2 Core M

Local

Memory 1

Local

Memory 2

Local

Memory M

Bus

Bus Arbiter

……

Fig. 1. Hardware model.

3.2. Task Model
We consider the functionality of the entire system as an applications set A, which con-
sists of a set of independent periodic applications. An application J ∈ A is modeled as
a directed acyclic task graph G(V,E,H), where vertexes V denote the set of tasks T to
be executed, the edges E represent data dependencies between tasks and H denotes
the period of the application. The deadline D of the application is equal to its period.
We use wij to denote the worst case execution time (WCET) of task Ti ∈ V under fre-
quency fj and Wi = {wi1, wi2, ..., wis} to denote the WCET profile of task Ti, where s
is the total number of available frequency levels. In this paper, we abstract communi-
cation between two tasks mapped on different cores as special task, which mapped on
bus and whose execution time can be modeled as its communication overhead. Thus,
we can also integrate communication task into task graph.

Time-triggered scheduling can offer a fully deterministic real-time behavior for
safety-related systems. Current practice in many safety-critical domains, such as elec-
tric vehicle [Lukasiewycz et al. 2012] and avionics systems [Lin et al. 2007], favors a
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time-triggered approach [Baruah and Fohler 2011]. In this paper, we consider a pe-
riodic time-triggered non-preemptive scheduling policy. We use R to denote the set of
the profiles for all tasks in applications set A. A task profile ri ∈ R is defined as a
tuple ri =< Wi, si, hi, di >, where si, hi, di are respectively the start time, period, and
deadline of Ti. Note that the start time si is an unknown variable, which is determined
by scheduling S. The tasks belonging to the same application share the same period
and deadline.

3.3. Energy Model
In this paper, we assume cores in a MPSoC can support both DVFS and DPM.
For DVFS, each core has s different voltage/frequency levels, which are denoted as
{(V1, f1), (V2, f2), · · · , (Vs, fs)}. The voltage/frequency levels are sorted in ascent order.
For each frequency level, there is a power consumption associated, and thus we have
a set of power values {P1, P2, · · · , Ps} corresponding to voltage/frequency levels and
P1 < P2 < · · · < Ps. We adopt inter-task DVFS in this paper [Srinivasan and Chatha
2007; Wang et al. 2011; Zhong and Xu 2008], hence the frequency of the core stays con-
stant for entire duration of a task’s execution. Besides, We adopt the same assumption
as [Li and Wu 2012; Singh et al. 2013; Srinivasan and Chatha 2007; Zhang et al. 2002]
and assume that the energy consumption of the task is determined by the assigned
frequency. Thus, the task has an uniform energy consumption during the entire exe-
cution time. Note that our approach can also be extended to the case that the energy
consumption is associated with the tasks.

The analytical processor energy model in [Martin et al. 2002; Wang and Mishra
2010; Jejurikar et al. 2004] is adopted in this paper, whose accuracy has been veri-
fied by SPICE simulation. The dynamic power consumption of the core on one volt-
age/frequency level (Vdd, f) can be given by:

Pdyn = Ceff · V 2
dd · f (1)

where Vdd is the supply voltage, f is the operating frequency and Ceff the effective
switching capacitance. The cycle length tcycle is given by a modified alpha power model
which is verified by SPICE simulation [Martin et al. 2002; Wang and Mishra 2010;
Jejurikar et al. 2004].

tcycle =
Ld ·K6

(Vdd − Vth)α
(2)

where K6 is technology constant and Ld is estimated by the average logic depth of all
instructions critical path in the processor. The threshold voltage Vth is given below.

Vth = Vth1 −K1 · Vdd −K2 · Vbs (3)

where Vth1, K1, K2 are technology constants and Vbs is the body bias voltage.
The static power is mainly contributed by the subthreshold leakage current Isubn,

the reverse bias junction current Ij and the number of devices in the circuit Lg. It can
be presented by:

Psta = Lg · (Vdd · Isubn + |Vbs| · Ij) (4)

where the reverse bias junction current Ij is approximated as a constant and the sub-
threshold leakage current Isubn can be determined as:

Isubn = K3 · eK4Vdd · eK5Vbs (5)

where K3, K4, K5 are technology constants. To avoid junction leakage power overrid-
ing the gain in lowering Isubn, Vbs should be constrained between 0 and -1V. Thus,
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the power consumption of the processor under each voltage/frequency (Vdd, f) can be
computed as:

P = Pdyn + Psta + Pon (6)

where Pon is an inherent power needed for keeping the processor on, which related to
idle power.

Considering the overhead of switching the processor between active mode and sleep
mode, the processor break-even time TBET indicates the minimum time length that
the processor should stay at sleep mode. If the interval at which the processor can stay
at sleep mode is smaller than TBET , the mode-switch mode overheads are larger than
the energy saving. Therefore, mode-switch is not worthy. The break-even time TBET
can be defined as follows:

TBET = max (tsw,
Esw − Psleep · tsw
Pidle − Psleep

) (7)

Where tsw and Esw denote the total state transition time and energy overhead, respec-
tively. Pidle and Psleep respectively represent the idle power and sleep power and we
have Pidle > Psleep.

Given a time-triggered schedule S, the total energy consumption Et(S) in one hyper-
period can be represented as follows:

Et(S) = Ed(S) + Ei(S) + Es(S) + Eov(S) (8)

Where Ed(S) is the total energy consumption when the processor is executing tasks,
Ei(S) is the total energy consumption when the cores stay at idle mode, Es(S) is the
total sleep consumption when the cores stay at sleep mode, and Eov(S) is the energy
consumption due to the overhead of mode-switches.

The energy consumption of executing task Ti running at frequency fj is:

Ed(Ti, fj) = Pj · wij (9)

When the idle interval of the core is less than the break even time TBET , i.e., tidle <
TBET , the core should not enter sleep mode and should stay at idle mode with high
energy consumption Pidle.

Ei = Pidle · tidle (10)

The energy consumed in the sleep mode, Es, is calculated by

Es = Psleep · tsleep (11)

where the sleep interval tsleep should be longer than the break even time TBET , i.e,
tsleep ≥ TBET , and Psleep is the power consumption when the core stays at the sleep
mode.

3.4. Problem Statement
Given an applications set A with task profile R, a multi-core architecture with M cores
P = {p1, p2, · · · , pM}, each core with s discrete voltage/frequency levels, and task map-
ping Π{T → P}, our goal is to find a voltage assignment for each task and a time-
triggered scheduling S so that the total energy Etotal(S) is minimized while the timing
constraints of all applications are guaranteed.

4. MOTIVATION
In this section, we present a motivation example to show that the strategy of applying
DVFS before DPM cannot generate the optimal solution.
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Table I. Task profiles and mapping.

T 1
1 T 2

1 T 3
1 T 4

1 T 1
2 T 2

2 T 3
2 T 4

2
Mapping p2 p1 p2 p1 p2 p1 p1 p2

WCET[ms] 5 9 7 16 4 8 13 16

Table II. Frequency Assignment and Overall Power Consumption.

T 1
1 T 2

1 T 3
1 T 4

1 T 1
2 T 2

2 T 3
2 T 4

2 P (W )
SubOPT L L L L L H H L 0.82

OPT L L H H L L L H 0.74

(a) Applying DVFS before DPM. (b) Optimal DVFS and DPM combination.

Fig. 2. Schedules.

Consider two applications J1 = {T 1
1 , T

2
1 , T

3
1 , T

4
1 } and J2 = {T 1

2 , T
2
2 , T

3
2 , T

4
2 } with de-

pendencies {T 1
1 → T 2

1 , T
1
1 → T 3

1 , T
2
1 → T 4

1 , T
3
1 → T 4

1 } and {T 1
2 → T 4

2 , T
2
2 → T 4

2 , T
3
2 → T 4

2 },
respectively. For simplicity, communication overhead is not considered in this moti-
vation example. The period of the application J1 and J2 are respectively 120ms and
60ms. The MPSoC hardware has a dual-core architecture P = {p1, p2}. Each core has
two voltage/frequency levels, i.e., high level fH and low level fL. The normalized fre-
quency is 1 at the high level and 0.5 at the low level. The dynamic power at the high
level and low level are 0.4W and 0.1W, respectively. The static power at the high level
and low level are 0.16W and 0.12W, respectively. Pon which is related to idle power
is 0.15W. The time overhead and energy overhead of run-sleep mode switch are 25ms
and 1mJ, respectively. The task profiles and mapping are listed in Tab. I.

We compare two different schemes, i.e., applying DVFS before DPM (SubOPT) and
globally integrating DVFS and DPM (OPT). The frequency assignment and total power
consumption P is listed in Tab. II and the schedules of these two schemes are shown
in Fig. 2. OPT can achieve about 9.1% energy savings w.r.t SubOPT. In Fig. 2(a), all
intervals are smaller than the break-even time and the system should turn on all
the time. In SubOPT, DVFS assigns the frequency as low as possible, which increases
the execution time of the task and shortens the idle time intervals of the system. In
contrary, OPT can avoid this. In Fig. 2(b), we can see that, by increasing some task’s
frequencies, some idle intervals are extended large enough and core 2 can enter into
sleep mode. Besides, by adjusting the frequency, some tasks in core 1 could run in lower
frequency for further power savings.

5. PROPOSED APPROACH
This section presents our mixed integer linear programming (MILP) approach for in-
tegrating DVFS and DPM into task scheduling. We start with a MILP formulation that
focuses only on the scheduling problem. Then, we introduce a key technique to model
the idle interval of the cores and integrate DPM into the formulation. Based on the ob-
servation that the MILP formulation may suffer from the state explosion, we develop a
refinement, the so-called execution windows analysis, to reduce the exploration space
of the formulation.
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5.1. Time-Triggered Task Scheduling
In this paper, we consider time-triggered non-preemptive schedule. For each task Ti
with the profile < Wi, si, hi, di >, the k-th instance of task Ti starts at si + k · hi. Wi

contains the WCETs of the task Ti under different frequency settings. We use a set
of binary variables cij to describe the frequency assignment of the task Ti: cij = 1 if
the task Ti executes with frequency fj and cij = 0 otherwise. In this case, the actual
WCET of Ti can be obtained as

∑s
j=1 cijwij , where s is the total number of available

different discrete frequency levels. As we adopt the inter-task DVFS, each task can be
assigned only one frequency.

s∑
k=1

cik = 1 (12)

To formulate the scheduling problem by means of MILP, we have to cope with the
task dependency, deadlines, and non-preemption. We present our formulation as fol-
lows.

Let ξ denote the overheads for dynamic frequency scaling and task switch. The data
dependency Tj → Ti requires the start time of Ti to be no earlier than the finish time
of Tj . Note that Ti or Tj can also be the communication task.

sj +

s∑
k=1

cjkwjk + ξ ≤ si (13)

For deadline constraint, task Ti has to finish no later than its deadline:

si +

s∑
k=1

cikwik + ξ ≤ di (14)

The non-preemptive constraint requires that any two tasks mapped to the same core
must not overlap in time, as well as the communication tasks in the bus. T ip denotes
the i-th instance of task Tp. Let binary variable zijpp̃ denote the execution order of task
T ip and T jp̃ : zijpp̃ = 1 if T ip finishes before the start of T jp̃ , and 0 otherwise. zijpp̃ and zjip̃p
(p 6= p̃) contradict each other, i.e., zijpp̃ + zjip̃p = 1. Hr and Hpp̃ denote the hyper-period
of all tasks and the hyper-period of only task Tp and Tp̃ (i.e., LCM of periods of Tp and
Tp̃), respectively. TC(Tp) denotes the set of tasks that are mapped to the same core as
Tp does. The non-preemption constraint can thereby be expressed as follows.
∀Tp, Tp̃ ∈ TC(Tp), i = 0, ..., (

Hpp̃

hp
− 1), j = 0, ..., (

Hpp̃

hp̃
− 1):

i · hp + sp +

s∑
k=1

cpkwpk − (1− zijpp̃)Hr + ξ ≤ j · hp̃ + sp̃ (15)

j · hp̃ + sp̃ +

s∑
k=1

cp̃kwp̃k − zijpp̃Hr + ξ ≤ i · hp + sp (16)

The constraints (15) and (16) ensure that either the instance of Tp runs strictly before
the instance of Tp̃, or vice verse. Noting that (15) and (16) can also be applied to non-
preemptive constraint of communication tasks in the bus.

5.2. DPM Representation
5.2.1. Challenge. The challenge of globally integrating DVFS and DPM is that the idle

interval of the cores is difficult to model, which is determined by the scheduling. How-
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ever, the scheduling cannot be determined in the optimization stage. To illustrate this
challenge, we give a simple example in Fig. 3. Task T1, T2, T3, and T4 run at the same
core with periods of h, h, 2h, and h, respectively. We can make following observations.

— The idle interval of the task is determined by its closest task. For example, the idle
interval I1 of task T1 is determined by the task T3, while I2 is determined by the
task T2. However, it is unknown which two task are the closest tasks in the time axis
because the execution order is not known yet.

— The idle interval of the last task in one hy-period is determined by the first task in
the following hy-period. For example, the idle interval of the last task T4 is combined
by I3 and I4. Thus, we cannot represent the idle intervals in one hy-period.

T1

T2

T3

T4

I2

Hy-period 

Hy-period
virtual 

task

Hy-period

I1

I3

I4

Fig. 3. Example.

In this section, we will present a novel technique to represent DPM efficiently. At
first, we construct the execution order matrix O by reusing the scheduling decision
variables zijpp̃ in Section 5.1. Then, based on the constructed execution order matrix O,
we propose a novel approach to represent which two tasks instances are closest to each
other, i.e., to represent which two tasks are scheduled to form the idle interval. With
this approach, the idle interval of the task can be modeled. Besides, we introduce the
virtual task concept to model idle interval of the last task instance in one hy-period.
In the end, by taking the break-even time constraint into consideration, the decision
variables that determine whether the system can enter sleep mode can be modeled as
linear items.

5.2.2. DPM Formulation. In Section 5.1, binary variable zijpp̃ has been adopted to model
the execution order of two tasks. To model the execution order of tasks, we reuse this
binary variable zijpp̃ to construct a matrix O, so called execution order decision ma-
trix (EODM), which is defined as:

Definition 5.1. Assume there are N tasks which need to decide their execution
order and zij denote the execution order of task instance Ti and Tj(i 6= j): zij = 1 if the
task instance Ti finishes before the task Tj , and 0 otherwise. An N ×N execution order
decision matrix O can be determined as: (1) i = j ⇒ oij = 0 (2) i 6= j ⇒ oij = zij

zij and zji (i 6= j) contradict each other, i.e., zij + zji = 1. Correspondingly, we
have oij + oji = 1. According to Def. 5.1, execution order decision matrix O can
be constructed based on binary variable zijpp̃ in Section 5.1. For the scheduling pre-
sented in Fig. 3, there are 7 task instances in one hy-period. To order 7 tasks, the
7 × 7 execution order decision matrix O7×7 can be determined as follows. And the
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row and column of the matrix is indexed by task instance {T 1
1 , T

2
1 , T

1
2 , T

2
2 , T

1
3 , T

1
4 , T

2
4 }.

For brief description, TSi denote the i-th task instance in the matrix. For ex-
ample, task instances {T 1

1 , T
2
1 , T

1
2 , T

2
2 , T

1
3 , T

1
4 , T

2
4 } in the matrix are represented as

{TS1, TS2, TS3, TS3, TS4, TS5, TS6}. We can see task instance T 1
1 finishes before the

other instances from the first row of the matrix.

O7×7 =



T 1
1 T 2

1 T 1
2 T 2

2 T 1
3 T 1

4 T 2
4

T 1
1 0 1 1 1 1 1 1
T 2
1 0 0 0 1 0 0 1
T 1
2 0 1 0 1 0 1 1
T 2
2 0 0 0 0 0 0 1
T 1
3 0 1 1 1 0 1 1
T 1
4 0 1 0 1 0 0 1
T 2
4 0 0 0 0 0 0 0


(17)

To represent the task execution order, we give out the following lemma.

LEMMA 5.2. ST (TSi) and FT (TSi) denote the start time and finish time of task in-
stance TSi. Given an execution order decision matrix O with N task instances and com-
pute decision variable matrix A = O(1 − O)T with the element aij =

∑N
k=1 oik(1− ojk).

If aij = 1 holds, then TSj is the closest task instance of TSi and the idle interval Ii after
task instance TSi finishes can be represented as Ii = ST (TSj)− FT (TSi).

PROOF. aij =
∑N
k=1 oik(1− ojk) =

∑N
k 6=j oik · okj + oij . oik · okj = 1 represents that

task instance TSk starts after TSi but before TSj . When
∑N
k 6=j oik · okj 6= 0 holds, it

means it exists task instance Tk that starts after the finish time of TSi but before the
start time of TSj . In this case, TSj must start after TSi, i.e., oij = 1. Thus aij ≥ 2. For
the case of

∑N
k 6=j oik · okj = 0, it means there is no task instance starting after TSi but

before TSj . In this case, if oij = 1 holds, TSj is the closest task instance of TSi, i.e.,
aij = 1. Otherwise, TSj finish before TSi, i.e., aij = 0.

For the quadratic item oik · okj in Lem. 5.2, we can define intermediate variable
tikj = oik · okj and it can be linearized as follows.

0 ≤ tikj ≤ oik
0 ≤ tikj ≤ okj

oik + okj − 1 ≤ tikj ≤ 1

To demonstrate its correctness, we present one simple example. Based on O7×7, deter-
mination matrix A7×7 is calculated as:

A7×7 =



T 1
1 T 2

1 T 1
2 T 2

2 T 1
3 T 1

4 T 2
4

T 1
1 0 4 2 5 1 3 6
T 2
1 0 0 0 1 0 0 2
T 1
2 0 2 0 3 0 1 4
T 2
2 0 0 0 0 0 0 1
T 1
3 0 3 1 4 0 2 5
T 1
4 0 1 0 2 0 0 3
T 2
4 0 0 0 0 0 0 0


(18)

From the matrix A7×7 , we can locate the closest task for all tasks except T 2
4 . For

example, the closest task instance of T 1
1 is T 1

3 . We also notice that there is no following
task executed after T 2

4 , since T 2
4 is the last executed task instance in the hy-period.

Thus, the idle interval of T 2
4 cannot be determined. To represent the idle interval of T 2

4 ,
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virtual task concept is proposed. The period of the virtual task is hy-period of the tasks
and the execution time is zero. It starts when one hy-period starts or ends. As shown in
Fig. 3, there are two virtual tasks in one hy-period, which are respectively denoted as
V TS and V TE. V TS and V TE are at the start and end of the hy-period, respectively.
By adding V TS and V TE into execution order decision matrix O and recomputing the
determination matrixA, the closest instance of T 2

4 and V TS can be determined as V TE
and T 1

1 , respectively. Thus, I3 and I4 can be modeled.
To this end, we have found a principle to model the idle intervals after task finishes.

However, this principle is still not obvious and it is not linear. To make it more simple
for DPM representation, we present an two-step technique to transform this idle inter-
vals representation into a 0-1 representation. Before introducing this transformation,
we present some properties about the relationship between execution order decision
matrix O and decision matrix A.

PROP. 1. Execution order decision matrix O and decision matrix A have following
relationships.

(1) oij is 0-1 variable and aij is integer variable bounded in [0, N − 1]
(2) oij = 0⇔ aij = 0
(3) oij = 1⇔ aij 6= 0

Based on the the relationships between execution order decision matrix O and decision
matrix A presented in Prop. 1, two-step transformation is presented as follows.
Step 1: Define intermediate 0-1 variable matrix B. The element bij in the matrix B is
determined by: (a) 2 ≤ aij ≤ N − 1⇒ bij = 1; (b) aij ≤ 1⇒ bij = 0;

In the step 1, the value of 0-1 variable matrix B is determined by the value of the
variable matrix A. To linearize this determination, we present the following lemma.

LEMMA 5.3. Assume x and b are integer variable and 0-1 variable, respec-
tively. s and s0 are integer constants with 0 ≤ x ≤ s and s0 < s. Given the
determinations: (a)s0 ≤ x ≤ s ⇒ b = 1; (b) x ≤ s0 − 1 ⇒ b = 0; Then, this determi-
nations can be linearized as the following constraint.

x− (s0 − 1)

s
≤ b ≤ x

s0

According to Prop. 1, oij − bij = 1 only happens when aij = 1 holds, and 0 otherwise.
Thus, 0-1 variable oij−bij can be used to decide whether TSj is the closest task instance
of TSi.
Step 2: The 0-1 variable matrix O − B can be used to represent the closest task of
each task. If TSj is the closest task instance of TSi, oij − bij = 1 holds. Otherwise,
oij − bij = 0 holds. Thus, we can represent the idle interval Ii of TSi directly, which can
be determined as follows.

I(TSi) =


∑

TSj 6=V TE

(oij − bij)(ST (TSj)− FT (TSi)) TSi 6= V TE∑
TSj 6=V TE

(oji − bji)(ST (TSi)− FT (TSj)) TSi = V TE
(19)

In (19), I(V TS) and I(V TE) respectively represent the first and last idle interval in
one hy-period, e.g., I4 and I3 in Fig. 3. Denote TSk as the last task instance in the task
instance set TSS = {TS|TS 6= V TS, TS 6= V TE}}. As the closest task of TSk is V TE,
we can get I(TSk) = 0 according to (19). Thus, we can represent idle interval sets S1 =
{I(TSi)|TSi ∈ TSS} for the first N−1 task instances except the last task instance TSk.
It is worthy noting that I(TSk) = 0 has no influence on the object function. Instead of
I(TSk) = 0, I(V TS) + I(V TE) can be used to calculate the idle interval of the last task
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instance. For example, in Fig. 3, the idle interval of T 2
4 can be computed as I3 + I4. For

brevity, I(V TS) + I(V TE) is denoted as I(TSN+1).
In (19), ST (TSj) and FT (TSi) are linear items and (FT (TSj)−ST (TSi)) is bounded

in [−Hr, Hr] according to time-triggered scheduling. The item oij − bij is 0-1 variable.
Define intermediate variable tij = (oij − bij)(FT (TSj) − ST (TSi)) and then it can be
linearized according to Lem. 5.4.

LEMMA 5.4. Given constant s1, s2 > 0 and two constraint spaces P1 = {[t, b, x]|t =
bx, − s1 ≤ x ≤ s2, b ∈ {0, 1}} and P2 = {[t, b, x]| − b · s1 ≤ t ≤ b · s2, t+ b · s1 − x− s1 ≤
0, t− b · s2 − x+ s2 ≥ 0, b ∈ {0, 1}}, then P1 ⇀↽ P2

PROOF. P1 ⇒ P2: We obtain −b · s1 ≤ t ≤ b · s2 according to t = bx and −s1 ≤
x ≤ s2. Based on −s1 ≤ x ≤ s2 and b ∈ {0, 1}, we can obtain (b − 1)(x − s2) ≥ 0 and
(b− 1)(x+ s1) ≤ 0. Hence, t− b · s2−x+ s2 ≥ 0 and t+ b · s1−x− s1 ≤ 0 hold. P2 ⇒ P1 :
If b = 0 holds, we can prove that t = 0 and −s1 ≤ x ≤ s2 according to the definition of
P2. If b = 1 holds, we can obtain −s1 ≤ t = x ≤ s2 from P2. Thus, P2 ⇀↽ P1.

To show this transformation flows in details, we present an example in Fig. 3. In the
first step, the 0-1 variable matrix B8×8 can be determined as follows.

V TS T 1
1 T 2

1 T 1
2 T 2

2 T 1
3 T 1

4 T 2
4 V TE

V TS 0 0 1 1 1 1 1 1 1
T 1
1 0 0 1 1 1 0 1 1 1
T 2
1 0 0 0 0 0 0 0 1 1
T 1
2 0 0 1 0 1 0 0 1 1
T 2
2 0 0 0 0 0 0 0 0 1
T 1
3 0 0 1 0 1 0 1 1 1
T 1
4 0 0 0 0 1 0 0 1 1
T 2
4 0 0 0 0 0 0 0 0 0

V TE 0 0 0 0 0 0 0 0 0


(20)

In the second step, the 0-1 variable matrix O8×8 − B8×8 can be determined as follows.
From the representation, the closest task can be directly represented as 0-1 variable
and each one task has only one closest task except virtual task V TE. Thus, the idle
interval of the core can be formulated as (19).

V TS T 1
1 T 2

1 T 1
2 T 2

2 T 1
3 T 1

4 T 2
4 V TE

V TS 0 1 0 0 0 0 0 0 0
T 1
1 0 0 0 0 0 1 0 0 0
T 2
1 0 0 0 0 1 0 0 0 0
T 1
2 0 0 0 0 0 0 1 0 0
T 2
2 0 0 0 0 0 0 0 1 0
T 1
3 0 0 0 1 0 0 0 0 0
T 1
4 0 0 1 0 0 0 0 0 0
T 2
4 0 0 0 0 0 0 0 0 1

V TE 0 0 0 0 0 0 0 0 0


(21)

To represent the decision of entering sleep mode, mi is used to denote the mode-
switch decision for each interval I(TSi). The core can enter into the sleep state only
when the idle interval I(TSi) is not shorter than the break-even time (i.e., I(TSi) ≥
TBET ). Thus, the value ofmi is determined by (a) I(TSi) ≥ TBET ⇒ mi = 1; (b) I(TSi) <
TBET ⇒ mi = 0. It is obvious that the idle interval Ii is bounded by the period of
task instance TSi, denoted as h(TSi). Similar to Lem. 5.3, above determination can be
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transformed to the linear formulation.

I(TSi)− TBET
h(TSi)

< mi ≤
Ii

TBET
(22)

Thus, the idle ans sleep interval of individual core in one hy-period can be represented
as follows.

tsleep =

N+1∑
i=1

mi · I(TSi) (23)

tidle =

N+1∑
i=1

(1−mi) · I(TSi) (24)

It is obvious that the varibale Ii is bounded by the period of task instance TSi, i.e.,
0 ≤ I(TSi) ≤ hi. mi is 0-1 variable, thus (23) and (24) can be linearized according to
Lem. 5.4

5.3. Objective Function
The energy overhead of mode-switch can be determined as follows:

Eov =

N+1∑
i=1

mi · Esw (25)

Up to now, we have presented the formulation for DVFS +DPM integration with task
scheduling. In this paper, we are to minimize the total energy consumption in one
hyper-period and the following object is used:

E =
∑
∀Ti

Hr

hi

s∑
j=1

cijwijpj + Psleeptsleep + Pidletidle +

N∑
i=1

miEsw (26)

5.4. Refinement
To determine the closest task instance for one task instance, we need to check the tim-
ing information of every task instance in one hy-period. Thus, the total number of vari-
ables used increases quadratically with the number of task instances in one hy-period,
resulting in dramatically increased exploration space for the MILP. To maintain the
scalability of the approach, it is important to develop techniques that can reduce the
exploration space. Here, we propose a refinement approach based on execution window
analysis, which can be used to determine which task instances have chance to con-
struct the idle intervals. By this approach, we only need to check the task instances
which are possible to execute in this execution windows, rather than checking every
task instance in one hy-period.

In the following, we outline how to determine execution window for each task and
how the execution window can be used to determine the possible task instance set that
need to check. The worst-case execution window of task instance T ip is determined by
the earliest start time sminp + i · hp and its latest start time smaxp + i · hp, as shown in
Fig. 4. sminp and smaxp denote the lower bound and the upper bound of the start time
sp for task Tp, respectively. Algo. 1 represents the details of computing the bounds for
start time for each task.
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minh

Execution Window

minh

One Task Period

Earlies Case Latest Case

mins
maxs

Fig. 4. Execution window.

ALGORITHM 1: Find Bounds for Start Time
Input: Directed Cyclic Task Graph G(V,E,H) and WCET wps of each task Tp under highest

frequency fs.
Output: [smin

p , smax
p ] of the start time sp of each task Tp.

for each task Tp do
smin
p ← 0; smax

p ← dp − wps;
end
for each task Tp ∈ V from the header of G to the end of G do

while Tp̃ is the child of Tp do
smin
p̃ ← max(smin

p̃ , smin
p + wps);

end
end
for each task Tp ∈ V from the end of G to the header of G do

while Tp̃ is the parent of Tp do
smax
p̃ ← min(smax

p̃ , smax
p − wp̃s);

end
end

Once the bound [sminp , smaxp ] of the start time is found, we can compute the execution
window EW (T ip) for each task instance T ip.

EW (T ip)min = sminp + i · hp (27)

EW (T ip)max = smaxp + i · hp (28)

According to worst case execution window, we can determine whether two task in-
stance T ip̃ and T ip are possible to overlap each other. Thus, the value of some decision
variables oij can be fixed according to (29), which can be used to reduce the scale of the
execution order matrix O and the number of the following intermediate variables (e.g.,
aij and bij) .

oij =


1 EW (T i)max + wi + ξ ≤ EW (T j)min
0 EW (T j)max + wj + ξ ≤ EW (T i)min
var otherwise

(29)

Besides, worst case execution window analysis can also be used to determine
whether task instance T ip̃ is possible to be the closest task instance T ip. Denote hmin(pi)

as the minimum period of the tasks on the core pi. The idle interval on the core pi must
be less than hmin(pi). The possible closest task instance set PCTI(T ip) of task instance
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T ip can be determined as follows.

PCTI(T ip) = {TS|EW (TS)min < EW (T ip)max + hmin ∧ EW (TS)max > EW (T ip)min}
(30)

Thus, we only need to explore the task instances in PCTI(T ip) to construct determi-
nation variable in determination matrix A, rather than all the task instances. Then,
we can formulate DPM using the techniques present in Section 5.2.

6. PERFORMANCE EVALUATIONS
This section presents the case studies. We use some real-life benchmarks in the
simulation. The energy parameters of the processor are collected from [Jejurikar
et al. 2004; Wang and Mishra 2010; Martin et al. 2002] with 70 nm technology. The
CPLEX [CPLEX 2010] solver is used to solve the MILP problems. All experiments are
conducted on a computer with 2.3GHz Intel 8-core CPU and 16GB memory.

6.1. Experiment Setup
To evaluate the effectiveness of our approach, we conduct the experiments on 10 task
graphs: three FFT benchmarks from MiBench [Guthaus et al. 2001], two consumer ap-
plication benchmark form Embedded Systems Synthesis Benchmarks(E3S) [Vallerio
and Jha 2003] largely based on the date from the Embedded Microprocessor Bench-
mark Consortium (EMBC), five task graphs from TGFF [Dick et al. 1998]. The task
graphs for FFT is obtained based on the implementation. By employing Cooley-Tukey
algorithm [Henry and Nazhandali 2009], N -point FFT can be split into two parallel
N
2 -point FFT. We modified the FFT benchmark in MiBench into three different task
graphs with 4 tasks, 7 tasks, and 10 tasks, respectively. The task graph with 4 tasks
is obtained by splitting N -point FFT into two N

2 FFT tasks. The graph with 7 tasks
is obtained by splitting N -point FFT into one N

2 FFT tasks and two N
4 FFT tasks.

Similarly, we construct the graph with 10 tasks by splitting N -point FFT into four N
4

FFT tasks. For simplicity, FFT-N -M denotes task graph with M tasks for N -point FFT.
We run each task in FFT benchmark on SimpleScalar cycle-accurate simulation plat-
form [SimpleScalar 2003] to obtain its execution time(in cycles). Two consumer appli-
cation benchmarks in E3S, i.e., consumer-1 and consumer-2, are embedded consumer
electronic applications. In these two benchmarks, consumer-1 application contains 7
tasks including tasks like JPEG compression, high pass gray-scale filter, and RGB
to YIQ conversion, etc. And consumer-2 application contains 5 tasks including tasks
like JPEG decompression, RGB to CYMK conversion, and display, etc. Besides, we use
TGFF to generate 5 period task graphs by adopting example input files that come with
the software package. kbasic-1 and kbasic-2 are generated by kbasic example input
file and respectively contain 8 and 10 tasks. kseries-parallel-1 and kseries-parallel-2
are obtained from kseries parallel example input file and respectively have 8 and 16
tasks. robtst with 13 tasks is obtained from robtst example input file. We consider eight
combinations of these applications. Details of the combinations are shown in Tab. III.

We consider a 4-core and 8-core architectures for our experiment. The experiments
are conducted based on classical energy model of 70nm technology processor in [Mar-
tin et al. 2002; Wang and Mishra 2010; Jejurikar et al. 2004], whose accuracy has been
verified by SPICE simulation. Tab. IV lists the energy parameter under 70nm technol-
ogy [Martin et al. 2002; Wang and Mishra 2010]. We assume that the processor oper-
ates at five voltage levels in the range of [0.65V, 0.85V ] with 50 mV steps. From [Wang
and Mishra 2010; Jejurikar et al. 2004], body bias voltage Vbs is obtained as −0.7V . Ac-
cording to energy model in Section 3.3, we can calculate the corresponding frequency
f , dynamic power Pdyn and static power Psta under different voltage level, as shown
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Table III. Task graph sets.

Task graph Task#

Set1 FFT-65536-4,FFT-131072-7, 21FFT-262144-10

Set2 consumer-1,FFT-65536-10, 21FFT-32768-4
Set3 FFT-65536-10,consumer-2, 23

kseial-pallel-1
Set4 kbasic-1,kbasic-2 18
Set5 robtst,kbasic-1,FFT-65536-4 25
Set6 kseial-pallel-1,kseial-pallel-2 24
Set7 FFT-65536-4,kbasic-1,kseial-pallel-1 20

Set8 FFT-131072-4,consumer-1, 24consumer-2,kseial-pallel-1

Table IV. Constants for 70nm technology [Martin et al. 2002; Wang and Mishra
2010].

Const Value Const Value Const Value
K1 0.063 K6 5.26× 10−12 Vth1 0.244
K2 0.153 K7 -0.144 Ij 4.8× 10−10

K3 5.38× 10−7 Vdd [0.5,1] Ceff 0.43× 10−9

K4 1.83 Vbs [-1,0] Ld 37
K5 4.19 α 1.5 Lg 4× 106

Table V. Dynamic power consumption and static power con-
sumption for 70nm processor.

Vdd (V ) 0.85 0.8 0.75 0.7 0.65
f (GHz) 2.10 1.81 1.53 1.26 1.01

Pdyn (mW ) 655.5 498.9 370.4 266.7 184.9
Psta (mW ) 462.7 397.6 340.3 290.1 246

in Tab. V. From [Wang and Mishra 2010], Pon related to idle power can be obtained as
276mW and the power consumption in sleep mode Psleep is set as 80µW . The energy
overhead Esw of state transition is set as 385µJ . The total state transition time tsw and
the overhead of dynamical frequency scaling ξ are obtained by referring to the sleep
mode timing specification of the commercial processor [Marvell 2009].

To evaluate the performance of our technique, we compared the energy consumption
with the following technique:

— Optimal DVFS (Dvfs-OPT): Tasks are assigned the optimal frequency without consid-
ering DPM. The processor stays at the idle mode for all the idle interval.

— Applying DVFS before DPM (SubOPT): Similar to [Srinivasan and Chatha 2007], we
implement optimal DVFS as the first step to get the frequency assignment and ap-
plies DPM as the final design step. For fairness comparison, we use our DPM tech-
nique to get the final result.

— Optimal DVFS-DPM (OPT): Integrate DVFS and DPM globally with scheduling.

6.2. Results
Fig. 5 shows the overall power consumptions of the three compared techniques for 8
task sets on 4-core and 8-core architectures. To increase the workload on 8-core ar-
chitecture, we implement the simulation by duplicating the number or decreasing the
period of task graph. From the simulation result, we can see the scheme of applying
DVFS before DPM (SubOPT) fails to achieve power savings at most benchmark set in
both architectures. This is because optimal DVFS in the first step will result lower fre-
quency assignment, which will prolong the execution time of tasks and, at the same
time, reduce the opportunity of entering the sleep state. Comparing to Dvfs-OPT, the

ACM Transactions on Embedded Computing Systems, Vol. XX, No. XX, Article A, Publication date: June 2013.



Energy Optimization for Real-Time Multiprocessor System-on-Chip with Optimal DVFS and DPM CombinationA:17

(a) 4-core architecture (b) 8-core architecture

Fig. 5. Overall power consumption.

Fig. 6. Power consumption with Pon varying.

scheme of applying DVFS before DPM (SubOPT) can only on average achieve 2.2% and
4.7% power savings on 4-core and 8-core architectures, respectively. Besides, we can
observe that our approach (OPT) is more energy-efficient than the scheme of apply-
ing DVFS before DPM (SubOPT). Our approach (OPT) , which integrates DVFS and DPM
globally with scheduling, can on average achieve 10.5% (up to 16.0%) and 8.9% (up
to 12.2%) power savings with respect to SubOPT on 4-core and 8-core architectures,
respectively.

Next, we conduct the experiment to show the impact of Pon to the effectiveness of
our approach. α is denote as the factor that varies the Pon with respect to its original
setting, i.e, Pon = α ·P orgon , where P orgon is the original setting. We vary the factor α from
0.5 to 1.5 with fixed step size 0.2. The dynamic power consumption Pdyn, static power
consumption Psta are compared between SubOPT and OPT. Fig. 6 illustrates the results
for benchmark set 7 on 4-core architecture. Note that, when Pon increases, the leakage
power increases its dominance of the total power consumption. From the results, we
can make the following observations: (1) By creasing the frequency of the processor
to create longer idle intervals, OPT consume more dynamic power than SubOPT. At the
same time, OPT achieve significant leakage power savings, which results the overall
power consumption of OPT is smaller than SubOPT. (2) The leakage power of SubOPT
increases linearly with respect to Pon while its dynamic power becomes constant. It
means that when the leakage power increases its dominance, the techniques of ap-
plying DVFS before DPM cannot increase the opportunities of entering sleep modes to
reduce the leakage power. In contrast, OPT can optimally deal with the trade-off be-
tween dynamic power and leakage power to reduce overall power consumption. When
Pon increases, OPT could increase the frequencies, which results in slightly increase of
dynamical power, to avoid the rapid growth of leakage power.
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(a) Power consumption with periods varying. (b) Sleep time interval with periods varying.

Fig. 7. Performance with periods varying.

Then, we discuss the impact of the period setting to the effectiveness of our approach.
Similar to the definition of the factor α, we also define the factor β that varies the pe-
riods of each period with respect to its original setting. We vary the factor β from 0.7
to 1.3 with fixed step size 0.1. The dynamic power consumption Pdyn, static power con-
sumption Psta, and sleep time interval I are compared between SubOPT and OPT. Fig. 7
illustrates the results for benchmark set 1 on 4-core architecture. In Fig. 7, dynamic
power consumption Pdyn and static power consumption Psta of both techniques de-
creases as the period of the application increases. This is expected because the bigger
period of the application can prolong both the execution time and the idle intervals.
One interesting observation is that the overall power savings of OPT with respect to
SubOPT increases when β < 1.1 and decreases when β ≥ 1.1. This is caused by the fact
that, in SubOPT, most tasks of the application has been assigned to lowest frequency
when the periods of the applications are bigger enough. All increased period are con-
tributed to prolong the idle intervals, which results in the sleep time interval of SubOPT
increase rapidly (as shown in Fig. 7(b)). Thus, leakage power of SubOPT will decrease
rapidly, which also results in the power savings of OPT decreasing.

In the end, we conduct experiments to show the efficiency of our refinement tech-
nique. We adopt the same task graph set as above. We compare the numbers of vari-
ables and constraints in the MILP problem as well as the solving time. Fig. 8 shows
the results on both 4-core and 8-core architectures for approaches with refinement
and without refinement. Noting that refinement approach can achieve the same opti-
mal solution as the approach without refinement. The MILP solver is set to have 90
minutes time budget to execute for each task graph set. On 4-core architecture, the
refinement approach can generate the results in 2 minutes. On 8-core architecture,
the non-refinement approach fail to generate the results on 5 task sets due to expired
execution time, while the refinement approach can generate the results in 80 minutes.
Besides, the refinement approach can on average achieves 39.82% reduction on the
number of variables and 37.82% reduction on the number of constraints. The results
show refinement technique can significantly reduce the MILP problem size.

7. CONCLUSION AND FUTURE WORK
This paper presents an energy optimization technique for scheduling real-time tasks
on MPSoCs based platforms with optimally DVFS and DPM combination. A key tech-
nique is proposed to directly model the idle interval of individual processor. Based on
this technique, an integrated solution for optimal DVFS and DPM combination problem
is presented based on mixed integer linear programming. Our technique can generate
an optimal time-triggered non-preemptive schedule for each task and an optimal fre-
quency assignment for each task to minimize the total energy consumption of MPSoCs.
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(a) # Variable on 4-core architec-
ture

(b) # Constraint on 4-core architec-
ture

(c) Computation time on 4-core ar-
chitecture

(d) # Variable on 8-core architec-
ture

(e) # Constraint on 8-core architec-
ture

(f) Computation time on 8-core ar-
chitecture

Fig. 8. No-refinement vs refinement.

Based on this optimal schedule, the tasks can be scheduled with insertion of voltage-
setting instructions. Besides, we develop a novel technique that can significantly re-
duce the exploration space of MILP. Proof-of-concept simulation results demonstrate
the effectiveness of our approach compared with existing approaches.

For the next step, we are interested in implementing the proposed approach on re-
alistic system and evaluating its performance. Now, a new MPSOCs based on time-
triggered architecture is presented in [Salloum et al. 2012] specially for safety-critical
embedded systems. Besides, there are also available time-triggered embedded systems
in the industry, e.g., TTE processor [TTE system 2007]. Our optimization process can
be used to produce energy-aware time-triggered non-preemptive schedules for such
time-triggered MPSOCs.

Furthermore, another interesting future work would be to support voltage-frequency
island partitioned system. Approach to support voltage-frequency island partitioned
system should meet two kinds of constraints: (1) cores within one island should share
the same frequency. (2) cores within one island should enter into sleep mode at the
same time as well as switching to active mode.

REFERENCES
ARM 2012. ARM Cortex-A15 serious. http://www.arm.com/products. (2012).
S. Baruah and G. Fohler. 2011. Certification-Cognizant Time-Triggered Scheduling of Mixed-Criticality Sys-

tems. In Proceedings of 2011 IEEE 32nd Real-Time Systems Symposium (RTSS).
MuhammadKhurram Bhatti, Ceile Belleudy, and Michel Auguin. 2011. Hybrid power management in real

time embedded systems: an interplay of DVFS and DPM techniques. Real-Time Systems (2011).
Gang Chen, Kai Huang, Christian Buckl, and Alois Knoll. 2013. Energy optimization with worst-case dead-

line guarantee for pipelined multiprocessor systems. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe (DATE).

Jian-Jia Chen and Tei-Wei Kuo. 2005. Multiprocessor energy-efficient scheduling for real-time tasks with
different power characteristics. In Proceedings of International Conference on Parallel Processing
(ICPP).

Hui Cheng and Steve Goddard. 2006. Online energy-aware I/O device scheduling for hard real-time systems.
In Proceedings of the Conference on Design, Automation and Test in Europe (DATE).

CPLEX 2010. IBM ILOG CPLEX Optimizer. http://www.ibm.com/software/. (2010).

ACM Transactions on Embedded Computing Systems, Vol. XX, No. XX, Article A, Publication date: June 2013.



A:20 G. Chen et al.

V. Devadas and H. Aydin. 2012. On the Interplay of Voltage/Frequency Scaling and Device Power Manage-
ment for Frame-Based Real-Time Embedded Applications. IEEE Trans. Comput. (2012).

R.P. Dick, D.L. Rhodes, and W. Wolf. 1998. TGFF: task graphs for free. In Proceedings of the 6th International
Workshop on Hardware/Software Codesign.

Marco E. T. Gerards and Jan Kuper. 2013. Optimal DPM and DVFS for frame-based real-time systems.
ACM Transactions on Architecture and Code Optimization (TACO), Article 41 (2013), 23 pages.

F. Gruian and K. Kuchcinski. 2001. LEneS: task scheduling for low-energy systems using variable supply
voltage processors. In Proceedings of the 2001 Asia and South Pacific Design Automation Conference
(ASP-DAC).

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. 2001. MiBench: A free,
commercially representative embedded benchmark suite. In Proceedings of the 2001 IEEE International
Workshop on Workload Characterization (WWC).

Michael B. Henry and Leyla Nazhandali. 2009. Hybrid Super/Subthreshold Design of a Low Power Scalable-
Throughput FFT Architecture. In Proceedings of the 2009 International Conference on High Performance
Embedded Architectures and Compilers (HiPEAC).

Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and GiorgioC. Buttazzo. 2011. Applying real-time
interface and calculus for dynamic power management in hard real-time systems. Real-Time Systems
(2011).

Chia-Mei Hung, Jian-Jia Chen, and Tei-Wei Kuo. 2006. Energy-Efficient Real-Time Task Scheduling for
a DVS System with a Non-DVS Processing Element. In Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS). 303 –312.

Intel 2009. Intel Atom Processor. http://www.intel.com/processors/atom.html. (2009).
Intel 2011. Intel 22nm Technology. http://www.intel.com/silicon-innovations/. (2011).
Intel 2012. Intel Single-Chip Cloud Computer (SCC). http://www.intel.com/content/www/us/en/research.

(2012).
ITRS 2011. International Technology Roadmap for Semiconductors. http://www.itrs.net/reports.html.

(2011).
R. Jejurikar, C. Pereira, and R. Gupta. 2004. Leakage aware dynamic voltage scaling for real-time embedded

systems. In Proceedings of 2004 41st ACM/IEEE Design Automation Conference (DAC).
N.K. Jha. 2001. Low power system scheduling and synthesis. In Proceedings of 2001 IEEE/ACM Interna-

tional Conference on Computer Aided Design (ICCAD).
Dawei Li and Jie Wu. 2012. Energy-Aware Scheduling for Frame-Based Tasks on Heterogeneous Multi-

processor Platforms. In Proceedings of the 2012 41st International Conference on Parallel Processing
(ICPP).

C.E. Lin, Hung-Ming Yen, and Yu-Shang Lin. 2007. Development of Time Triggered hybrid data bus System
for small aircraft digital avionic system. In Proceedings of IEEE/AIAA 26th Digital Avionics Systems
Conference (DASC).

Martin Lukasiewycz, Sebastian Steinhorst, Florian Sagstetter, Wanli Chang, Peter Waszecki, Matthias
Kauer, and Samarjit Chakraborty. 2012. Cyber-Physical Systems Design for Electric Vehicles. In Pro-
ceedings of the 2012 Euromicro Conference on Digital System Design(DSD).

Steven M. Martin, Krisztian Flautner, Trevor Mudge, and David Blaauw. 2002. Combined dynamic volt-
age scaling and adaptive body biasing for lower power microprocessors under dynamic workloads. In
Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design (ICCAD).

Marvell 2009. Marvell PXA270 Processor. http://www.marvell.com/application-processors/pxa-family/.
(2009).

Marvell 2012. Marvell ARMADA. http://www.marvell.com/. (2012).
Christian El Salloum, Martin Elshuber, Oliver Hoftberger, Haris Isakovic, and Armin Wasicek. 2012. The

ACROSS MPSoC – A New Generation of Multi-core Processors Designed for Safety-Critical Embedded
Systems. In Proceedings of 2012 15th Euromicro Conference on Digital System Design (DSD).

SimpleScalar 2003. SimpleScalar LLC. http://www.simplescalar.com. (2003).
Amit Kumar Singh, Anup Das, and Akash Kumar. 2013. Energy optimization by exploiting execution slacks

in streaming applications on multiprocessor systems. In Proceedings of the 50th Annual Design Automa-
tion Conference (DAC).

Krishnan Srinivasan and Karam S. Chatha. 2007. Integer linear programming and heuristic techniques
for system-level low power scheduling on multiprocessor architectures under throughput constraints.
Integration,the VLSI Journal (2007).

TTE system 2007. Reliable time-triggered Processor. http://www.tte-systems.com/products/. (2007).

ACM Transactions on Embedded Computing Systems, Vol. XX, No. XX, Article A, Publication date: June 2013.



Energy Optimization for Real-Time Multiprocessor System-on-Chip with Optimal DVFS and DPM CombinationA:21

K.S. Vallerio and N.K. Jha. 2003. Task graph extraction for embedded system synthesis. In Proceedings of
the 16th International Conference on VLSI Design (VLSID).

Weixun Wang and P. Mishra. 2010. Leakage-Aware Energy Minimization Using Dynamic Voltage Scaling
and Cache Reconfiguration in Real-Time Systems. In Proceedings of the 23rd International Conference
on VLSI Design (VLSID).

Yi Wang, Duo Liu, Zhiwei Qin, and Zili Shao. 2010. Memory-Aware Optimal Scheduling with Communica-
tion Overhead Minimization for Streaming Applications on Chip Multiprocessors. In Proceedings of the
2010 31st IEEE Real-Time Systems Symposium (RTSS).

Yi Wang, Hui Liu, Duo Liu, Zhiwei Qin, Zili Shao, and Edwin H.-M. Sha. 2011. Overhead-aware energy op-
timization for real-time streaming applications on multiprocessor System-on-Chip. ACM Transactions
on Design Automation of Electronic Systems (TODAES) (2011).

Huiting Xu, Fanxin Kong, and Qingxu Deng. 2012. Energy Minimizing for Parallel Real-Time Tasks Based
on Level-Packing. In Proceedings of the 2012 18th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA).

Yumin Zhang, Xiaobo Hu, and D.Z. Chen. 2002. Task scheduling and voltage selection for
energy minimization. In Proceedings of the 39th Design Automation Conference (DAC).
DOI:http://dx.doi.org/10.1109/DAC.2002.1012617

Xiliang Zhong and Cheng-Zhong Xu. 2008. System-wide energy minimization for real-time tasks: Lower
bound and approximation. ACM Transactions on Embedded Computing Systems (TECS) (2008).

Received XXX XXX; revised XXX XXX; accepted XXX XXX

ACM Transactions on Embedded Computing Systems, Vol. XX, No. XX, Article A, Publication date: June 2013.


