
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Echtzeitsysteme und Robotik

Game-based Synthesis for Distributed Control

of Industrial Assembly Lines

Michael Stefan Geisinger

Vollständiger Abdruck der von der Fakultät für Informatik der

Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans Michael Gerndt

Prüfer der Dissertation:
1. Univ.-Prof. Dr.-Ing. habil. Alois Knoll

2. Prof. George J. Pappas, Ph.D.
University of Pennsylvania, Philadelphia/USA

Die Dissertation wurde am 27.01.2015 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 15.06.2015 angenommen.

II

Abstract

The manufacturing industry nowadays uses a high degree of automation that con-
tributes significantly to its commercial success. Set-up of an automation system is
usually very expensive and only pays off by amortization of costs over its life span.
Shorter product life cycles and increasing personalization of products, which are the
results of the so-called fourth industrial revolution, endanger this concept: it becomes
more and more important that not only set-up, but also adaptation of automation sys-
tems to changing production requirements is cost-efficient. Modification of the control
software plays an important role in this context, because programming of such systems
often takes place at a low level and is hence restricted to experts who are aware of the
consequences of their design decisions.

This work presents a model-driven workflow that aims at reducing the costs of adapt-
ing the control software in industrial automation systems. Its goal is to replace the
tedious and error-prone manual adaptation by an automatic approach which is based
on synthesis. This has two major benefits: first, the possibility for non-experts to adapt
the control software allows experts in industrial automation to focus on other tasks,
reducing overall costs. Second, programming errors are avoided, because re-synthesis
is triggered with the push of a button and the synthesized control programs are correct
by construction.

In order to achieve these benefits, this work introduces formalisms for describing au-
tomation systems and the production tasks to accomplish. The sequence of primitive
control actions to execute is then automatically synthesized by a solver that is based
on game theory. The result is transformed into executable code, which allows both
offline simulation as well as online execution within the real automation system. For
distributed control systems, the approach is capable of generating multiple control pro-
grams that cooperate in order to achieve the production goal. The presented work-
flow integrates nicely with existing concepts from industrial automation, such as pro-
grammable logic controller (PLC) programming languages as defined in IEC 61131-3.

The contributions of this work are the definition of a suitable domain specific mod-
eling language for precise description of automation systems and automation tasks,
the transformation of the model into an input for the game-based solver as well as a
software library for simulation and execution of the generated control programs on
centralized and distributed target control units.

In order to show the operability of the approach, the development workflow is applied
to various industrial-grade automation systems. Programmable logic controllers, per-
sonal computers and microcontrollers are used as target platforms. For the scenarios
examined in this work, synthesis time is in the range of seconds to minutes and hence
acceptable in the target domain. Evaluation also includes experiments with cost-based
optimization and parallel execution of individual production steps.

III

IV

Zusammenfassung

In der produzierenden Industrie wird heute ein hoher Grad an Automatisierung einge-
setzt, der maßgeblich zum wirtschaftlichen Erfolg beiträgt. Der Aufbau eines Automa-
tisierungssystems ist üblicherweise sehr teuer und zahlt sich nur durch die Amortisie-
rung der Kosten über die Laufzeit aus. Kürzere Produktlebenszyklen und zunehmende
Individualisierung von Produkten, die eine Folge der so genannten vierten industriel-
len Revolution sind, gefährden dieses Konzept: Es wird immer wichtiger, dass Auto-
matisierungssysteme nicht nur kosteneffizient aufgebaut, sondern bei veränderten Pro-
duktionsbedingungen auch effizient umgerüstet werden können. Die Anpassung der
Steuerungssoftware spielt hierbei eine große Rolle, da die Programmierung oft hard-
warenah erfolgt und damit Experten vorbehalten ist, die sich der Wechselwirkungen
ihrer Design-Entscheidungen bewusst sind.

Diese Arbeit stellt einen modellgetriebenen Ansatz zur Senkung der Kosten bei der
Anpassung der Steuerungssoftware in Automatisierungssystemen vor. Dabei wird der
mühsame und fehlerbehaftete manuelle Anpassungsprozess durch einen Synthese-
Ansatz ersetzt. Dies hat zwei Vorteile: Einerseits ergeben sich Kostensenkungen, da sich
Automatisierungs-Experten auf andere Aufgaben konzentrieren können. Andererseits
werden Programmierfehler ausgeschlossen, da eine erneute Synthese auf Knopfdruck
möglich ist und das Ergebnis konstruktionsbedingt korrekt ist.

Um diese Ziele zu erreichen, führt diese Arbeit eine Sprache ein, mit der Automati-
sierungssysteme und die damit durchzuführenden Produktionsaufgaben formal be-
schrieben werden. Die konkreten Steuerbefehle werden dann mittels eines auf der
Spieltheorie basierenden Lösungsalgorithmus synthetisiert. Der resultierende ausführ-
bare Code erlaubt Offline-Simulation und Online-Ausführung auf der Zielplattform.
In verteilten Systemen werden mehrere Steuerungsprogramme generiert, die gemein-
sam die Produktionsaufgabe lösen. Der vorgestellte Ansatz integriert sich gut in exis-
tierende Konzepte der Automatisierungstechnik, wie z.B. Programmiersprachen nach
IEC 61131-3.

Der Beitrag dieser Arbeit liegt in der Definition einer domänenspezifischen Mo-
dellierungssprache zur präzisen Beschreibung von Automatisierungssystemen und
-aufgaben, der Transformation der Modelle in eine Eingabe für den Löser sowie ei-
ner Softwarebibliothek zur Simulation und Ausführung der generierten Steuerungs-
programme auf der (verteilten) Zielhardware.

Um die Funktionsfähigkeit des Ansatzes zu demonstrieren, wird er auf mehrere Auto-
matisierungssysteme von industrieller Qualität angewendet. Dabei kommen speicher-
programmierbare Steuerungen, Personal Computer und Mikrocontroller als Zielplatt-
formen zum Einsatz. Für die in dieser Arbeit untersuchten Szenarien liegen die Syn-
thesezeiten im Bereich von Sekunden bis Minuten und sind damit akzeptabel für die
Zieldomäne. Die Evaluierung umfasst auch Szenarien mit kostenbasierter Optimierung
und paralleler Ausführung mehrerer einzelner Produktionsschritte.

V

VI

Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr.-Ing. Alois Knoll for the
opportunity to prepare this thesis. His ideas, criticism and guidance helped to
set the right focus for this work. I would also like to thank Prof. George J. Pappas
for accepting to be my external advisor and for the interesting discussions on the
similarities between his research and my work.

Many thanks go to my colleagues and former colleagues at the fortiss research
institute and the Chair of Robotics and Embedded Systems. First and fore-
most, thanks to Dr. Harald Ruess for supporting my research in the course of
my employment at fortiss. A big thanks to Dr. Christian Buckl for the inten-
sive feedback, guidance and constructive criticism throughout the preparation
of this work. Thanks to Dr. Chih-Hong Cheng for introducing me to the do-
main of software synthesis and for providing the GAVS+ solver that this work is
based on. Thanks to Gerd Kainz for the joint effort to assemble and enhance the
Festo MPS demonstrators used in this work. Finally, many thanks to all other
colleagues and former colleagues for teaching me all the small things that are
necessary to successfully complete such a work.

I would also like to thank my parents Karin and Franz for the superb education
and support as well as lasting patience and faith in me finishing this work. Your
frequent reminder to get this thesis done gave me the extra motivation to make
it possible.

Last but not least, this work would not have been possible without the countless
hours of work that have been put into free software and open source software by
contributors all around the world. In order to give something back, the software
written in the context of this work is available as open source and licensed under
the GNU General Public License (GPL), Version 3.0.a

aDue to the use of software libraries under GPL (most notably GAVS+), this is the most liberal
licensing scheme that is possible.

VII

VIII

Contents

List of Acronyms XI

List of Symbols XIII

List of Figures XVII

1. Introduction 1
1.1. Setting and Motivation . 2
1.2. Goals of this Thesis . 6
1.3. Main Contributions of this Thesis . 8
1.4. Structure of this Thesis . 9

2. Background and Trends 11
2.1. Industrial Automation . 12
2.2. Modeling and Model-driven Development 19
2.3. Games and Game-based Synthesis . 25

3. Overview of the Approach 31
3.1. User Roles and Domain Knowledge . 32
3.2. Derived Workflow . 33
3.3. Scope of this Work . 37
3.4. Introduction of the Running Example . 39

4. System Modeling and Task Description 43
4.1. Modeling Overview . 44
4.2. Formal Description of Modular Assembly Lines 44
4.3. Formal Description of Automation Tasks 53
4.4. Discussion and Application to Running Example 56
4.5. Summary . 70
4.6. Related Work . 71

IX

Contents

5. Industrial Control Program Generation Workflow 73
5.1. Approach . 74
5.2. Constraint Checking . 77
5.3. Model-to-model Transformation . 79
5.4. Model-to-text Transformation . 86
5.5. Game-based Solving . 93
5.6. Translation of Solver Output to Control Programs 96
5.7. Discussion and Application to Running Example 100
5.8. Summary . 102
5.9. Related Work . 103

6. Platform Mapping and Execution 105
6.1. Platform Mapping Overview . 106
6.2. Generation of Platform Mapping Code . 106
6.3. Mapping of Behavioral Primitives . 107
6.4. Manually Written Platform Library . 111
6.5. Discussion and Application to Running Example 113
6.6. Summary . 114

7. Realization and Evaluation 115
7.1. Model-driven Development Tool MGSyn 116
7.2. Simulation of Control Program Execution 118
7.3. Evaluation Overview . 119
7.4. Evaluation of the Running Example . 121
7.5. Evaluation of Circular Material Flow Example:

Focus on Parallel Execution . 122
7.6. Evaluation of Bidirectional Material Flow Example:

Focus on Decentralized Execution . 126
7.7. Summary . 132

8. Conclusion 135

A. Model Transformation: Token-based Ownership of Predicates 139

Index 143

Bibliography 145

X

List of Acronyms

API application programming interface
ASCII American Standard Code for Information Interchange (encoding scheme)
BDD binary decision diagram
BNF Backus-Naur form
CNC computerized numerical control
DCS distributed control system
DML dedicated manufacturing line
DSL domain-specific language
DSM domain-specific modeling
ECU electronic control unit
EMF Eclipse Modeling Framework
EMP Eclipse Modeling Project
ERP enterprise resource planning
ET execution time
FBD function block diagram
FMS flexible manufacturing system
FSM finite state machine
GAVS Game Arena Visualization and Synthesis (software framework)
GAVS+ Game Arena Visualization and Synthesis Plus! (software framework)
GMF Graphical Modeling Framework (Eclipse platform framework)
GUI graphical user interface
IDE integrated development environment
IEC International Electrotechnical Commission (standardization organization)
IL instruction list
I/O input/output
IP Internet Protocol
IPC industrial personal computer

XI

Contents

IT information technology
LD ladder diagram
LTL linear temporal logic
M2M model-to-model transformation
M2T model-to-text transformation
MAL modular assembly line
MBD model-based design/development
MDD model-driven development
MDE model-driven engineering
MES manufacturing execution system
MGSyn Model, Game and Synthesis (game-based synthesis approach)
MOF Meta-Object Facility
MPI Multi-Point Interface (Siemens SIMATIC S7 PLC interface)
MPS Modular Production System (product line from Festo)
OCL Object Constraint Language
OLE Object Linking and Embedding (object system and protocol)
OMG Object Management Group
OPC open platform communications (originally: OLE for process control)
OS operating system
PC personal computer
PCF primitive control function
PDDL Planning Domain Definition Language
PID proportional-integral-derivative (controller type)
PLC programmable logic controller
POU program organization unit
PWM pulse-width modulation
RAM random access memory
RMS reconfigurable manufacturing system
SCADA supervisory control and data acquisition
SFC sequential function chart
SME small and medium enterprise
ST structured text
TCP Transmission Control Protocol
UDP User Datagram Protocol
UML Unified Modeling Language
UML2 Unified Modeling Language 2
WC worst-case
WCET worst-case execution time
XMI XML Metadata Interchange
XML Extensible Markup Language

XII

List of Symbols

Symbol Explanation
⊙ Sequential composition operator
⊗ Parallel composition operator
→ Sequential composition
‖ Parallel composition
A List of arguments
a Argument
𝑎 Number of arguments in list
𝒜 Arena
ℬ Set of behavioral interfaces
b Behavioral interface
𝑏 Number of behavioral interfaces in set (if used as index)
𝛽 Number of behavioral interfaces triggerings in trace
B Set of Boolean values
b Barrier
𝒞 Set of conditions
𝑐 Condition
𝒞ℐ Set of initial conditions
𝑐𝑖 Initial condition
𝒞𝒫 Set of preconditions
𝑐𝑝 Precondition
C Set of check rules
c Check rule
c Number of check rules (if used as index)
𝑑 Degree of parallelization
𝛿 Delay
ℰ Set of effects
𝑒 Effect

Continued on next page

XIII

Contents

Symbol Explanation̂︀ℰ Set of conditional effects
𝑒 Conditional effect
𝐸 Edge relation
𝑒 Event (if used in context of time modeling)
𝜀 Accuracy
𝜖 Empty string
𝜂 Cost

𝜂max Cost bound
𝑔 Goal specification
𝒢 Game
H Hardware model
ℐ Set of input signals
𝜄 Input signal
𝜄 Number of input signals in set (if used as index)
�⃗� Input signal assignment function
𝑗 Jitter
L List of overlapping positions
ℓ Overlapping position
ℳ Set of all process models
M Process model
𝒪 Set of output signals
𝑜 Output signal
𝑜 Number of output signals in set (if used as index)
�⃗� Output signal assignment function
𝜙 Module type
Φ Set of module types
P Plant model
𝒫 Set of configurable parameters
𝑝 Configurable parameter
𝑝 Number of configurable parameters in set (if used as index)
𝑝 Parameter assignment function
𝑝 Primitive control function
𝑝 Parallelizable flag
Π Set of operating positions
𝜋 Operating position
𝜋 Play (if used in context of game theory)
𝑃 Time-penalty function
Ψ Set of module instances
𝜓 Module instance
ℛ Set of sensor result conditions
𝑟 Sensor result condition
𝜌 Sensor response value

Continued on next page

XIV

Contents

Symbol Explanation
RW Set of reading and writing ECU instances
𝑠 Specification
𝒮 Set of potential predicate valuations
𝜎 Solver type
Σ Alphabet (ASCII character set)
T Task model
𝒯 Set of operating position types
𝑡 Operating position type
t Number of object types (if used as index)
t𝑣 Allowed object types function for predicate 𝑣
𝑡 Logical time (if used in context of time modeling)
𝜏 Physical time
Θ Set of operating position instances
𝜃 Operating position instance
𝜃 Operating position mapping function
𝒰 Set of ECUs
𝑢 ECÛ︀𝒰 Set of ECU instances
�̂� ECU instance
�⃗� ECU instance parameter assignment function
𝒱 Set of predicates (variables)
𝑣 Predicate (variable)
𝒱 Set of vertices (if used in context of game theory)
𝑣 Vertex (if used in context of game theory)
𝒳 Set of objects
𝑥 Object
𝑥 Number of objects in set (if used as index)
𝑥 Payload (if used in context of time modeling)
Ξ Set of platform types
𝜉 Platform type
𝒲 Set of work pieces
𝑤 Work piece
𝒲 Winning set (if used in context of game theory)

XV

XVI

List of Figures

1.1. Comparison of traditional and proposed programming workflow 7
1.2. Graphical representation of the structure of this thesis 9

2.1. Paradigm shifts in manufacturing in the last two centuries 12
2.2. Example of an automation pyramid . 14
2.3. PLC programming language examples . 17
2.4. Computer programming and modeling languages abstraction 21
2.5. Metamodeling concept with concrete example 22
2.6. Example for game-based synthesis . 28

3.1. User roles and domain knowledge in control software design 32
3.2. Traditional bottom-up control program design 35
3.3. Proposed confluent workflow for control program synthesis 35
3.4. Running example . 39

4.1. Generalized representation of components from the running example . . 57

5.1. Comparison of centralized and decentralized control strategies 75

6.1. Inter-ECU networking class hierarchy . 111
6.2. ECU class hierarchy . 112
6.3. Communication class hierarchy . 112
6.4. Primitive control function class hierarchy 113

7.1. MGSyn main application window . 116
7.2. MGSyn configuration dialog . 117
7.3. Simulating execution of decentralized control programs for four ECUs . 119
7.4. Circular material flow example . 123
7.5. Photos of real plant implementing circular material flow 123
7.6. Bidirectional material flow example . 128
7.7. Photos of real plant implementing bidirectional material flow 128

XVII

XVIII

CHAPTER 1

Introduction

Contents
1.1. Setting and Motivation . 2
1.2. Goals of this Thesis . 6
1.3. Main Contributions of this Thesis . 8
1.4. Structure of this Thesis . 9

Overview

Automation systems are very common today in industrial branches that involve medium
or high-volume production. Without industrial automation, many products that are part
of our everyday life would not be as ubiquitous, high-quality and cheap. Automation
systems keep the product quality at a constant high level while increasing volume of
production significantly.
However, setup and maintenance of automation systems and the software used to
control them poses significant challenges of both financial and technical nature. Coping
with these challenges is a prerequisite for economic success and hence failing to do so
is a severe risk for a manufacturing company.
This chapter first depicts which technical challenges and risks are present in design of
industrial automation systems and their evolution over time. It then motivates the need
for partial automation of the design process of control software for a specific class of
industrial automation systems in order to cope with the presented challenges and to
mitigate some of the risks.

1

1. Introduction

1.1. Setting and Motivation

1.1.1. Advantages of Industrial Automation

The term automatic “pertains to a process or equipment that, under specified conditions,
functions without human intervention” [IEC06]. An automation system is a system that
“employs means to enable self-acting functions” [IEC06]. Industrial automation is the
application of automation in industrial scope, i.e., to produce or process goods. In
facilities with a high degree of automation, which is defined as the “proportion of auto-
matic functions to the entire set of functions of a system or plant” [IEC06], production
processes or processing of goods are typically carried out on assembly lines.

The major motivations for (industrial) automation as opposed to manual production
and processing are to accommodate growth [BH07], “to improve accuracy, increase
speed of service and output rate, to reduce labour cost and to improve service availabil-
ity” [DJ91]. Although automation is often seen as a replacement for human workers,
development of the past decades has shown that humans “are still very much involved
in the monitoring and control of manufacturing operations, but our role has changed
over the past decades. Rather than moving materials and parts from point 𝐴 to point
𝐵, we now move ideas”, said Jane Gerold, editorial director of Automation World mag-
azine in 2004 [Ger04]. Where work places between humans and machines are shared,
automation often extends “to functions that humans do not wish to perform”, increas-
ing the comfort and safety [PSW00].

1.1.2. Challenges of Industrial Automation

However, these advantages do not come for free and pose strict design requirements
on the system, some of which are listed in the following.

Mastering Complexity

When compared to how easy it is for a human worker to achieve the same task, even
trivial automation tasks result in “normally very complex” [BH07] automation systems
that involve “a number of different systems that need to be designed and developed
in parallel” [DF03]. This includes a number of sensors (for retrieving information from
the environment), actuators (for controlled interaction with the environment) as well as
associated communication infrastructure and control programs. The fact that develop-
ment of such systems is complex is underlined by the insight that especially in the early
phases after introduction of an automation system, service levels might be adversely
affected [NB04]. “This is often due to the need for substantial testing, commissioning
and ’snagging’ (i.e., the rectification of faults) of automated equipment” [BH07].

The typical countermeasure is to employ development methodologies that reduce the
complexity by raising the level of abstraction, for example model-based or model-
driven development approaches [SV06]. Those approaches define clear interfaces be-
tween the individual crafts and enable control engineers to develop those systems in a
more intuitive way, hence reducing potential for mistakes.

2

1. Introduction

Decentralized Control

Many automation systems consist of multiple physically distributed control units or
control systems that have to collaborate in order to achieve a global task [KKK84]. Coor-
dination between control units in a plant takes place via shared communication media,
which are called fieldbuses [Tho05]. Fieldbuses link electronic control units (ECUs) such
as programmable logic controllers (PLCs) or industrial personal computers (IPCs) to the sen-
sors and actuators in the plant. While sensors and actuators have been directly linked
to PLCs and IPCs in traditional automation systems – often using analog signal trans-
mission – the usage of (digital) bus systems has recently both reduced the length of
the cables involved as well as the number of cables required, which “usually repre-
sents a significant part of the cost” [Tho05]. However, such advanced bus systems
require adequate control software and configuration. For example, data exchange on
real-time capable communication media requires according scheduling and prioritiza-
tion [Tho05].

It is beneficial to represent the distributed nature of a control system in an appropriate
model in order to be able to reason about how the parts of a distributed applica-
tion cooperate and to generate communication patterns for exchanging information
between control units.

Proof of Correctness

The implementation of the control programs for an automation system typically has to
follow a given specification that includes, among others, safety requirements. Safety
critical systems often need to be certified [FP04]. Certification is prevalent in industrial
automation domains where interaction with humans takes place, such as a work cell
shared between human workers and an industrial robot.

When certified automation systems are adapted, re-certification is typically required.
This means that the adaptation of safety critical industrial control programs, for ex-
ample due to changing production requirements or the rectification of faults, is very
expensive. Synthesis of correct by construction control programs is hence desirable in
order to reduce these costs. In the context of this work, synthesis means that a suitable
algorithm automatically derives a control program that satisfies a given specification.
Although the generated system still requires (re-)certification, such a process makes the
development and adaptation of control software more cost-efficient.

Representation of Extra-functional Requirements

Many automation systems are part of time critical tasks. Be it that multiple actuators
share the same working space or that a work piece requires processing within a fixed
time bound because of the physical attributes of the process: in both cases, real-time
requirements play an important role.

Many modeling techniques for representation of real-time requirements and respective
realizations exist (e.g., [OMG11d, OMG07, SK00]). However, not all automation system
designs treat real-time requirements as first class entities. In many cases, time-critical

3

1. Introduction

automation tasks run on computing hardware (e.g., PLCs or IPCs) that an engineer se-
lects according to an overestimation of the resources required. Evaluation of system
timing typically boils down to empirical testing whether the system meets the require-
ments in all specified cases.

Among others, this approach bears the risk that an engineer who modifies an existing
system does not properly understand how timing requirements have been realized,
because they are implicitly “encoded” into the system. Hence, explicit representation
of extra-functional requirements (such as timing aspects) in an appropriate language
that allows automatic feasibility analysis should be the preferred way of modeling an
automation system.

1.1.3. Overall Costs of Automation Systems

In traditional production scenarios, the high initial costs for installation and program-
ming of an automation system amortize with the high volume of products man-
ufactured. Although high-volume productions are still common, lot sizes become
smaller in various industrial branches due to rapidly changing markets and increased
customization of products [Fri11]. At the same time, small and medium enterprises
(SMEs), which have smaller lot sizes in general, start applying automation systems
as well [SME09, SME12]. Automating a process only pays off if the costs required im-
plementing and maintaining the automation system in relation to the volume of sales
stay significantly below the costs of a comparable process with human interaction in
the medium term or long run, depending on the business model.

Hence, significant costs not only originate from the installation of an automation sys-
tem and its daily use, but also from the redesign and adaptation required when the
production process needs to be changed. The respective time where no production
is possible is called changeover time or machine set-up time as opposed to machine up-
time [Fri11]. Boosting flexibility and adaptability of industrial automation lines in or-
der to minimize changeover time is a key ingredient for overall cost-efficiency, because
markets are nowadays highly volatile and demand is difficult to predict [CT02]. Facing
unpredictable markets and short product life cycles, agility and flexibility is crucial for
automation systems [BH07]. Fast response to changing market demands can decide
about the market winner these markets [MJNT00].

The need to adapt an automation system is caused by, for example, altering an existing
product or a new product line being developed. As products change, production lines
also need to change their behavior and/or physical layout. Adaptations to industrial
automation systems may consist of the following changes:

1. Adaptations to the physical production equipment as well as the information tech-
nology (IT) infrastructure used to control and maintain it (further called “adapta-
tions to hardware”). Modular components and standardized interfaces typically
reduce the costs for adaptations to hardware. For more details, see Section 2.1.1
and flexible manufacturing systems (FMSs).

2. Adaptations to the control programs (i.e., the software that runs on a control unit
in order to steer the process), configuration of communication and adaptations

4

1. Introduction

to monitoring software (further called “adaptations to software”). The applica-
tion of standards and suitable software engineering approaches typically reduce
costs for adaptations to software. Such adaptations are manual tasks nowadays,
although there is potential to automate them in many cases. However, there is
still a need of research in this area. The concepts developed in this work address
this need to some extent.

A change in the production process often requires both adaptations to hardware and
software at the same time: on the one hand, adaptations to hardware are followed by
adaptations in the software, because new sensors, actuators, control units or communi-
cation channels need to be integrated into the system. On the other hand, adaptations
to the software often require the gathering of additional data and hence the installation
of additional sensors or communication channels.

The vision of reconfigurable production lines is what is commonly referred to as plug
and produce (an adaptation of the term plug and play from the consumer market), that is
the software of an automation line reconfigures itself automatically after the hardware
changes have been made.

1.1.4. Traditional Workflow: Bottom-up Development

The prevalent state-of-the-practice of software engineering for industrial automation
systems is determined by current industrial standards such as IEC 61131-3 [IEC03a],
IEC 61804 [IEC03b] and IEC 61499 [IEC12]. It is based on “painstakingly engineering
sequences of relatively low-level control ’code’ using standardized libraries of function
blocks.” [CGR+12b]. In order to control an actuator, a programmer typically deals with
inputs and outputs at electrical signal level. Higher-level functionality, such as a control
algorithm, bases on top of this manually written low-level software layer.

This traditional bottom-up style of programming leads to “inefficiencies in developing
and maintaining industrial production control systems and it has negative impact on
the quality and dependability of the control code itself” [CGR+12b]. One reason for
this is that during development of the original control systems, developers implicitly
encode requirements and design decisions into the control programs. Typical exam-
ples are the selection of an appropriate control strategy out of a set of possible imple-
mentations or the realization of timing requirements by selecting and “hard-coding” a
scheduling policy for component execution. This approach is not suitable to allow in-
experienced users, such as students or trainees, to modify existing automation systems
without the risk of violating implicitly encoded design assumptions.

An effective workflow should provide means for experts in industrial automation to
explicitly specify the assumed requirements in the initial design phase and allow mod-
ifications to the system at a high level of abstraction using views that hide the imple-
mentation details. Such modifications then do not necessarily have to be performed by
experts, since violations to the assumptions are automatically detected and a solution
respecting the explicit requirements is automatically derived.

5

1. Introduction

1.1.5. Proposed Workflow: Confluent Development

This work proposes a new confluent style of programming the control software for in-
dustrial automation systems that includes both a top-down as well as a bottom-up
workflow. This approach promises to mitigate some of the presented challenges and
risks of the state-of-the-practice bottom-up development methodology.

The top-down part of the proposed workflow is based on describing what needs to be
achieved by the production facilities instead of painstakingly encoding how to achieve
certain production goals in sequences of low-level code. Developers use a formal lan-
guage to specify the task to achieve. It explicitly lists the relevant design assumptions
in form of quality-of-service contracts with respect to dependability requirements and
efficiency constraints. This avoids implicit encoding of requirements and design de-
cisions into the control software, shifting the task of writing control software from
solution space to problem space. Finally, an automatic program synthesis algorithm
generates the actual control program from the specification.

The bottom-up part of the workflow is concerned with providing an abstract model on
which the refined outcome of the top-down part of the workflow is based.

An example of high-level instructions for an industrial automation task in informal
form is “Drill and store red work pieces if they are oriented correctly.” Given a formal
model of the plant and its capabilities, the control software is automatically derived,
provided the semantics of drilling, storing, work piece color and orientation are defined
in a mathematically sound way.

To support the user in this workflow, a model-driven development tool is provided
that implements the respective steps of the workflow. In case of adaptations to an
automation system, the user adapts the plant model in the tool. Synthesis of a suitable
new control program then happens without further user interaction.

The remainder of this chapter is composed as follows: the concrete goals of this work
are summarized in Section 1.2, while Section 1.3 highlights the main contributions.
Finally, a structural overview of this thesis is given in Section 1.4.

1.2. Goals of this Thesis

The five goals pursued in this work are:

1. Programming of modular assembly lines with less or no expert knowledge.
Programming of industrial automation systems is a complex task that involves
implementing how the system performs its duty. The idea behind this work is that,
given a formal representation of what the system should do, an automatic process
can synthesize the “how” from the “what”, provided a formal model of the plant
and its capabilities exists. This work focuses on a specific class of systems that we
call modular assembly lines (MALs).
While the traditional development process of control software for industrial au-
tomation consists of manual implementation and adaptation phases as depicted
in Figure 1.1 (a), this work splits the development process into three parts as il-

6

1. Introduction

Design and manual programming
of control software

1
. D

es
ig

n
 o

f
h

ar
d

w
ar

e
m

o
d

el

an
d

 C
o

n
tr

o
l

p
ri

m
it

iv
es

2
. P

la
n

t
m

o
d

el
 a

n
d

ta

sk
 s

p
ec

if
ic

at
io

n

3
. S

yn
th

es
is

(a) Traditional
development

process

(b) Proposed
workflow

Manual adaptation
of control software

3
. R

e-
sy

n
th

es
is

Time

Initial design phase Redesign phase

...

...

Expert
knowledge
required

Expert
knowledge
not required

Automatic
process

...

...

1. Plant/task
model

adaptation

2. Control
primitive

adaptation

Figure 1.1.: Comparison of (a) traditional development process and (b) proposed work-
flow for developing control software in industrial automation. In the pro-
posed workflow, specific expert knowledge is only required in a fraction of
the development time due to the decomposition of the workflow into three
parts. In addition, tasks in the redesign phase can be more easily paral-
lelized.

lustrated in Figure 1.1 (b): first, experts in mechatronics and industrial automa-
tion model the basic components of the MAL under consideration and provide
suitable primitive control functions (PCFs). Those components are designed in a
generic way and hence re-usable across applications. Second, users that do not
necessarily have to have expert knowledge in industrial automation specify a
high-level model of the concrete plant and the task to achieve. For this purpose,
suitable tooling is provided in which the basic components written by the experts
in mechatronics and industrial automation are available for use. Third, control
software that satisfies the high-level specification is automatically synthesized.

2. Cost-efficient adaptation of control software in automation systems.
Nowadays, production tasks are frequently adapted. Hence, it is important to
ensure that the adaptation of a plant’s control software is cost-efficient. Once the
design process of the control software follows the proposed workflow, the soft-
ware can be quickly adapted by altering the specification of the task to achieve
and re-synthesizing the control program (compare Figure 1.1 (b)). For instance,
the adaptation of the plant topology, altering of material flow, change of process-
ing units and exchange of ECUs with different hardware is considered.

3. Optimization of synthesized control software based on a notion of cost.
Multiple solutions exist for implementing a control program for a specific pro-
duction goal on a given MAL. Selecting an optimized solution is important for
maximum throughput and energy efficiency. In traditional automation design,
control engineers chooses a meaningful realization or it is calculated by tools such
as a manufacturing execution system (MES). In this work, cost-based optimization
is used to select a suitable solution.

7

1. Introduction

4. Synthesis of decentralized control software.
Industrial automation lines contain a number of ECUs that cooperate to achieve
a global control task. Distributing a control algorithm over a number of ECUs is
still done manually most of the time. The formal specification that forms the base
of the approach presented in this work allows automatically deriving a suitable
placement of parts of the control algorithm on the ECUs of the target system.

5. Demonstration platform with heterogeneous control units.
To show the applicability of the approach in the real world, we chose a demon-
stration platform that has similar properties than systems used in practice. It em-
ploys PLCs, personal computers (PCs) and microcontrollers as decentralized control
units.

1.3. Main Contributions of this Thesis

The three main contributions of this thesis are:

1. Definition of a formal domain specific modeling language to describe MALs
and respective automation tasks.
A precise, formal description is the base for reasoning about a system. This thesis
introduces a formal description of MALs with the following features:

∙ Description of processing modules with their so-called operating positions
and behavioral interfaces (i.e., capabilities).

∙ Description of module topology via overlapping operating positions.

∙ Model of the discrete state space of the plant.

∙ Properties of work pieces (i.e., the products being produced).

∙ A selected set of properties of the ECUs in the automation system.

The automation task to achieve is then formulated as a logical formula over the
state space of the plant, given an initial state space assignment.

Furthermore, this work also presents ideas on how extra-functional properties
can be represented to enhance the expressiveness of the model.

Details about the modeling of industrial automation systems and task description
can be found in Chapter 4.

2. Synthesis of decentralized control programs for MALs.
The formal task specification contains a goal condition that should eventually
become true in order to achieve the desired automation task. The idea is to find a
suitable sequence of control actions of processing modules in order to reach this
goal.

This work uses the solver Game Arena Visualization and Synthesis Plus!
(GAVS+) [CKLB11] to achieve this task, which is based on game theory. For
this purpose, the automation system model and the task specification are trans-
formed into a suitable input language for the solver. Likewise, the result from
invoking the solver, which is an imperative control program with guards and

8

1. Introduction

3. Overview of the Approach

4. System Modeling
and Task Description

5. Industrial Control
Program Generation

Workflow

6. Platform Mapping
and Execution

1
. I

n
tr

o
d

u
ct

io
n

8
. C

o
n

cl
u

si
o

n

7
. R

ea
liz

at
io

n
an

d
 E

va
lu

at
io

n

2
. B

ac
kg

ro
u

n
d

 a
n

d
 T

re
n

d
s

Figure 1.2.: Graphical representation of the structure of this thesis. All arrows indicate
dependencies with regard to content (the tip of the arrow being the chapter
that depends on the chapter where the arrow originates). Thick arrows
indicate intended reading order.

explicit parallelism, is transformed into an executable program for simulation or
execution on the real hardware.

Chapter 5 explains synthesis and the related processes in detail.

3. Mapping of control programs to execution units for simulation and execution.
For the synthesized program to be executed on a target platform, “glue” code is
required to implement the primitive actions described by the high-level behav-
ioral interfaces in the model. Part of this code is automatically generated, but a
thin layer of software corresponding to the driver layer in an operating system (OS)
has to be manually written or designed, for instance the triggering of a control
program on a PLC. Furthermore, depending on the target platform, abstraction
or adequate static mapping of hardware resources and communication facilities
(in case of a distributed control system) needs to be ensured.

Our approach supports simulation of the generated control software on the devel-
opment machine as well as execution on “real” ECUs. Using third-party software,
simulation can be performed on a virtual model of the plant. This allows to syn-
thesize and simulate control software before the concrete hardware is available,
supporting hardware/software co-design [BCG+97, KL92].

More information about the platform mapping can be found in Chapter 6.

1.4. Structure of this Thesis

This work is composed of eight chapters whose dependencies with regard to content
are depicted in Figure 1.2. After this introduction, the thesis continues with background
information about and current trends in the involved fields of research in Chapter 2,

9

1. Introduction

namely industrial automation, embedded systems, model-driven development and
game-based synthesis. In Chapter 3, a holistic overview of the workflow is depicted
and the scope of this thesis is defined.

The work then continues with three chapters that are at the heart of this thesis: Chap-
ter 4 shows how the considered class of automation systems as well as the tasks to
execute on them is specified in a formal way. Chapter 5 presents how a solver that is
based on game theory is used to derive concrete control programs from the abstract
model. Chapter 6 shows how the synthesized control programs are mapped to one or
more target platforms for simulation and execution. Relevant related work is listed in
the respective chapters.

The last part of this work provides technical details about the implementation of the
approach on a demonstration platform in Chapter 7. An evaluation of the system is
provided as well. Finally, Chapter 8 summarizes the approach and the main results of
this work and identifies directions for future research.

10

CHAPTER 2

Background and Trends

Contents
2.1. Industrial Automation . 12
2.2. Modeling and Model-driven Development . 19
2.3. Games and Game-based Synthesis . 25

Overview

This chapter provides an overview of three disciplines of research that serve as base
technologies for the work presented in this thesis and draws conclusions on how this
work can contribute to the state of the art. Those conclusions influence the design of
the approach presented in the following chapters.
The first base technology is industrial automation. This chapter depicts current trends
and provides an overview of state of the art hardware and software from the automation
domain. Since this work employs a model-driven development approach, this chapter
also covers the basic principles of modeling and model-driven development. It illus-
trates the difference between model-based and model-driven software development
approaches and introduces typical modeling workflows. The last section of this chap-
ter depicts relevant aspects of game theory and gives a formal definition of two-player
games, which form the base of the synthesis approach that it used by this work.

11

2. Background and Trends

Product volume
per variant Mass production

Product variety

1850

1955

1913

1980

2000

Mass

customization

Craft production
Personalized

production

Regionalization

Low High

Low

High
TIME SPAN

Globalization

Figure 2.1.: Paradigm shifts in manufacturing over the past two centuries (adapted
from [Kor10]): within this period, changing market demand and society
needs triggered almost a “full circle” in manufacturing principles. The
named years fit the paradigm shifts in automobile production in the West-
ern world.

2.1. Industrial Automation

Industrial automation is about orchestration of a production plant in order to achieve
a certain production goal. Over the past two centuries, it has become a vital part of
manufacturing.

2.1.1. History of Manufacturing and Industrial Automation

The main drivers for the development of industrial automation are market demand
and society needs [Kor10]. Due to changing market demand and society needs, the
way in which industrial automation applies to manufacturing has been experiencing
multiple paradigm shifts over the past centuries. This fact is illustrated by Figure 2.1
and summarized from [MUK00, Kor10] in the following.

Until the mid of the 20th century, craft production (i.e., the production of the exact
product the customer asked for) prevailed and the use of automated equipment was
limited to simple general purpose machines. Over time, market demand increased
significantly. In order to achieve high production volumes, fully automated tasks were
required to replace human workers. Since dedicated manufacturing lines (DMLs) were
used for this purpose, which were only capable of producing a single product without
variation, product variety decreased significantly, but the individual cost of goods was
drastically reduced as well – the age of mass production had started.

Towards the end of the 20th century, the societal demand of customized goods grew
permanently and product variety increased subsequently, while production volume

12

2. Background and Trends

decreased slightly. In this age of mass customization, the automation systems needed
to become flexible to maintain the low production cost of mass production. Hence,
flexible manufacturing systems (FMSs) were designed to tolerate the variance introduced
by customization (e.g., computerized numerical control (CNC) machines). An FMS is “a
programmable machining-system configuration which incorporates software to handle
changes in work orders, production schedules, part programs, and tooling for several
families of parts. The objective of an FMS is to make the manufacture of several families
of parts possible, with shortened changeover time, on the same system” [FFMV08].

Starting with the 21st century, globalization led to more competition as well as a higher
volume of available products on the market due to regionalization. As a result, a
trend towards differentiation based on personalization of products arose. Since the
volume of personalized products being produced heavily depends on the customer-
driven market demand at a specific point in time, FMSs, which typically have to cope
with challenges such as high costs [KHJ+99], unreliability and obsolescence, are nowa-
days replaced by reconfigurable manufacturing systems (RMSs) [MUK00]. RMSs are de-
signed in a modular way and can be reconfigured and upgraded quickly, both with
respect to hardware and software. For example, a reconfigurable production line con-
sisting of a linear arrangement of modular machines (so-called assembly stations) may
be extended by adding the same types of machines in parallel to increase throughput
if market demand is high. When market demand decreases later, the machines can be
removed again and used elsewhere.

Koren summarizes the paradigm shifts mentioned above as follows [Kor10]:

“Over the past two centuries, manufacturing has come nearly full circle:
From focusing on the individual (Craft) to focusing on the product (Mass
Production), to focusing on targeted market groups (Customization), and
back to the individual customer (Personalization).”

Today, technological progress in industrial automation is characterized by research and
development, but also by the adoption and continuous improvement of international
standards and “de facto” standards such as [IEC03a, IEC07, Mod06]. These efforts aim
at integration of the different layers of a production process with each other in order to
form an efficient and manageable automated process. The following sections introduce
the state of the art in industrial automation in greater detail and depict some of today’s
challenges.

2.1.2. Organization of Automation Systems

Industrial automation deals with the keywords planning (i.e., finding a strategy for re-
alizing the production goal), optimization (i.e., ensuring that the plan is cost efficient),
data acquisition (i.e., obtaining the state of the plant and making it accessible to infor-
mation technology (IT) equipment, including error detection) and control (i.e., applying
the plan to the physical control units in the plant under consideration of acquired data,
including error handling).

Figure 2.2 shows a schematic diagram of the different layers in an automated plant, the
so-called automation pyramid [IEC03c]. The shape of the pyramid illustrates the number

13

2. Background and Trends

P
la

n
n

in
g

D
at

a
ac

q
u

is
it

io
n

ERP

MES

SCADA

PLC / IPC

Sensors / actuators

Production process Process level

Field level

Control level

Supervisory level

Area level

Management level4/5

3

2

1

1

0

Level

Control

Optimi-
zation

Figure 2.2.: Example of an automation pyramid with according level number-
ing [IEC03c]. Although IEC 62264-1 defines the control level or controller’s
level as level 1, the field level is commonly numbered the same way.

of entities present at the respective layers: while an automation system typically con-
sists of at most one enterprise resource planning (ERP) system, it features a large number
of sensors and actuators with hundreds or even thousands of input and output signals
at the field layer.

Below the ERP system, there are typically one or more manufacturing execution systems
(MESs), which allow planning, real-time management, steering and control of overall
production. MESs also take care of plan optimization, however suitability and flexibil-
ity is considered of higher priority than optimality [SM06]. Supervisory control and data
acquisition (SCADA) systems provide monitoring and control facilities for specific pro-
cesses. The actual control algorithms execute on programmable logic controllers (PLCs)
(i.e., industrial grade special-purpose embedded systems) and industrial personal com-
puters (IPCs). In the following, this work uses the more abstract term electronic control
unit (ECU) to refer to these components.

As indicated by the arrows on the left, planning and optimization is done at the higher
levels of the pyramid and the results are propagated (e.g., in form of control programs
or control commands) to the lower levels. Likewise, data that are acquired at the lower
levels are continuously fed back to the higher levels in order to monitor the execution
of the production plan and to detect and react to faults.

Propagation of information in either direction is carried out via dedicated communi-
cation technologies. Due to the number of signals and the proximity to the physical
process to be controlled, the lower levels of the automation pyramid (levels 0 to 1) typ-
ically have (hard) real-time constraints with frequencies of 1,000 Hz or more (e.g., for
synchronized motion control). Due to these requirements, special communication tech-
nologies are used, such as PROFIBUS (Process Field Bus) [IEC10], PROFINET (Process
Field Network) [IEC10] or EtherCAT (Real-time Ethernet Control Automation Technol-
ogy) [IEC07, IEC05b], to only name a few. The upper levels of the automation pyramid

14

2. Background and Trends

(levels 2 to 4/5) typically work at a much lower update and control rate with fewer
real-time requirements. Hence, cheaper solutions, such as Internet Protocol (IP) based
Ethernet, are applied at those levels.

2.1.2.1. Programming

Most control software for automation systems in practice is designed for a unique or
a specific type of system that exhibits recurring behavior. From a programmer’s point
of view, such tasks can be easily represented in a loop, where the body of the loop
contains the primitive operations to execute. Hence, the goal is usually specified in an
imperative manner as opposed to a declarative manner, where the functionality and
extra-functional requirements of the system would be formally described.

This means that the resulting code or model is a mixture of the solution to achieve the
given control task and the respective low-level control primitives. This makes such con-
trol programs rather inflexible, because the choice of commands and their order heavily
depends on the requirements of the respective automation task. In case maintenance of
the program is required afterwards, it is hard to reconstruct the original requirements.
Robert Balzer once expressed this problem as follows: “[...] maintenance is performed
on source code (i.e., the implementation). All of the programmer’s skill and knowledge
has already been applied in optimizing this form (the source code). These optimiza-
tions spread information; that is, they take advantage of what is known elsewhere and
substitute complex but efficient realizations for (simple) abstractions” [Bal85]. Hence,
manual adaptation of control programs bears the following risks:

1. Modification and subsequent integration and testing take a significant amount of
time, increasing maintenance costs.

2. The specification for the existing system is not interpreted correctly, leading to
unintentional changes to existing behavior.

Some of these problems have been addressed by using specific hardware and software
tools. The next section introduces the most popular ones.

2.1.3. Hardware at Control and Field Level

The sensors and actuators in a traditional industrial automation system are controlled
using ECUs. For this purpose, sensors and actuators are electrically wired to the ECUs
on which the respective control software is running. In contrast to PLCs, IPCs typi-
cally also serve as front-ends for the physical process and run applications for data ac-
quisition and logging, process visualization or monitoring (e.g., National Instruments
LabView [TK06] or Siemens SIMATIC WinCC [Nan98]). They often feature a full con-
sumer operating system (OS) such as Linux or Windows [SP03]. IPCs and PLCs can be
expanded with “plug and play” capable expansion modules such as interface cards for
specific fieldbus systems to customize them for the respective plant [Sie13]. In contrast
to consumer personal computers (PCs), IPCs offer higher guarantees with respect to reli-
ability, compatibility, expansion and long-term support in order to cope with industrial
requirements and environmental conditions.

15

2. Background and Trends

A trend exists to decentralize data processing and process control in automation
systems by introducing calculating capacity at the field level (compare Figure 2.2).
This trend has started at least three decades ago when “minimum system cost [was]
made possible by the adoption of suitable microcomputer systems for use as subsys-
tems” [KKK84]. Among others, those subsystems are used to implement local control
loops [OLK93]. In case of sensors, preprocessing is often directly integrated into the
sensing component; the respective embedded systems are often referred to as smart
sensors. Smart sensors are not as cheap as traditional sensors, but they significantly in-
crease the level of service and maintainability, because they deliver preprocessed data
and can be easily exchanged.

For example, in thermal production processes like tire production, preprocessing steps
such as linearization, averaging and fusion of measured temperature or pressure values
as well as measurement error correction are typically handled in smart sensors [IMB12,
SGB+13, Fle12]. Furthermore, calibration can be externally triggered and correction
coefficients are directly stored in the smart sensor’s memory, allowing to exchange the
sensor in-place without need for reconfiguration, provided that the replacement sensor
has been calibrated in a laboratory before [Har12].

The application of smart, decentralized equipment as well as respective approaches for
adaptability in a plant is commonly known as the trend towards the smart factory and
also referred to as factory of the future [KLW11, aca11]. The German term “Industrie 4.0”
(4th industrial revolution [Sch12]) was coined to describe this trend. This term is very
actively discussed in Germany [KLW11, Böh12a, Böh12b] and also subject of recent calls
for research proposals [BMW12, Pro13].

2.1.4. Software at the Control and Field Level

Programming of control algorithms running on IPCs (control level) is usually per-
formed with traditional development toolchains (e.g., C/C++ compilers and integrated
development environments (IDEs) [GS04, Abb08]), by code generation from automation
specific software tools (e.g., from MATLAB/Simulink [CSV96] or National Instruments
LabView [TK06]) or by using “soft PLCs” (i.e., the emulation of a PLC with support for
PLC development tools).

Programming of (soft) PLCs (control level) is performed using domain-specific
languages in dedicated programming environments. The international standard
IEC 61131-3 [IEC03a] defines five1 PLC programming languages. All of these lan-
guages share the concept of program organization units (POUs). A POU can be a deter-
ministic mathematical function, a function block or yet another PLC program. In this
way, PLC programs can be nested. Figure 2.3 illustrates the syntax of each language
with a simple example program.

∙ Function block diagram (FBD): An FBD is a graphical language that describes a
function between input variables and output variables (compare Figure 2.3 (a)).
Formally, an FBD is a directed (multi-)graph in which vertices describe sub-

1Some sources do not count SFC as a PLC programming language, because it cannot resemble a func-
tional program on its own (i.e., it rather models a state machine). This fact is neglected in this overview.

16

2. Background and Trends

IN1

IN2 IN3

OUT1

ADD

LIMIT

IN1

100 1000

-1000 OUT1
MN

IN

MX

STEP1

STEP2

TRAN12

TRAN21

N ACTION2

IF (IN3 = TRUE) THEN
 VAR1 := VAR1 + 1;
 OUT1 := IN1 AND IN2;
ELSE
 OUT1 := FALSE;
END_IF;

LD IN1
AND IN2
ST OUT1
LD VAR1
ADD 2
ST VAR1

(a) Function block diagram (FBD) (b) Sequential function chart (SFC)

(c) Ladder diagram (LD) (d) Structured text (ST) (e) Instruction list (IL)

Figure 2.3.: Common representation of (functionally unequal) programs in PLC pro-
gramming languages [IEC03a]: (a) FBD representing the function OUT1 =
min(max(IN1 + 100,−1000), 1000); (b) SFC with two steps, two transitions
and an action named ACTION2 associated to STEP2; (c) LD representing
the function OUT1 = IN1 ∨ (¬IN2 ∧ IN3); (d) ST fragment for the function
OUT1 = IN1 ∧ IN2 ∧ IN3 and a counter for the high-time of IN3; (e) IL
fragment for the function OUT1 = IN1∧ IN2 and an unconditional counter.

functions with respective input and output variables (called ports). Edges in the
graph denote the data flow between output and input ports, between input vari-
ables and input ports or between output ports and output variables.

∙ Sequential function chart (SFC): An SFC is a graphical language for modeling a
specific class of finite state automata (compare Figure 2.3 (b)). Formally, an SFC
is a directed graph with nodes corresponding to states and edges annotated with
transition conditions. An SFC has a designated initial state which is active by de-
fault. A step becomes active when the steps above it are active and the respective
transition condition is true, in which case the steps above it become inactive.

∙ Ladder diagram (LD): An LD is a graphical language for rule-based modeling
of input/output (I/O) relationships (relationships between contacts and coils). The
name originates from the fact that a diagram in this language looks like a lad-

17

2. Background and Trends

der with two vertical rails and rungs between them which represent the rules
(compare Figure 2.3 (c)). During execution, matching input rules are applied in a
quasi-parallel way. The respective output coils (i.e., variables, POUs or actuators)
are set, executed or triggered, respectively.

∙ Structured text (ST): ST is a text-based language with imperative execution se-
mantics (compare Figure 2.3 (d)). The language is similar to Pascal [Bar81] and
features control commands, mathematical and logical operations as well as invo-
cation of POUs.

∙ Instruction list (IL): IL is a text-based language with imperative execution se-
mantics which is similar to assembly language (compare Figure 2.3 (e)). The con-
trol flow is determined by labels, jumps and function calls.

Two of the more popular IEC 61131-3 compliant software tools are:

∙ Siemens SIMATIC STEP 7 [Jon06]: Due to the market share of Siemens PLCs and
IPCs in industrial automation (e.g., 19.5 % market share in the industrial sector in
2010 [IMS11]), the SIMATIC software family has evolved to one of the most com-
mon software tools for industrial automation. SIMATIC STEP 7 provides stan-
dard compliant design of industrial automation systems [Sie11] and also includes
a large number of additional tools for development and simulation.

∙ 3S-Smart Software Solutions CODESYS [3S-14a]: CODESYS (short for Con-
troller Development System) is a hardware-independent and standard compliant
framework for programming automation systems. It supports about 400 pro-
grammable devices from leading manufacturers from control engineering, au-
tomation components and embedded systems.

2.1.4.1. Decentralized Execution

Today, virtually all real-life automation systems are distributed systems that consist of a
number of ECUs that cooperate in order to steer a production process. In order to meet
the need to program distributed industrial control systems, the international standard
IEC 61499 [IEC12] was created. The standard enhances the periodic execution model
used in IEC 61131-3 by an event-driven concept. For this purpose, a generic function
block model with event-driven inputs and outputs is introduced.

However, the distribution of control programs over a number of control units is typ-
ically a manual task: the control signals to exchange need to be manually specified,
hence creating tight dependencies between distributed control systems (DCSs). This
means that when the distributed automation task needs to be adapted, the control pro-
grams on the affected ECUs need to be manually adapted.

For example, the task of processing a work piece in a set of processing modules is
usually implemented by invoking control actions that move the work piece between the
modules and by triggering the respective control actuations like drilling, grinding and
testing (compare for example to approaches in vocational training [Fes12]). When the
production process needs to be adapted by introducing a new processing step, at least
the control programs for the neighboring modules need to be manually modified.

18

2. Background and Trends

2.1.5. Conclusion and Consequences

The hardware technologies used in the industrial automation are very diverse. In order
to cope with this “zoo” of technologies, international standards have been established
that define common interfaces and development methodologies. Software engineering
for industrial automation is based on special programming languages that use concepts
and terminology from the control and electrical engineering domains in order to allow
programming of automation systems by the developers from these domains.

However, the level at which the programming occurs is a rather low one: program-
ming occurs at function level, while interconnection occurs at the level of logical I/O
signals. This is desirable to be able to control each and every aspect of the system. But,
especially in the case of distributed systems, the orchestration of the individual ECUs
becomes a tedious task.

To cope with these issues, a tool-supported workflow for the development of dis-
tributed control programs that raises the level of abstraction beyond the current
level of implementation is proposed in this work. This workflow integrates the ex-
isting hardware and software tools. In this work, the approach is restricted to a specific
class of automation systems where the potential gain is significant in terms of flexibility
and maintainability. This class of automation systems is further referred to as modular
assembly lines (MALs). For details, see Section 3.3.1.

This section showed that control engineers use special languages and tools in order to
develop the application logic for automation systems. Since our goal is to use an even
higher level of abstraction for both description of automation systems as well as task
specification, we need adequate tool support as well. In addition, for programming
embedded systems, we need mechanisms to automatically generate code and system
configurations from the tools. This approach, which is commonly referred to as model-
driven development, is introduced in the next section.

2.2. Modeling and Model-driven Development

2.2.1. Modeling

The purpose of modeling in general is to construct an artifact “that resembles in some
way an imagined or existing system or process. Models serve as surrogates of the
system or process that they represent in order to help us understand or appreciate it
more” [Sel11b] or to derive a concrete system implementation from it. “The intent
of modeling is to reduce the full scale of the represented phenomenon to something
accessible to human comprehension or some type of formal treatment” [Sel11b]. For
this purpose, the model, unlike the imagined or existing system, shall contain only
the information necessary to achieve a designated task. Models do not only “help us
understand the represented phenomenon” [Sel11b], but also help to “communicate our
understanding to others” [Sel11b].

Although the general concept has been around for a long time, modeling is still a rather

19

2. Background and Trends

young scientific discipline. Bran Selić, who has been involved in the definition of the
Unified Modeling Language 2 (UML2) standard, stated in 2009 [Sel11b]:

“The design of modeling languages is still much more of an art than a sci-
ence. There is as yet no systematic consolidated body of knowledge that a
practitioner can refer to when designing a computer-based modeling lan-
guage.”

In the context of computer software, modeling is a software engineering approach. When
we introduced programming tools and languages for industrial automation in Sec-
tion 2.1.4, we actually introduced a domain-specific modeling approach. Similarly,
when a programmer implements an application in his favorite high-level program-
ming language, the program is a model of what he or she intends to achieve that needs
to be mapped to the target system for execution by compilation or interpretation. This
is most obvious for programming languages whose execution is based on virtual ma-
chines (such as Java [MCF03]), but also true for many others.

Modeling is essential for adequate programming of automation systems, because it
would otherwise be virtually impossible for a control engineer with little or no back-
ground in computer science to program the system. Modeling introduces a suitable
degree of abstraction, hides unnecessary implementation details and may provide au-
tomatic mechanisms to make the models executable. This reduces the overall complex-
ity and allows the developer to focus in the actual task to achieve.

2.2.2. Model-based vs. Model-driven

Processes around modeling can be roughly separated into model-based design/develop-
ment (MBD) and model-driven development (MDD); the latter is also called model-driven
engineering (MDE). Both involve the application of modeling concepts for software de-
velopment by. . .

1. creating domain specific languages to represent selected properties of a particular
application domain,

2. using these languages as metamodels for specifying concrete models (so-called
domain specific modeling [KT08]) and

3. using the models as system specification, for validation, verification and/or doc-
umentation.

In contrast to model-based approaches, model-driven approaches. . .

4. synthesize source code from the respective models, too.

Figure 2.4 illustrates how model-based and model-driven engineering compare to tra-
ditional software development approaches. Assembly language can be seen as the ap-
proach with the least degree of computing technology abstraction. Classical so-called
third-generation programming languages (e.g., C/C++ [KR88, Str13], Java [AGH06],
Pascal [Bar81]) have a higher degree of abstraction and use compiler toolchains to
bridge the gap to the implementation level.

In contrast, modeling languages typically use a much higher level of abstraction. For
further processing, models are typically validated and/or transformed. Model valida-

20

2. Background and Trends

Assemblers (2G),
machine

languages (1G)
Compiler filled

detail

Classical (3G)
programming

languages

Modeling
languages

without code
generation

support

Degree of
(computing
technology)
abstraction

Model-to-model
transformation

Application
specific

Computing
technology

specific

Model-driven
eng./dev.

High-level
programming

language

Assembly
programming

language

Modeling
languages
with code
generation

support

Model-to-model
transformation

Compiler filled
detail Implementation

level

Code generation

Model-based
eng./dev.

Figure 2.4.: Computer programming and modeling language abstraction (adapted
from an illustration by Bran Selić [Sel11a]): the so-called 1G and 2G lan-
guages have limited expressiveness, but allow programming a system di-
rectly at the implementation level. 3G languages use compiler toolchains
to fill the gap to the implementation level. Modeling languages use a high
level of abstraction, but only model-driven approaches potentially allow a
transformation to executable code at the implementation level.

tion is performed to check the consistency of the model. Model transformation combines
information from multiple models (e.g., to form a composed model) or generates new
information from a model (e.g., calculation of a schedule from task specifications).

Model-based approaches are typically used for documentation purposes or to better un-
derstand the system under inspection. They are suitable to visualize design concepts
and are very common in software engineering. In model-driven approaches, there ex-
ists a process that maps the model to the implementation level. For this purpose, the
models contain properties for mapping their abstract entities to the concrete target sys-
tem.

2.2.3. Domain-Specific Languages

A domain-specific language (DSL) is a programming language dedicated to a specific
problem domain. It includes all concepts (and usually no more) that are necessary
to formally specify all relevant aspects of a problem in that domain, including the con-
straints under which the problem is to be solved. A DSL can be seen as the opposite
of a general purpose modeling language such as the Unified Modeling Language (UML),
which is domain independent. The systematic use of DSLs to specify problems is called
domain-specific modeling (DSM). A DSM can be used to automatically generate source

21

2. Background and Trends

Meta-metamodeling language

Metamodeling language

Domain modeling language

Meta-metamodel
M3

Metamodel

Model

System

M2

M1

M0

«conformantTo»

«instanceOf»

«instanceOf»

«representedBy»

(e.g., MOF 2.0)

(modeling language,
e.g. UML 2.0)

(user model)

(real system)

StateMachine

State

Transition

1

*

1 *

to

from

start

A B

C stop

from to

(a) Metamodeling concept (b) Levels (c) Concrete examples

Figure 2.5.: (a) Metamodeling concept with according level names (b): at levels M3 and
M2, a “meta”-model is provided that defines the building blocks for the
level below it. The model at level M3 conforms to building blocks from
M3 in order to terminate the recursive definition. (c) Concrete examples
(adapted from [OMG11b, ISI05, Buc08]): the behavior of a real system is
represented by a finite state machine, which consists of the entities StateMa-
chine, State and Transition. These concepts are in turn based on MOF.

code corresponding to the concepts in the model. “Early adaptors of DSM have been
enjoying productivity increases of 500 – 1000 % in production” [KT08].

Despite the fact that the term “programming language” is usually understood as a
text-based format, a DSL is not necessarily text-based. In contrast, the strength of many
DSLs consists in the fact that they are intuitive to end users due to their graphical struc-
ture or denotational semantics (e.g., MATLAB/Simulink [The13]).

The components of a DSL that serve as the building blocks for the respective model
instance are commonly referred to as the metamodel. Those need to be in turn formally
defined by a language of their own. Since the DSL is the metamodel, the language in
which it is written in is often referred to as a meta-metamodel.
Figure 2.5 illustrates the concept of metamodeling: at level M3, a generic meta-
metamodel is provided that defines basic constructs for defining metamodel elements
one level below, such as containers and relations. For example, Object Management
Group’s (OMG) Meta-Object Facility (MOF) [OMG11a, IEC05a] defines a suitable base
language. Level M2 uses these constructs to define a DSL that serves as a metamodel
for the actual model at level M1 in the hierarchy. That model in turn represents the real
system at level M0.

22

2. Background and Trends

2.2.4. Model Validation

Most models can be in an inconsistent state. The reason for this is that in most cases, not
all desired constraints can be formulated by just the syntax of the modeling language
itself. For example, consider the finite state machine metamodel from Figure 2.5 (c):
this metamodel allows defining a state machine in which not all states are connected
by transitions. Since it may not desirable to allow such a state machine to be defined, it
is meaningful to validate the model before it is further processed. This allows detecting
design errors in an early phase of development.

Validation takes place by checking whether all check constraints specified for the model
are satisfied. Due to the structured nature of the models, it is usually easy to specify
such invariants. Check constraints are typically formulated in special languages such
as the Object Constraint Language (OCL) [OMG12a] or Check, where tests against the
model are specified in first order logic [Buc08]. The purpose of these languages is to
verify properties of the models and to generate diagnostic messages in case of con-
straint violations while typically not allowing any modifications of the models itself.
Hence, such languages are typically of functional nature without any side effects. In
the above example, a meaningful informal check constraint would be ∀𝑠1, 𝑠2 ∈ set of
States of the same StateMachine and 𝑠1 ̸= 𝑠2, there must exist a path from 𝑠1 to 𝑠2 using
Transitions from that StateMachine (ignoring the “direction” of the transitions).

2.2.5. Model-to-model Transformation

Especially in model-driven engineering, where the goal is to map a model to the im-
plementation level, a step-wise transformation of the model created by the end user
is meaningful according to “divide and conquer” principles. For example, if a model
specifies software components that need to be executed on a set of distributed target
platforms, a process that would directly derive the code to implement the respective
programs from the top-level model would be monolithic, complex and hard to main-
tain.

Instead, so-called model-to-model transformations (M2Ms) are added that adapt the model
step by step until it is ready to be transformed into executable code. In the above
example, M2Ms would first generate the required schedules for the execution of the
software components, then distribute the software components over the set of target
platforms and finally add platform-specific implementation details.

The goal of applying M2Ms is to generate all information required for code genera-
tion such that code generation itself can be formulated as a direct transformation from
model to text. This allows a clear separation of concerns between algorithmic parts and
code generation parts and fosters reusability and maintainability.

23

2. Background and Trends

2.2.6. Model-to-text Transformation and Program Synthesis

Since a model at level M1 is an instance of elements from the metamodel at level
M2, which in turn are based on primitives with well-known semantics on the meta-
metamodel at level M3, an automatic process can be used to generate executable pro-
gram code (in an arbitrary 3G, 2G or 1G language, compare Figure 2.4) from the model.
In addition, code for representing, storing (serializing/de-serializing), viewing and
editing a model (e.g., according to model-view-controller pattern [Bur87]) can be gen-
erated from its metamodel. Such processes are commonly known as automatic program-
ming [Bal85].

Using this approach, program parts that are time-consuming to build manually are
generated automatically with the added value that, provided model and code gener-
ation are algorithmically correct, the resulting code is correct by construction. The code
is often generated from a respective template that is itself written in a DSL in which
some parts are simply copied to the resulting generated file and specially marked
parts are replaced by elements from the respective model (e.g., template expressions
in Xtend [Ecl14]). This approach allows designing the code generation algorithm in a
more generic way, because it does not need to know the exact semantics of the code
being produced. Instead, the code generator interprets the template language in order
to produce the final result.

Notice that the generated “code” does not have to be program code. For example, a
typical use case is to generate reports and documentation from models, hence targeting
human readers. For this purpose, the more general term model-to-text transformation
(M2T) is typically used instead of the term “code generation”.

Program synthesis is a more formalized kind of automatic programming. “Program syn-
thesis is concerned with the following question: given a not necessarily executable spec-
ification, how can an executable program satisfying the specification be developed? The
objective of program synthesis is to develop methods and tools to mechanize or auto-
mate (part of) this process” [BDF+04].

Hence, in contrast to code generation, synthesis does not only deal with a direct trans-
formation of a model to code. Instead, the model poses a formal “problem” in the
context of the DSL defined by the respective metamodel. The goal is to find a feasible
“solution” for the formal problem that honors the domain-specific constraints set up in
the model. If a solution exists, the result is another model – typically in a different DSL
– that specifies a solution to the problem. Synthesis might fail If no solution exists or
could be found (e.g., because the problem is undecidable).

2.2.7. Existing Modeling Tools and Frameworks

Modeling tools can be roughly separated into general purpose modeling tools, domain-
specific language frameworks and domain-specific modeling environments.

The most popular general purpose language is the Unified Modeling Language
(UML) [OMG11b, OMG11c]. There are many tools available to create UML-compliant
models and to generate code from them. Examples are IBM Rational Rhapsody (com-

24

2. Background and Trends

mercial closed source) [IBM12], the Eclipse Unified Modeling Language 2 (UML2) Tools
(open source) [Ecl13] and Sparx Systems Enterprise Architect (commercial closed
source) [Spa13], to only name a few. Many of these tools also support UML profiles
such as SysML [OMG12b] or MARTE [OMG11d].

Popular domain-specific language frameworks (for designing DSLs) include the Eclipse
Modeling Project (EMP) with Eclipse Modeling Framework (EMF) and Graphical Modeling
Framework (GMF) (all open source) [BSM+04, Gro09], MetaEdit+ (commercial closed
source) [Met13] and actifsource (commercial closed source with free community edi-
tion) [act12].

Well-known examples for domain-specific modeling environments (besides those
listed in the context of industrial automation in Section 2.1.4) are commercial tools such
as MATLAB/Simulink [CSV96] for implementation of control theoretic algorithms
or Esterel Technologies SCADE [SGT+12] for development of safety critical applica-
tions. There are also many scientific domain specific modeling environments avail-
able, for example Ptolemy/Ptolemy II [EJL+03, BL10] for modeling, simulation, and
design of concurrent embedded real-time systems, Giotto for programming “embed-
ded control systems running on possibly distributed platforms” [HHK01] and EasyLab
for graphical design of control programs for microcontrollers in mechatronic applica-
tions [BGBK08, BGH+10].

2.2.8. Conclusion and Consequences

Modeling is the key tool for domain experts such as control engineers to develop com-
plex systems. This is why this work introduces a model-driven development tool
that allows describing the structure and topology of an automation system as well as
the task to achieve with it in a domain specific language. Based on this information,
model-to-model and model-to-text transformations are carried out in order to obtain a
suitable control program. The Eclipse Modeling Framework has been used for imple-
menting the tool that has been developed along with this work. Reasons for this choice
are that it is freely available, open source and well maintained.

An important step in the workflow described in this thesis is the generation of a suitable
control algorithm for a given model. The last section of this chapter introduces game-
based synthesis, which is the formal base of this approach.

2.3. Games and Game-based Synthesis

The game theory is a research area from theoretical computer science. It uses mathe-
matical methods to make strategic decisions in a given problem space in order to reach
a certain goal. This overview is restricted to turn-based games, i.e., games where the
players make moves by taking turns. There exist many types of turn-based games for
different numbers of players: one player games (e.g., sliding puzzles) ask to find a
strategy to solve a given problem, where each move changes the state of the game. A
strategy is a description of the decisions a player will make at all possible situations
that can arise in the game [Tho84]. Two player games (e.g., chess) involve two opponents

25

2. Background and Trends

with different (typically opposite) goals. The player that manages to reach his/her goal
and/or prevents the other player from reaching his/her goal wins the game.

Besides the number of players, games can have many different properties. In games
with perfect information (e.g., chess), the players can observe the whole state of the
so-called arena. The challenge of such games lies in the computational complexity of
exploring all possible moves. In contrast, games with imperfect information (e.g., most
types of card games) hide some information from the players [Tho84] and hence de-
mand decisions based on probability.

In the following, two-player games are formally introduced, which form the base of the
synthesis approach presented in this work.

2.3.1. Formal Definition of Two-player Games

The following definitions have been adapted from [Che12] and [GTW03]. Formally, a
game 𝒢 is a pair

𝒢 = (𝒜,𝒲) (2.1)

where 𝒜 is an arena and 𝒲 is the winning set. In a two-player game, an arena is a triple

𝒜 = (𝒱0,𝒱1, 𝐸) (2.2)

where 𝒱0 is a set of 0-vertices and 𝒱1 is a set of 1-vertices with 𝒱 = 𝒱0 ⊎ 𝒱1 (i.e.,
𝒱0 ∩ 𝒱1 = ∅). The arena is assumed to be finite (i.e., |𝒱| < ∞). 𝐸 ⊆ 𝒱 × 𝒱 is the edge
relation also called the set of moves. Hence, 𝒱 and 𝐸 define a directed graph. The set of
successors of 𝑣 ∈ 𝒱 is defined by

𝑣𝐸 = {𝑣′ ∈ 𝒱 | (𝑣, 𝑣′) ∈ 𝐸} (2.3)

In the two-player game, 𝒱0 are the vertices in which player 0 takes turns and 𝒱1 are the
vertices in which player 1 takes turns. A token is initially placed on one of the vertices
𝑣0 ∈ 𝒱 . If 𝑣0 is a 0-vertex, player 0 makes the first move; otherwise player 1 makes
the first move. During a player’s turn, the player moves the token from the vertex 𝑣
it is currently located at to a successor 𝑣′ ∈ 𝑣𝐸 of 𝑣. If 𝑣′ is a 0-vertex, then player 0
continues, otherwise player 1, and so on. A play 𝜋 in the arena 𝒜 is a finite or infinite
path according to the above rules. If the path is finite, formally

𝜋 = 𝑣0𝑣1 . . . 𝑣𝑙 ∈ 𝒱+ with 𝑣𝑖+1 ∈ 𝑣𝑖𝐸 for all 𝑖 < 𝑙, but 𝑣𝑙𝐸 = ∅, (2.4)

then the play is called a finite play. If the path is infinite, formally

𝜋 = 𝑣0𝑣1𝑣2 · · · ∈ 𝒱𝜔 with 𝑣𝑖+1 ∈ 𝑣𝑖𝐸 for all 𝑖 ∈ 𝜔, (2.5)

where 𝜔 is the set of non-negative integers (i.e., 𝜔 = {0, 1, 2, 3, . . . } = N0), then the play
is called an infinite play. 𝒲 ⊆ 𝒱𝜔 is the winning set of a game. Player 0 is declared the
winner of a play 𝜋 if and only if

∙ 𝜋 is a finite play 𝑣0𝑣1 . . . 𝑣𝑙 ∈ 𝒱+ with 𝑣𝑙𝐸 = ∅ and 𝑣𝑙 ∈ 𝒱1 (i.e., no moves are left
for player 1, because he has reached a dead end) or

∙ 𝜋 is an infinite play and 𝜋 ∈ 𝒲 .

Player 1 wins 𝜋 if player 0 does not win 𝜋.

26

2. Background and Trends

2.3.2. Games and Industrial Automation

Control problems from industrial automation can be encoded in two-player games,
where a winning strategy for the game corresponds to the successful execution of an
automation task. For illustration, think of an automation task as a chess game [GC13]:
the moves of the player with the white pieces correspond to the production steps car-
ried out in the automation line and the moves of the player with the black pieces cor-
respond to the respective reactions of the environment. In one of its moves, White
(the control program or Controller) could for example “ask” for a property of a work
piece in the automation line (i.e., the triggering of a sensor) and Black (the environment)
would “answer” this question on form of one of its legal moves. The set of legal moves
changes depending on the state of the game.

Controller’s moves include the triggering of actuators as well as the triggering of sen-
sors. Environment’s moves allow returning a certain value from a sensor triggering. By
extending the semantics of a sensor triggering, this approach can also be used to model
the injection of faults into the system. In order to guarantee to win the game, White
must be able to cope with any of the moves that Black takes.

Just like two chess players need to plan their moves strategically and adapt to the
moves of their opponent, the automation system needs to react to the properties of
work pieces, the advancing of the production process and potential faults in order to
successfully complete the production task. In the figurative sense, the goal is to guar-
antee to checkmate Black, i.e., to win the game no matter which moves Black makes.
White winning the game means successful completion of the automation task.

Notice that the analogy with chess is just used for illustration. The suggested approach
is only meaningful if the complexity of the game is much lower than the one of chess,
because the time it takes to find optimal chess moves is in general unacceptably long.
However, provided certain assumptions are made, the complexity of the “game” be-
tween Controller and environment is low enough to be able to synthesize a suitable con-
trol program within seconds to minutes (compare evaluation results in Chapter 7).

2.3.3. Game-based Synthesis

The essence of synthesis is described as follows: “Consider a system consisting of a
process, an environment and possible ways of interaction between them. The synthesis
problem is stated as follows: given a specification 𝑆, find a finite state program 𝑃 for
the process such that the overall behavior of the system satisfies 𝑆, no matter how the
environment behaves.” [MW03]. Provided that the specification is correct, synthesis is
correct by construction.

This definition of synthesis fits well the game-based scenario with two players: the
process (i.e., Controller) corresponds to player 0 and the environment corresponds to
player 1. Interactions between the process and the environments are represented by
moves (i.e., interactions) of the respective players in the game. Synthesizing a control
program for player Controller equals to finding a finite state program/machine 𝑃 that
wins the game satisfying specification 𝑆 no matter how player Environment behaves.

27

2. Background and Trends

Goal
state

Goal
state

Goal
state

Goal
state

Initial State Initial State

Initial State Initial State

(a) Add goal state to attractor (b) Add controllable states

(c) Add uncontrollable states (d) Continue until saturation

Figure 2.6.: Example for game-based synthesis with two 0-vertices (cicles) and three 1-
vertices (squares): the so-called attractor computation calculates the states in
which Controller can force to win the game.

Figure 2.6 illustrates how synthesis works for two-player games on finite graphs: the
set of “circle” vertices corresponds to 𝒱0 and the set of “square” vertices corresponds
to 𝒱1. The so-called attractor computation calculates the set of vertices in the game graph
that, once visited, guarantee Controller to reach the goal state. This set is calculated as
follows:

1. Let 𝒱𝑎 ⊆ 𝒱 with 𝒱𝑎 := ∅ denote the initially empty set of vertices in the attractor.

2. Add all goal states to 𝒱𝑎, because if a goal state is visited, Controller wins the game
(compare Figure 2.6 (a)).

3. Add a 0-vertex 𝑣0 ∈ 𝒱0 to 𝒱𝑎 if it has an edge that leads to a vertex 𝑣′ ∈ 𝒱𝑎, because
when in 𝑣0, Controller can select that edge (compare Figure 2.6 (b)).

4. Add a 1-vertex 𝑣1 ∈ 𝒱1 to 𝒱𝑎 if all its edges lead to vertices in 𝒱𝑎, because in this
case Environment must choose a move that leads to 𝒱𝑎 (compare Figure 2.6 (c)).

5. Repeat the above two steps until saturation (compare Figure 2.6 (d)).

6. If the initial state is in 𝒱𝑎, then Controller is guaranteed to win the game. Other-
wise, Controller is not guaranteed to win.

28

2. Background and Trends

2.3.4. Distributed Synthesis

In a distributed system with finite state, multiple ECUs exist. The problem of distributed
synthesis is to find control programs 𝑃1, 𝑃2, . . . , 𝑃𝑘 for each of the ECUs such that the
overall behavior of the system satisfies 𝑆 [MW03]. Such control programs are referred
to as decentralized control programs. It has been shown that distributed synthesis is un-
decidable in general [PR90] even for reachability or simple safety conditions [Jan07].
However, distributed synthesis is elementarily decidable for some distributed architec-
tures (architecture here refers to a set of processors with corresponding shared vari-
ables and allowed communication patterns). Furthermore, the decomposition of a
global control program into individual control programs is decidable for acyclic ar-
chitectures [PR90].

This work applies a decomposition approach on a synthesized global control program
in order to obtain individual control programs for every ECU. This methodology is not
complete, because it may not find a realization even if 𝑆 is realizable over the respective
architecture [PR90]. Decomposing a global control program is suitable and meaning-
ful in the target domain of this work, because the decomposed programs can be as
easily understood by humans as the respective global control program. In addition,
this approach allows switching between central and distributed control by applying or
omitting the decomposition step. Last but not least, synthesizing an optimized control
program is often considered enough for the application domain of industrial automa-
tion as opposed to synthesizing optimal distributed control programs [SM06].

2.3.5. Conclusion and Consequences

Modeling an automation task as a two-player game is a suitable way to enable mathe-
matically sound treatment. This approach allows to synthesize a suitable control pro-
gram for a given task specification. Furthermore, distributed synthesis can be applied
to obtain individual control programs for a set of ECUs that need to cooperate in order
to achieve a global automation task.

The next chapter combines model-driven development and game-based synthesis into
a workflow for control software development in industrial automation.

29

30

CHAPTER 3

Overview of the Approach

Contents
3.1. User Roles and Domain Knowledge . 32
3.2. Derived Workflow . 33
3.3. Scope of this Work . 37
3.4. Introduction of the Running Example . 39

Overview

This chapter provides a holistic view of the workflow for programming modular assembly
lines (MALs) that is presented in this work. The workflow is designed according to the
conclusions from the previous chapter.
First, the types of users that are involved in the design of control software for industrial
automation systems are listed. They are subdivided into roles based on the domain
knowledge of the respective users. Subsequently, a confluent workflow is defined in
which even users with no expert knowledge in industrial automation can specify and
adapt the high-level specification of the plant and the task to execute. This concept is
not feasible in traditional development approaches, where expert knowledge is required
in both setup and adaptation of automation system software.
Finally, this chapter defines what is in the scope of this thesis and what is not and
introduces a running example that is used to illustrate the developed workflow in the
following chapters.

31

3. Overview of the Approach

Domain Knowledge

Mechatronics Industrial Automation Modeling

low-level, technical high-level, abstract

(a) Domain
Knowledge of Experts

in Mechatronics

· Mechanical engineering
· Electrical engineering
· Pneumatics, hydraulics
· Control engineering
· Industrial standards

· Industrial standards
· Automation
· Control engineering
· PLC programming

· Automation (partial)
· PLC programming (partial)

(b) Domain Knowledge of
Experts in Industrial Automation

(c) Domain Kowledge
of Non-experts in Industrial

Automation

Figure 3.1.: User roles and domain knowledge in control software design: we distin-
guish three roles of users with different domain knowledge that are in-
volved in industrial control program design: (a) experts in mechatronics have
profound knowledge about mechanical and electrical engineering, while
(b) experts in automation are more concerned with assembling automation
systems and designing the respective control algorithms. (c) The domain
knowledge of non-experts in automation is a subset of the knowledge of the
latter group.

3.1. User Roles and Domain Knowledge

Throughout this work, it is assumed that different groups of users with different tech-
nical backgrounds contribute to the software development process for industrial as-
sembly lines. The technical background of a user or group in its area of profession is
further referred to as the domain knowledge. The individual roles are characterized in
the following.

Experts in Mechatronics

An expert in mechatronics (Figure 3.1 (a)) is a person or company with a strong back-
ground in electronics and mechanics. Experts in mechatronics supply the hardware
modules that are used in an industrial assembly line. They understand the require-
ments that users of such hardware modules have. Their work is characterized by the
analysis of the automation tasks to solve, selection of the appropriate implementation
(e.g., mechanic, electric, pneumatic or hydraulic mechanisms), assembly of the accord-
ing hardware modules and offering of the modules as products. These modules are
then provided or sold to experts in industrial automation.

Typical members of this group are employees in companies who build automation
components that are to be used in a medium or large scale automation system (e.g.,

32

3. Overview of the Approach

Festo AG) or special departments in a manufacturing company that are concerned with
building automation systems for use in the company’s own production plants.

Experts in Industrial Automation

An expert in (industrial) automation (Figure 3.1 (b)) is a person or company with a strong
background in automation and control engineering who analyzes which tasks are to be
automated in a production scenario or receives respective requirements from a stake-
holder. He or she then plans and conducts the realization of an automation system
that fulfills these requirements. The automation system is built from hardware mod-
ules provided by experts in mechatronics. In addition, an expert in automation selects
suitable electronic control units (ECUs) to connect to the hardware modules in order to
control the automated process. Furthermore, he or she designs and implements the
software that needs to run on the ECUs in order to fulfill the specification.

Typical members of this group are employees with many years of experience in their
profession that are either involved in building automation systems for other companies
(e.g., Bosch Rexroth AG, Rockwell Automation, Inc.) or are responsible for the automa-
tion systems in their own manufacturing company, because the production processes
have a high degree of automation (e.g., large car manufacturing companies).

Non-experts in Industrial Automation

In this work, an additional user role is defined that we call non-expert in (industrial)
automation (Figure 3.1 (c)). Such a role corresponds to a person or company with a less
profound background in automation and control theory than an expert in (industrial)
automation. He or she has some knowledge about the structure of automation systems
and the tasks that can be achieved by them, but he or she has no in-depth knowledge
on how to build an automation system or how control software for such systems is
implemented, such as IEC 61131-3 programming languages.

However, a non-expert in automation is able to recognize properties of the work pieces
to be processed in the automation line and understands how requirements for produc-
tion are explicitly specified in a high-level language.

Typical members of this group are students and trainees in industrial automation as
well as users from other disciplines. Furthermore, small and medium enterprises (SMEs)
that want to automate parts of their production, but cannot afford to employ an expert
in automation, are associated with this category.

3.2. Derived Workflow

3.2.1. Traditional Bottom-up Workflow

Figure 3.2 outlines the traditional development process for industrial automation sys-
tem software. It is a refinement of Figure 1.1 (a) on page 7. The lower half of the figure
shows that domain-specific tooling exists that allows developers to program the system

33

3. Overview of the Approach

in languages such as programmable logic controller (PLC) programming languages (com-
pare Section 2.1.4). Primitive control functions (PCF) are implemented in these languages
in form of function blocks. The combination of function blocks forms the actual control
program. Hence, this development process is a bottom-up approach.

Although implementation details of the system are more and more abstracted when
moving vertically up the diagram, the individual steps require knowledge about the
behavior of the lower levels, because properties such as the actual topology of the plant
and real-time requirements are often implicitly encoded in the control program. This
means that expert knowledge is required to design and adapt the control software.

3.2.2. Proposed Confluent Workflow

In order automate parts of the development process of industrial control systems, we
decompose it into discrete steps with defined specification of the interfaces between
those steps. This enables us to exchange some of these steps by automated processes.

In the introduction to this thesis, we mentioned already that the development process
for control software is split into three steps in order to reach the intended goals (com-
pare Figure 1.1 (b) on page 7). The reason for this split is guided by Goal 1 and Goal 2
as presented in Section 1.2: three individual steps are the minimum number of steps to
separate the development process into

∙ a manual part that requires experts in mechatronics and industrial automation,

∙ a manual part that does not necessarily require experts in industrial automation

∙ and a part that consists of fully automated transformations.

This section refines these steps and concretizes the workflow behind them. Figure 3.3,
which is a refinement of Figure 1.1 (b), illustrates these steps. An important character-
istic of the proposed workflow is its consistency and continuity: it includes all aspects
from specification of the plant model to simulation and execution of the control pro-
grams on concrete target hardware.

3.2.2.1. Generic Control Primitives

Just as in the traditional development process, a domain expert uses existing tools (such
as IEC 61131-3 PLC programming languages) to program the low-level behavior of the
individual components in an automation system. However, these programs are not
directly associated to a specific automation system. Instead, they are designed in a
generic way and disclose interfaces that are used to parameterize and trigger the re-
spective actions. For example, a conveyor belt offers an interface to transport work
pieces and a drill offers a (parameterized) interface for drilling a work piece.

These so-called behavioral primitives are similar to drivers in an operating system (OS):
they make a certain hardware module accessible to user-level programs and provide a
generic interface that does not unnecessarily limit the potential applications. A similar
approach is applied by CODESYS Application Composer [3S-14b], which is used to
build application software for automation systems from recurring function blocks.

34

3. Overview of the Approach

Controller

Hardware platform

Tool and/or compiler filled detail

Control primitives on ECUs

Implicitly encoded
requirements

bottom-up

Existing domain-specific tooling
(e.g., IEC 61131-3 languages)

Expert
knowledge

required

Manually
written

Tool-
supported

Automatically
generated

Hardware
platform

Automatic

provides basis for

provides basis for

provides basis for

provide basis for

Figure 3.2.: Traditional bottom-up control program design: domain-specific tooling is
used to build and combine basic function blocks in order to implement a
control program that specifies how the respective task is achieved. Require-
ments such as the actual topology of the plant and extra-functional proper-
ties are implicitly encoded in the control program.

Model-driven design and synthesis tool

Explicitly specified requirements

Tool and/or compiler filled detail

Generic control primitives on ECUs

Task model
Expert

knowledge
not required

Synthesized controllerconfluent

Existing domain-specific tooling
(e.g., IEC 61131-3 languages)

Plant model

Expert
knowledge

required

Hardware model Manually
written or
specified

Tool-
supported

Automatically
generated

Hardware
platform

Automatic

Automatic

provides basis for

provides
basis for

provides basis for

provides basis for

provide basis for

provide
basis for

provides
basis for

Hardware platform

Figure 3.3.: Proposed workflow for control program synthesis: just like in the tradi-
tional approach, primitive function blocks are created using domain spe-
cific tooling. However, the behavior is then encapsulated in form of a hard-
ware model that is used by non-experts to synthesize the actual control
programs from a plant model and a task model. Those models explicitly
represent the respective requirements. This approach is further referred to
as a confluent workflow.

35

3. Overview of the Approach

3.2.2.2. Hardware Model, Plant Model and Task Specification

Based on the control primitives, a hardware model is created by experts in mechatronics
that lists for every hardware module its interfaces along with conditions when it is
legal to trigger them. The hardware model also includes the individual states in which
a hardware module can be.

The hardware model is input into a model-driven development and synthesis tool that
serves as a front-end to allow specification of the actual plant setup (the so-called plant
model) and the control task (task model).

3.2.2.3. Synthesis

Both the models from the domain expert as well as from the non-expert are used to
synthesize the concrete (decentralized) control programs for the automation system.
This automatic step reduces the potential for mistakes.

Synthesis is performed using a game-based solver that is attached to the modeling tool
and derives a concrete implementation from the given models. If a solution exists, the
output of the solver is a so-called strategy, i.e., a sequential program where each action
is guarded by a condition that ensures that an action is only executed when it is legal
to do so. If multiple solutions exist for a given specification, a cost model as specified
in Goal 3 is used to decide which implementation to choose.

The selected solution can be simulated on the development machine or executed on the
real hardware. For this purpose, code is generated for the respective target platforms
using a template-based code generator. Where necessary, the templates are based on a
platform abstraction layer in order to support execution on different target platforms
(Goal 5). In case of distributed target systems, the necessary configuration and com-
munication patterns are also generated, satisfying Goal 4.

As indicated by the arrows on the left of Figure 3.3, this workflow is partially bottom-
up, where higher-level system components are based on low-level building blocks, and
partially top-down, where the system is first specified in a coarse-grained way and then
(automatically) refined. Hence, we call this approach a confluent workflow.

3.2.3. Relation to the Automation Pyramid

The presented approach is related to the automation pyramid introduced in Figure 2.2
on page 14 as follows: this work provides a model-driven development tool at area level
(level 3) that allows to describe key properties of the elements at control, field, process and
supervisory level (levels 0 to 2). Furthermore, the development tool allows the specifi-
cation of an abstract production goal. Using the synthesis engine, the tool generates a
plan (planning) that satisfies the production goal and guarantees that given cost bounds
as not exceeded (optimization). The generated plan is subsequently transformed into a
decentralized control strategy (control) for the individual control units at the control level
(level 1).

36

3. Overview of the Approach

3.3. Scope of this Work

3.3.1. Considered Industrial Automation Systems

A study in the United Kingdom from 2004 [Bak04] concludes that automation is com-
mon “in large warehouses, particularly with regard to conveyor/sortation, and au-
tomated storage and retrieval systems, with each of these types of equipment being
present in more than a third of large warehouses” [BH07]. One reason for this is that
the processes carried out here are comparably easy to automate, because their primary
intent is to move goods on rather fixed paths. This also leads to an increased level of
comfort for human workers. Such systems are subject to research in this work.

More precisely, this work assumes that the industrial automation systems under con-
sideration are automation lines that consist of a number of discrete mechatronic hard-
ware modules. A module has the ability to process (e.g., transport, alter, store) work
pieces (which represent an arbitrary product), more precisely it has a set of operating po-
sitions on which the physical state of one or multiple work pieces may be altered. Work
pieces are considered to be solid; “bulk” materials (such as granulate or fluids) are not
taken into account.

Furthermore, a module may have an arbitrary amount of sensors and actuators. Sen-
sors make information from the plant’s environment accessible to the control algorithm
(e.g., a light barrier detects whether a work piece is currently present at a specific oper-
ating position). Actuators allow the control algorithm to change the state of the envi-
ronment in a distinct manner (e.g., a conveyor belt can transfer work pieces from one
operating position to another).

This work refers to the described class of automation systems as modular assembly lines
(MALs).

3.3.2. Discrete Modeling

In this work, a game-based solver is used to synthesize control programs for industrial
automation. The solver is currently only capable of handling a discrete state space.
This means that modeling of equipment with continuous state (e.g., industrial robots
with a number of degrees of freedom) requires some additional work: the positional
state space of such a robot has to be discretized in order to fit our modeling scheme.
Discretization means that the possible positional space defined by the robot is reduced
to a finite number of discrete operating positions that the robot can reach. Notice that
this work does not deal with robot control theory as such, namely kinematics or motion
planning. In this work, it is assumed that a suitable control algorithm exists that allows
to position the robot according to the given input parameters.

The rationale for the restriction to discrete domains is that the used solver is optimized
for discrete problems. Although continuous ranges of values could be encoded in the
input language of the solver, it would drastically increase the synthesis time due to the
complexity of the problem. Hence, we assume it to be the responsibility of the control
engineer to pick a meaningful discretization for continuous values.

37

3. Overview of the Approach

3.3.3. No Control-theoretic Algorithm Synthesis

This work is not about synthesizing a control algorithm in the context of control theory.
This work focuses on synthesis of a strategy that triggers primitive actions in a way
such that a specified state in discrete state space is reached. Although a looped exe-
cution of a generated control program could be used to reach and hold a specific con-
trol state, such tasks are not in the focus of this work. Any required control-theoretic
algorithms (e.g., proportional-integral-derivative (PID) controllers) are assumed to be im-
plemented in primitive control functions (PCFs) that are parameterized or triggered by
the synthesized control strategy. Many specialized tools for effective design of low-
level control algorithms exist (e.g., [The13]) that can be used in conjunction with the
approach presented in this thesis.

3.3.4. Target Platforms

The presented toolchain includes code generation for execution “on the real hardware”
as well as simulation. Code generation supports the following target platforms:

∙ (Industrial) personal computers (PCs) with x86 architecture and Windows or
Linux operating system: These types of computers are widely used in industrial
context for monitoring and control in form of PCs or panel computers.

∙ Embedded systems with ARM microcontrollers: This family of systems repre-
sents smart sensors and actuators with “local intelligence”. Those systems have
certain calculating and storage capabilities.

Target platforms that are not taken into account are:

∙ Programmable Logic Controllers (PLCs): Although possible, code generation for
PLCs is not a goal of this thesis. One of the reasons for this is that existing tools (as
presented in Section 2.1) handle modeling and – to some extent – code generation
in this area. Instead of generating code for PLCs, the tools created along with this
work allow to interact with existing control programs on a PLC.

Simulation supports the following concepts:

∙ Generated text mode simulator: The presented toolchain allows generation of a
simulator application for every feasible task. The generated simulator runs in text
mode (i.e., it is a console application) and allows the user to specify input values
from the environment that would be captured by sensors in a real setup.

∙ OPC connection: An open platform communications (OPC) [IL01] interface allows
the generated text mode simulator to control OPC-based simulation software. For
example, a 3D model in CIROS Studio [RIF13, HH12] can be controlled using this
setup. In this case, sensor readings are also obtained from the 3D simulation.
This approach provides a meaningful visualization and feedback for industrial
automation systems1 that should be simulated before actually building them or
to test certain concepts in hypothetical automation lines.

1It should be mentioned that the time required to set up the configuration of, for example, CIROS Studio
to simulate the automation system correctly is not negligible. This process requires expert knowledge
in 3D simulation and automation.

38

3. Overview of the Approach

DC

Height Sensor
(H1)

A B E H

Lever
(L1)

Lever
(L2)

FG

Output: Slide
(S1)

Drill (D1)

Input: Stacking
Magazine

(SM1)

Rotary Plate
(RP1)

Work
Pieces

2x Siemens S7-313C

ECU module instance assignment:
• ECU “Plant”: SM1, L1, RP1, H1, L2, S1
• ECU “Drill”: D1

ECU “Plant” ECU “Drill”

Figure 3.4.: Running example: work pieces that are initially located in a stacking mag-
azine are separated by a lever. On a rotary plate with six operating posi-
tions, work pieces may be transported underneath a height sensor that de-
tects whether a work piece has a hole or not. Furthermore, work pieces
may be put underneath a drill for drilling. Finally, another lever pushes
work pieces onto a slide that serves as output (ECU icon by [Sie14a]).

3.3.5. Communication

When the control algorithm for an automation system is to be distributed among mul-
tiple ECUs, a control strategy is generated for each individual ECU based on the global
control strategy. In order to achieve the “global goal”, messages typically need to be
exchanged between ECUs. In this work, we assume that all ECUs are able to commu-
nicate with each other.

The presented algorithm generates ECU-local control programs that run independent
of each other until synchronization is (potentially) required to exchange information
on the current state. Since the fact whether the state exchange is necessary or not may
depend on input from the environment and each ECU has its own limited view on
the system state, a safe over-approximation on when synchronization is necessary is
used. More precisely, a synchronization operation is introduced between a pair of ECU
instances �̂�1 and �̂�2 in execution step 𝑛 if a state exchange is required in any of the
possible execution traces in the global control strategy in step 𝑛.

In this approach, the granularity of synchronization is always at the scope of Controller
or Environment “moves” (i.e., synchronization is only performed in between two control
moves of an ECU).

3.4. Introduction of the Running Example

In the following, an example MAL is introduced that is used for illustration purposes
within the next three chapters. Notice that the running example is kept simple on
purpose. Please refer to Chapter 7 for more complex examples.

39

3. Overview of the Approach

Consider the modular assembly line depicted in Figure 3.4, which consists of the fol-
lowing hardware modules:

∙ Stacking magazine SM1: A magazine that holds a number of stacked work pieces
for processing in the plant. The work piece on the bottom is located at operating
position A. The magazine serves as input for work pieces into the plant.

∙ Lever L1: This lever pushes a work piece at position A to position B (on the rotary
plate).

∙ Rotary plate RP1: The rotary plate offers six positions that can hold one work
piece each. The plate rotates in clockwise direction only. In one rotation step of
60∘, the plate simultaneously moves work pieces by one position (e.g., a work
piece on position B is moved to position C, a work piece on position G is moved
to position B).

∙ Height sensor H1: This module detects whether a work piece at position C has
a hole or not. It consists of an electromagnet that, when supplied with power,
presses a rod against the work piece. Whether the rod penetrates the work piece
(and hence the work piece has a hole) is tested by an electromagnetic sensor
mounted next to the rod.

∙ Drill D1: This module drills a hole into a work piece located at position D. It
consists of a linear axis that moves up and down. The drill is mounted on the
linear axis. Drilling a work piece consists of the following steps: switching on the
drill, moving down the drill on the linear axis, moving up and switching off the
drill. In order to determine whether the drill has reached its intended position on
the linear axis, digital input signals are provided on both ends.

∙ Lever L2: This lever is able to push a work piece at position E to position H on
the slide. It is mounted in a way such that a work piece may still be moved from
position E to position F when the rotary plate rotates.

∙ Slide S1: After a work piece is moved to position H on the slide, it drops towards
the end of the slide (on the right side of Figure 3.4) by the force of gravity. The
slide buffers a number of work pieces and serves as output from the plant.

In this example, two ECUs of type Siemens S7-313C are used to control the sensors and
actuators. ECU “Plant” controls all modules except for the drill, which is controlled by
ECU “Drill”. Assume that the ECUs are attached to a Multi-Point Interface (MPI) bus
and configured as the devices with physical MPI address 1 and 2.

In this example, assume the following simplifications:

∙ When a task specification denotes the presence of a work piece at input position A,
we assume that such a work piece is present at that position. Hence, it is expected
that the state of the plant is consistent with the initial condition specified in the
model.

∙ When a task specification denotes the output of a work piece on position H, we
assume that enough space is available on the slide for the work piece to leave
position H by the force of gravity. Furthermore, it is assumed that this happens
instantaneously.

40

3. Overview of the Approach

The following trivial automation tasks may be carried out in this plant, for example:

∙ Transfer of work pieces from the stacking magazine to the slide.

∙ Detection of the drilled state of each work piece and output on the slide.

∙ Unconditional drilling of each work piece and output on the slide.

∙ Drilling of undrilled work pieces and output on the slide.

∙ Simultaneous buffering of up to six work pieces on the rotary plate and subse-
quent output on the slide.

This running example will be used throughout the next three chapters to illustrate how
the formal model captures the properties of MALs.

41

42

CHAPTER 4

System Modeling and Task Description

Contents
4.1. Modeling Overview . 44
4.2. Formal Description of Modular Assembly Lines 44
4.3. Formal Description of Automation Tasks . 53
4.4. Discussion and Application to Running Example 56
4.5. Summary . 70
4.6. Related Work . 71

Overview

This chapter answers the following research question:
How can modular assembly lines and the tasks to be performed on them
be formally described such that the description is applicable to automated
processing, such as control software synthesis?

This question is answered by defining a domain-specific language at an appropriate
level of abstraction. Aspects such as the hardware modules and electronic control
units (ECUs) in the assembly line, a discrete representation of the plant’s state and a
formalization of the actions that can be performed form the base of this language. In
addition, a formal language for task description is required for control software synthe-
sis. The specification of the plant and the task description are illustrated in conjunction
with the running example.

43

4. System Modeling and Task Description

4.1. Modeling Overview

Section 3.3.1 defined the types of automation systems that are considered in this work,
namely so-called modular assembly line (MAL). To summarize, a MAL consists of a topo-
logical arrangement of hardware components (called modules), where each module is
designed to handle work pieces on a set of operating positions. Hence, a (hardware)
module is a combination of sensors and/or actuators with a non-empty set of capabili-
ties as well as passive elements (such as mechanical parts).

The running example introduced in Section 3.4 contains various such hardware mod-
ules, namely a stacking magazine, two levers, a rotary plate, a height sensor module, a
drill module and a slide.

In this section, a metamodel for MALs and their respective hardware modules is intro-
duced. The definition of the formalism consists of three steps:

1. Hardware model: The first step is to define a formalism with which experts in
mechatronics can describe the structure, behavior, state, input/output (I/O) inter-
faces and configurable parameters of individual MAL modules and the respective
ECUs.

2. Plant model: The second step is to define a formalism with which experts in au-
tomation can topologically arrange a number of modules to form a concrete au-
tomation system. The plant model contains concrete module and ECU instances.

3. Task model: The third step is to define a formalism for specifying a task to exe-
cute on the concrete automation system. The task specification is based on logic
formulas over the state space of the MAL. In principle, this step does not need to
be performed by an expert in industrial automation.

The following sections define requirements for the aspects that need to be represented
in the model and derive a domain-specific language (DSL) that satisfies the requirements.
The notation “�R𝑥” is used to indicate that a concept fulfills requirement 𝑥.

4.2. Formal Description of Modular Assembly Lines

This section presents the approach used to formally describe MAL modules. First, a
list of requirements for a suitable metamodel is provided. The requirements are de-
signed in a way that an algorithm can automatically synthesize control software from
a concrete model conforming to the metamodel.

4.2.1. Requirements

For modeling MALs, the modules they consist of need to be represented.

Requirement R1 (module types) The individual components of MALs need to be repre-
sented in form of module types. A module type is a meaningful combination of, among others,
mechatronic, electric, pneumatic and hydraulic components and may include sensors and actu-
ators.

44

4. System Modeling and Task Description

An example for a module type is the drill from Section 3.4. It consists of a linear axis
with an electric motor and the drill itself as actuators as well as sensors to detect the
position of the drill on the linear axis. The next requirement relates module types to
positions where work pieces can be located.

Requirement R2 (operating positions) 1For every module type, the set of associated oper-
ating positions need to be specified. An operating position is a discrete location where a work
piece may be located. 2If operating positions are physically incompatible with each other (e.g.,
some operating positions handle different work pieces than others), they have to be separated
into respective groups.

The drill’s single operating position is the location where a work piece can be drilled. A
real plant consists of instances of module types. Multiple instances of the same module
type can be incorporated, such as a number of drill modules.

Requirement R3 (module instances) The model must capture the fact that a plant consists
of an arbitrary amount of module instances from the different module types.

In order to build a processing chain, neighboring module instances must be able to
exchange work pieces. For this purpose, the concept of overlapping operating positions
is defined:

Requirement R4 (overlapping operating positions) The model must be capable of ex-
pressing that two or more operating positions of different module instances physically overlap
each other, i.e., they represent the same physical space in the plant.

This mechanism ensures that work pieces can be exchanged between module instances.
In the running example from Section 3.4, the drill’s operating position overlaps one of
the operating positions of the rotary plate.

Next, the fact that every module instance has a configuration (or state) that evolves
during runtime needs to be represented. For this purpose, assume that the subset of
the state that is relevant for the automation task is discretized and represented in the
formal model.

Requirement R5 (module state) 1For every module type, the relevant state space needs to
be specified in a discrete way. 2The initial state of all module instances upon start-up needs to
be specified as well. 3The state must be adaptable at runtime in order to represent the evolution
of the production task. 4A module type may also have some additional configuration parameters
that influence its behavior.

In order to control the production process, the next step is to formally define the capa-
bilities of each module type. For example, the drill module’s most relevant capability
is to drill a work piece. Capabilities are represented as actions with preconditions and
effects on the state of the respective module instance.

45

4. System Modeling and Task Description

Requirement R6 (actions) 1For every module type, the primitive actions that it can perform
need to be specified (e.g., processing of a work piece, measurement of a physical value). 2The
effects of actions should be limited to the operating positions of the respective module type. 3Each
action needs to be guarded with preconditions on the state of the respective module instance and
the environment (i.e., the preconditions need to hold in order for the action to be executable).
The execution of an action has two effects: 4on the one hand, the respective control action is
triggered in the “real” plant. 5On the other hand, the representation of the state of the module
instance and the environment may change in order to capture the effects the control action has
in the “real” plant. 6For quantitative evaluation and optimization, the cost of each action (in
terms of a respective cost model) needs to be specified.

In order to obtain a continuous development process, we need to be able to automati-
cally map synthesized control programs for the ECUs.

Requirement R7 (hardware mapping) The model needs to express all required parameters
in order to map the actions of the module types to the respective hardware platform; this includes
the set of supported ECU types and information about the required toolchain.

Apart from the state of the module instances mentioned in R5, we also need to represent
the state of other objects in the plant, for example the state of the work pieces.

Requirement R8 (plant state) 1Objects in the plant (e.g., work pieces) need to be formally
represented. 2If objects are of different type, they have to be separated into respective groups.
3For every object in the plant, the relevant state needs to be specified in a discrete way. 4The
state must be adaptable at runtime in order to represent the evolution of the production task.

For example, the drilled state needs to be represented for every work piece. ECU in-
stances are connected to the individual module instances in order to control them. The
association between ECU instances and module instances needs to be known for auto-
matic control software synthesis.

Requirement R9 (ECUs and communication infrastructure) 1It must be specified which
ECU instances control which module instances. 2It must be known which I/O signals are used
to trigger the respective actions in the target hardware. 3In addition, it must be specified how
every ECU instance is connected to the communication network.

4.2.2. Formalism Implementing the Requirements

This section introduces a formalism that implements all listed requirements. First, some
basic concepts are introduced that are required as a base for the following sections. Sub-
sequently, a formal description of hardware modules of a MAL and their capabilities
is given. Finally, a description is presented that allows specifying concrete MALs built
from those hardware modules.

46

4. System Modeling and Task Description

4.2.2.1. Basic Concepts

Definition D1 (object, object type) Objects are constants that represent work pieces, lit-
eral properties of work pieces, operating position instances of module instances and properties
of the environment (�R8.1). Formally, the set of all objects 𝒳 is partitioned into disjoint sets
of object types 𝒳 0,𝒳 1, . . .𝒳 t−1 with 𝑡 ≥ 1 (�R2.2, �R8.2) such that:

Collective exhaustion:
⋃︁

0≤𝑖<t

𝒳 𝑖 = 𝒳 (4.1)

Mutual exclusion: ∀0 ≤ 𝑖, 𝑗 < t : 𝒳 𝑖 ∩ 𝒳 𝑗 = ∅ ∨ 𝑖 = 𝑗 (4.2)

For example, the set of objects 𝒳 for representing days of the week may be parti-
tioned into the object types 𝒳weekday = {𝑥Mon, 𝑥Tue, 𝑥Wed, 𝑥Thu, 𝑥Fri} and 𝒳weekend =
{𝑥Sat, 𝑥Sun} with t = 2 and 𝒳 = 𝒳weekday ∪ 𝒳weekend.

Definition D2 (predicate) Predicates represent the state of modules and objects (required
for R5 and R8). Formally, a predicate 𝑣 ∈ 𝒱 is a function

𝑣 : 𝒳 𝑣0 ×𝒳 𝑣1 × · · · × 𝒳 𝑣𝑎−1 → B (4.3)

where:
∙ 𝒳 𝑣𝑖 , 0 ≤ 𝑖 < 𝑎 are the arguments of the predicate where 𝒳 𝑣𝑖 =

⋃︀
𝑗∈t𝑣(𝑣,𝑖)𝒳 𝑗 is the set of

all objects allowed for the respective argument, defined by the union of the allowed object
types according to the function t𝑣(𝑣, 𝑖).

∙ 𝑎 ≥ 0 is the number of arguments of the predicate.
∙ B = {0, 1} is the set of Boolean values.

For example, the zero-argument predicate “sun-shining” indicates whether the sun
is currently shining and the one-argument predicate “sun-shining-on(aday)” with
t𝑣(sun-shining, 0) = {weekday,weekend} indicates whether the sun is shining on the
given day of the current week.

Definition D3 (condition) A condition 𝑐 ∈ 𝒞 is an assignment of all arguments of a pred-
icate 𝑣 ∈ 𝒱 with matching objects (according to the expected type of the respective argument;
required for R6)

𝑐 ≡ 𝑣(a𝑣0 , a𝑣1 , . . . , a𝑣𝑎−1) (4.4)

where a𝑣𝑖 is the 𝑖th item in the ordered list of objects passed to the arguments of predicate 𝑣 with

∀0 ≤ 𝑖 < 𝑎 : a𝑣𝑖 ∈ 𝒳 𝑣𝑖 (4.5)

Examples:

∙ The condition sun-shining is true if the sun is currently shining.

∙ The condition sun-shining-on(𝑥Tue) is true if the sun is shining on Tuesday.

47

4. System Modeling and Task Description

4.2.2.2. Formal Description of Hardware Modules and Capabilities

In the following, a mathematical formalism for the specification of MAL modules and
their capabilities is introduced. The purpose of these definitions is to serve as a base
for deriving a suitable domain specific language. Notice that these definitions are pro-
vided with almost no concrete examples. Please refer to Section 4.4.1 for respective
illustrations in the context of the running example.

Definition D4 (hardware model) A hardware model H is a tuple

H = (ΦH,𝒱H,𝒳H,𝒰H) (4.6)

where:
∙ ΦH ⊆ Φ is the set of module types. A module type formally represents the properties

and capabilities of a specific hardware module. See Definition D5 for a formal definition
of module types.

∙ 𝒱H ⊆ 𝒱 is the set of predicates available in the hardware model (�R5.1, �R8.3).
∙ 𝒳H ⊆ 𝒳 is the set of objects available in the hardware model (�R8.1). The objects in

this set serve as constants for predicate evaluation. In the example for Definition D1, the
individual days 𝑥Mon, . . . , 𝑥Sun would be represented as objects in this set.

∙ 𝒰H ⊆ 𝒰 is the set of ECU types available in the hardware model. An ECU type is
a formal representation of key properties of an ECU. See Definition D9 for a formal
definition of ECU types.

Definition D5 (module type) A module type 𝜙 ∈ Φ (�R1) is a tuple

𝜙 = (ℬ𝜙,Π𝜙, ℐ𝜙,𝒪𝜙,𝒫𝜙) (4.7)

where:
∙ ℬ𝜙 ⊆ ℬ is the set of behavioral interfaces. A behavioral interface is the formalization of

a primitive action that the associated module can perform (�R6.1, see Definition D6 for
a formal definition). A module type 𝜙 with ℬ𝜙 = ∅ is called passive. All module types
that are not passive are called active.

∙ Π𝜙 ⊆ 𝒳 with Π𝜙 ̸= ∅ is the set of operating positions (�R2.1). An operating position
is a position on the module that can be occupied by a work piece for processing.

∙ ℐ𝜙 = {𝜄𝜙0
, 𝜄𝜙1

, . . . , 𝜄𝜙𝜄−1
} is the set of input signals (�R9.2). An input signal is used

to make the control program aware of environmental conditions (e.g., a digital signal from
a light barrier indicates whether a work piece is in front of it or not).

∙ 𝒪𝜙 = {𝑜𝜙0
, 𝑜𝜙1

, . . . , 𝑜𝜙𝑜−1
} is the set of output signals (�R9.2). An output signal is

used to allow the control program to trigger actions in the process environment (e.g., a
digital signal for switching on or off the motor of a conveyor belt).

∙ 𝒫𝜙 = {𝑝𝜙0
, 𝑝𝜙1

, . . . , 𝑝𝜙𝑝−1
} is the set of configurable module type parameters that

specify degrees of freedom in the configuration of the module type. They allow a developer
to fine-tune the behavior of the respective module instance (�R5.4, see Definition D12).

48

4. System Modeling and Task Description

Definition D6 (behavioral interface) A behavioral interface is an action that may be trig-
gered when certain preconditions are met. Upon triggering of a behavioral interface, the state
of the system, represented by the values of the predicates in the respective hardware model, may
change.
Formally, a behavioral interface b ∈ ℬ is a tuple

b = (Ab, 𝒞𝒫b, ℰb, ̂︀ℰb,ℛb, 𝑝b, 𝜂b, 𝑝b) (4.8)

where:
∙ Ab = (𝒳 b0 ,𝒳 b1 , . . . ,𝒳 b𝑏−1

) is the ordered list of argument domains of each of the
parameters of the behavioral interface. All objects and operating positions that are affected
by this behavioral interface need to be represented by a parameter and hence included in
the list of argument domains (�R6.2).

∙ 𝒞𝒫b is the set of behavioral interface preconditions (�R6.3). A precondition
𝑐𝑝 ∈ 𝒞𝒫b conforms to the concept of conditions as specified in Definition D3 with the
exception that the parameters assigned to the arguments of the predicate in the condition
may be references to matching arguments of the containing behavioral interface b, that is
(compare equation (4.4)):

𝑐𝑝 ≡ 𝑣(a𝑣0 , a𝑣1 , . . . , a𝑣𝑎−1) (4.9)

with (compare equation (4.5))

∀0 ≤ 𝑖 < 𝑎 : a𝑣𝑖 ∈ 𝒳 𝑣𝑖 ∪ {Ab𝑖 | 𝒳 b𝑖 = 𝒳 𝑣𝑖} (4.10)

Furthermore, preconditions may be negated by prepending “¬”. All preconditions of
a behavioral interface need to evaluate to the Boolean value 1 (true) for the behavioral
interface to be executable.
Examples:

– The behavioral interface precondition sun-shining-on(𝑥Tue) allows execution
of the behavioral interface if the sun is shining on Tuesday.

– The behavioral interface precondition ¬sun-shining-on(𝑥Tue) allows execution
of the behavioral interface if the sun is not shining on Tuesday.

– The behavioral interface precondition sun-shining-on(ab0) allows execution of
the behavioral interface depending on whether the sun is shining on the
day specified by the parameter ab0 of behavioral interface b. In this case,
the parameter list of b must contain a respective matching argument, for
example Ab = (𝒳 b0) with 𝒳 b0 = 𝒳weekday ∪ 𝒳weekend.

∙ ℰb is the ordered list of unconditional behavioral interface effects (�R6.5). An un-
conditional effect 𝑒 ∈ ℰb is the assignment of a Boolean value to a predicate 𝑣 ∈ 𝒱H

using valid parameters for the arguments of the predicate. After the behavioral in-
terface is executed, the affected predicates’ values at the given parameters are set to
the respective Boolean values (�R5.3, �R8.4). The unconditional effects may refer-
ence arguments from the parent behavioral interface b in order to set a predicate ac-
cording to a value passed to the behavioral interface. In the following, 𝑒 is written as

49

4. System Modeling and Task Description

“¬𝑣(𝑥𝑣0 , 𝑥𝑣1 , . . . 𝑥𝑣𝑎−1)” to indicate that the respective Boolean value is set to false and
is it written as “𝑣(𝑥𝑣0 , 𝑥𝑣1 , . . . 𝑥𝑣𝑎−1)” to indicate that it is set to true.
Examples:

– The unconditional behavioral interface effect is-dry states that it is dry (i.e.,
no rain). It sets the zero-argument predicate is-dry to true. Similarly, the
unconditional behavioral interface effect ¬is-cloudy sets the zero-argument
predicate is-cloudy to false. Both are meaningful in combination with pre-
condition sun-shining, for example.

– The unconditional behavioral interface effect is-dry-on(𝑥Tue) states that it is
dry on Tuesday and ¬is-dry-on(𝑥Tue) implies that it is not dry on Tuesday.

– The unconditional behavioral interface effect is-dry-on(ab0) states that it is dry
on the day specified by the parameter ab0 of behavioral interface b. This
is meaningful in combination with precondition sun-shining-on(ab0). In this
case, the parameter list of b must contain a respective matching argument,
for example Ab = (𝒳 b0) with 𝒳 b0 = 𝒳weekday ∪ 𝒳weekend.

∙ ̂︀ℰb is the ordered list of conditional behavioral interface effects (�R6.5). A condi-
tional effect 𝑒 ∈ ̂︀ℰb is a pair in which the first element specifies a set of conditions 𝒞𝒫b𝑒
(conforming to the specification of preconditions above) and the second element specifies
a set of effects that is applied when all conditions are true at the point in time when the
containing behavioral interface b has finished executing. After the behavioral interface
is executed, the affected predicates’ values at the given parameters are only set to the re-
spective Boolean values1 if the additional precondition evaluates to the Boolean value 1
(�R5.3, �R8.4). Both conditions and effects may reference arguments from the parent
behavioral interface b in order to test respectively set a predicate according to a value
passed to the behavioral interface.

∙ ℛb is the set of sensor result conditions. A sensor result condition 𝑟 ∈ ℛb is a tuple
(𝑟𝜌, 𝑟𝑒), where 𝑟𝜌 ∈ Z is the literal sensor response value as it is returned by the underly-
ing platform2 and 𝑟𝑒 is an unconditional effect that is applied when a sensor triggering
returns the respective literal sensor value.

∙ 𝑝b is the name of the primitive control function on the target system to invoke in order
to trigger the primitive control program that implements the behavioral interface (�R6.4).
The necessary parameters are passed to the function as explained later in Section 6.3.1.

∙ 𝜂b ∈ N0 is the cost of the execution of the behavioral interface with respect to the used
cost model (�R6.6, specified later in Definition D14 in Section 4.3.2).

∙ 𝑝b ∈ B is a flag indicating whether this behavioral interface should be considered for par-
allelization. Due to limitations in the solver, some behavioral interfaces with conditional
effects are incompatible with parallelization. This flag can be used to deactivate paral-
lelization for them if necessary. The default value is 1 (i.e., parallelization is enabled).

1Without loss of generality, if unconditional and conditional effects are both present, the conditional
effects are applied after the unconditional effects.

2It is assumed that the possible sensor responses are mapped to the discrete domain Z.

50

4. System Modeling and Task Description

Definition D7 (actuation) A behavioral interface b ∈ ℬ with no sensor result conditions, i.e.,
ℛb = ∅, is called actuation.

Definition D8 (sensor triggering) A behavioral interface b ∈ ℬ with a non-empty set of
sensor result conditions, i.e., ℛb ̸= ∅, is called sensor triggering.

Definition D9 (ECU type) An ECU type 𝑢 ∈ 𝒰 is a tuple

𝑢 = (𝜉𝑢, ℐ𝑢,𝒪𝑢,𝒫𝑢) (4.11)

where:
∙ 𝜉𝑢 ∈ Ξ specifies the target platform of the ECU (�R7). This information is required

for determining how to program and/or control the ECU (e.g., a programmable logic
controller (PLC) is remotely controlled while code is generated for a microcontroller). It
is assumed that this element references information such as the (compiler) toolchain and
settings required for generating and compiling code for the respective platform as well as
all dependencies and third-party tools that are required in this process.

∙ ℐ𝑢 = {𝜄𝑢0 , 𝜄𝑢1 , . . . , 𝜄𝑢𝜄−1} is the set of all input channels offered by this ECU type
(�R9.2).

∙ 𝒪𝑢 = {𝑜𝑢0 , 𝑜𝑢1 , . . . , 𝑜𝑢𝑜−1} is the set of all output channels offered by this ECU type
(�R9.2).

∙ 𝒫𝑢 = {𝑝𝑢0 , 𝑝𝑢0 , . . . , 𝑝𝑢𝑝−1
} is the set of configurable parameters of the ECU type.

Typical properties represented here are the address of the ECU on a given communication
bus for remote control as well as inter-ECU communication when using decentralized
control programs (�R9.3, covered later in Section 6.4).

4.2.2.3. Formal Description of Concrete Modular Assembly Lines

The formalism introduced in the previous section allows experts in mechatronics to
define a library of module types along with their properties and behavioral interfaces
in form of a hardware model. Based on a given hardware model, experts in industrial
automation define the model for a concrete modular assembly line by instantiating
modules and parameterizing them accordingly.

Notice that the following definitions are provided without concrete examples. Please
refer to Section 4.4.2 for respective illustrations in the context of the running example.

Definition D10 (plant model) A plant model P is a tuple

P = (HP,𝒳P,ΨP, ̂︀𝒰P, LP) (4.12)

where:
∙ HP is the hardware model referenced by this plant model.
∙ 𝒳P ⊆ 𝒳 is the set of objects available in the plant model. This set complements the set

of objects 𝒳H in the hardware model by declaring operating position instances and work
piece instances.

51

4. System Modeling and Task Description

∙ ΨP ∈ Ψ is the set of module instances (�R3). See Definition D12 for a formal defini-
tion of module instances.

∙ ̂︀𝒰P ∈ ̂︀𝒰 is the set of ECU instances (�R9.1). See Definition D11 for a formal definition
of ECU instances.

∙ LP is the list of overlapping operating positions (�R4). See Definition D13 for a
formal definition of overlapping operating positions.

Definition D11 (ECU instance) An ECU instance �̂� ∈ ̂︀𝒰 is a tuple

�̂� = (𝑢�̂�, �⃗��̂�) (4.13)

where:
∙ 𝑢�̂� ∈ 𝒰 denotes the ECU type of this ECU instance.
∙ �⃗��̂� : 𝒫𝑢�̂� → Σ* is the ECU instance parameter assignment function that maps each

of the configurable parameters of the respective ECU type 𝑢�̂� to a specific value, where

Σ* =
⋃︁
𝑛∈N0

Σ𝑛 (4.14)

is the set of character strings with finite length (including the empty string 𝜖 = Σ0) over
the alphabet Σ, which is assumed to be the set of printable characters from the American
Standard Code for Information Interchange (ASCII) [IET68] character set.

Definition D12 (module instance) A module instance 𝜓 ∈ Ψ is a tuple

𝜓 = (𝜙𝜓, 𝑢𝜓,Θ𝜓, 𝜃𝜓, 𝒞ℐ𝜓, �⃗�𝜓, �⃗�𝜓, 𝑝𝜓) (4.15)

where:
∙ 𝜙𝜓 ∈ ΦH is a reference to the module type in the hardware model H.
∙ �̂�𝜓 ∈ 𝒰H is a reference to the ECU instance this module instance is attached to.
∙ Θ𝜓 ⊆ 𝒳P is the set of operating position instances with |Θ𝜓| = |Π𝜙𝜓 |. If multiple

instances of the same module exist, it must be guaranteed that each operating position
instance of every module instance is uniquely identified. All operating position instances
are contained in an object type which is a partition of the set of objects of the hardware
model of the plant. This means that operating position instances may be used as predicate
parameters (unlike operating positions, which are not contained in 𝒳P).

∙ 𝜃𝜓 : Π𝜙𝜓 → Θ𝜓 is the bijective operating position mapping function that provides a
one-to-one mapping between the operating positions of the respective module type 𝜙𝜓 and
the operating position instances of the module instance 𝜓.

∙ 𝒞ℐ𝜓 is the set of initial module conditions. These conditions are used to define the
initial state of a module instance by setting the respective predicates (�R5.2). An initial
module condition conforms to the concept of conditions specified in Definition D3.

∙ �⃗�𝜓 : ℐ𝜙𝜓 → ℐ𝑢𝜓 ∪ {⊥} is the input signal assignment function that maps each of the
input signals of the respective module type 𝜙𝜓 to a specific input channel of the respective
ECU 𝑢𝜓, where ⊥ is a special value that indicates that the respective input channel of the
module instance is not connected.

52

4. System Modeling and Task Description

∙ �⃗�𝜓 : 𝒪𝜙𝜓 → 𝒪𝑢𝜓 ∪ {⊥} is the output signal assignment function that maps each of
the output signals of the respective module type 𝜙𝜓 to a specific output channel of the
respective ECU 𝑢𝜓, where ⊥ is a special value that indicates that the respective output
channel of the module instance is not connected.

∙ 𝑝𝜓 : 𝒫𝜙𝜓 → Σ* is the configurable parameter assignment function that maps each of
the configurable parameters of the respective module type 𝜙𝜓 to a specific value (�R5.4).
Σ* is defined as specified in equation (4.14).

Definition D13 (overlapping operating position) An overlapping operating position
ℓ in L is a pair3

ℓ = (𝜃𝑠, 𝜃𝑟) (4.16)

where:
∙ 𝜃𝑠 ∈ Π is the source operating position instance.
∙ 𝜃𝑟 ∈ Π is the replacement operating position instance with which the source operat-

ing position instance is to be unified.
Semantically, an overlapping operating position indicates that operating position instance 𝜃𝑟
represents the same physical location than operating position instance 𝜃𝑠 in the plant, i.e., if a
work piece is placed on or moved to 𝜃𝑠, it is at the same time at 𝜃𝑟. 𝜃𝑠 and 𝜃𝑟 typically belong to
different module instances.

4.3. Formal Description of Automation Tasks

The goal of this section is to define the requirements for a task model that captures
relevant aspects of MAL automation tasks on basis of the plant model introduced in
the previous section. The task model is capable of representing functional and extra-
functional requirements for task planning and execution.

4.3.1. Requirements

A typical automation task moves work pieces through a number of processing sta-
tions where the work pieces are handled according to a production plan. The approach
followed in this does not specify the individual steps that are required to reach the
production goal (i.e., how a work piece is treated), but the initial state and final state
that should be reached (i.e., what should be the outcome) as well as additional con-
straints.

Requirement R10 (initial state) The task model must be capable of representing the start-up
state of the plant.

3Notice that three operating positions 𝜃1, 𝜃2 and 𝜃3 can be declared as overlapping by recursively apply-
ing the overlapping relationship (e.g., L := ((𝜃1, 𝜃2), (𝜃2, 𝜃3))).

53

4. System Modeling and Task Description

Requirement R11 (goal state) The task model must be capable of representing the goal state
of the plant.

By default, the synthesized strategy invokes behavioral interfaces one after another.
This execution scheme is called sequential execution. For enhancing the throughput of
the plant, parallel execution of behavioral interfaces is also considered.

Requirement R12 (parallel execution) The task model must capture whether multiple be-
havioral interfaces should be executed in parallel, and if yes, at which degree.

In addition, the optimality of multiple solutions satisfying the same specification
should be assessed. The cost 𝜂b specified for each behavioral interface b ∈ ℬ is used for
this purpose.

Requirement R13 (quantitative analysis) 1The task model must be capable of specifying
how a metric for the optimality of a synthesized strategy is derived from the costs of the indi-
vidual behavioral interfaces. 2In addition, an upper bound for the total worst case cost should
be specified in the task model such that results exceeding a certain threshold do not qualify as a
solution.

4.3.2. Task Model

Definition D14 (task model) A task model T is a tuple

T = (PT, 𝒞ℐT, 𝜎T, 𝑔T, 𝜂maxT,⊙T,⊗T, 𝑑T) (4.17)

where:
∙ PT is the plant model for task model T.
∙ 𝒞ℐT is the set of initial task conditions (�R10). In contrast to initial conditions defined

at module type level, these conditions typically indicate the initial state of the plant and
the initial location of work pieces. Hence, they correspond to the initial assumptions in the
production plan. An initial task condition conforms to the concept of conditions specified
in Definition D3. It typically references objects defined in the plant model 𝒳PT

and the
plant’s hardware model 𝒳HPT

.
∙ 𝜎T ∈ {𝜎r, 𝜎rc, 𝜎rp, 𝜎rcp} specifies the type of solver to use for synthesizing a strategy.

Table 4.1 summarizes the available solver types and which of the parameters in the task
model they use as input. Notice that parallel action execution is supported for some solver
types (�R12).

∙ 𝑔T is the goal state specification (�R11). It specifies the conditions that should apply as
a result of executing the synthesized production plan, expressed by a respective valuation
of state predicates. The valuation typically references objects from 𝒳PT

and 𝒳HPT
. As

indicated later in Section 5.4.4.2, it corresponds to the reachability condition of the respec-
tive game. For example, the final properties of work pieces and modules may be stated.
Formally, the goal state specification is a Boolean term, where the variables of the term
are conditions 𝑐 = 𝑣(a𝑣0 , a𝑣1 , . . . , a𝑣𝑎−1) ∈ 𝒞 according to Definition D3. Since every

54

4. System Modeling and Task Description

Table 4.1.: Available solver types and used input parameters from the task model.
Solver type Used input parameters

Reachability. . . 𝜎T 𝑔T ⊙T ⊗T 𝜂maxT 𝑑T

only 𝜎r yes no no no (∞) 1
+ bounded cost 𝜎rc yes yes no yes (<∞) 1
+ parallelization 𝜎rp yes no no no (∞) >1
+ bounded cost + parallelization 𝜎rcp yes yes yes yes (<∞) >1

Boolean term can be written in disjunctive normal form, a goal state specification can be
written as follows, where “(¬)” means that terms may appear in negated form:

𝑔T =
⋁︁
𝑖

⋀︁
𝑗

(¬)𝑣𝑖𝑗(a𝑣𝑖𝑗0 , a𝑣𝑖𝑗1 , . . . , a𝑣𝑖𝑗𝑎−1
) (4.18)

∙ 𝜂maxT is the cost bound that must not be exceeded by the worst case execution run of
the synthesized strategy (�R13.2). The semantics of this cost value is user-defined and
must match the semantics of the costs 𝜂b annotated in the behavioral interfaces b ∈ ℬ.
The interpretation of the cost bound depends on ⊙T and ⊗T.

∙ ⊙T is the sequential composition operator. It is used to calculate the combined cost
𝜂b1→...→b𝛽+1

of a sequential invocation of behavioral interfaces b1, b2, . . . , b𝛽, b𝛽+1, 𝛽 >
0 from the cost 𝜂b1→...→b𝛽 of an existing sequential execution trace of behavioral interface
invocations b0, b1, . . . , b𝛽−1 and the cost 𝜂b𝛽+1

of another behavioral interface invocation
b𝛽+1 (�R13.1). ⊙T should be commutative, i.e., yield the same result independent of the
order of input parameters. Currently supported values for ⊙T are:

⊙T := sum ⇒ 𝜂b1→...→b𝛽+1
:= 𝜂b1→...→b𝛽 + 𝜂b𝛽+1

(4.19)

⊙T := max ⇒ 𝜂b1→...→b𝛽+1
:= max(𝜂b1→...→b𝛽 , 𝜂b𝛽+1

) (4.20)

∙ ⊗T is the parallel composition operator. It is used to calculate the combined cost
𝜂b1‖...‖b𝛽+1

of a parallel invocation of behavioral interfaces b1, b2, . . . , b𝛽, b𝛽+1, 𝛽 >
0 from the cost 𝜂b1‖...‖b𝛽 of an existing parallel invocation of behavioral interfaces
b0, b1, . . . , b𝛽−1 and the cost 𝜂b𝛽+1

of invoking another behavioral interface b𝛽+1 in par-
allel (�R13.1). ⊗T should be commutative, i.e., yield the same result independent of the
order of input parameters. Currently supported values for ⊗T are:

⊗T := sum ⇒ 𝜂b1‖...‖b𝛽+1
:= 𝜂b1‖...‖b𝛽 + 𝜂b𝛽+1

(4.21)

⊗T := max ⇒ 𝜂b1‖...‖b𝛽+1
:= max(𝜂b1‖...‖b𝛽 , 𝜂b𝛽+1

) (4.22)

∙ 𝑑T ∈ N+ is the maximum degree of parallelization (�R12). It specifies how many
actions should be executed in parallel at max. Typical values are 1 (no parallelization)
and low values like 2 or 3, because synthesis time significantly increases with a higher
degree of parallelization. Refer to Section 7.5 for a respective evaluation.

55

4. System Modeling and Task Description

4.3.3. Process Model

The process model is a complete model of hardware, plant and task. It specifies a con-
crete automation task to be executed in a concrete plant made out of concrete hardware
modules.

Definition D15 (process model) The set M = (H,P,T) with hardware model H = HP

according to Definition D4, plant model P = PT according to Definition D10 and task model
T according to Definition D14 is called the process model.

This definition concludes the formal language for specification of MALs and respective
tasks. In the next section, it is applied to the running example.

4.4. Discussion and Application to Running Example

4.4.1. Formal Description of Hardware Modules from the Running
Example

Using the provided model, the individual modules of the running example from
Section 3.4 can be describes as follows. Define a new hardware model H0 =
(ΦH0 ,𝒱H0 ,𝒳H0 ,𝒰H0) with initially empty sets for the elements of the tuple, i.e., ΦH0 =
𝒱H0 = 𝒳H0 = 𝒰H0 = ∅. In the following, those sets are incrementally extended as
the hardware module types in the plant are modeled. Figure 4.1 depicts generalized
representations of the respective hardware modules according to the model4.

In order to improve readability, the set Π ⊆ 𝒳H0 is used to refer to all operating po-
sitions in hardware model H0. When items are added to Π, it is implicitly assumed
that they are contained in 𝒳H0 , too. Furthermore, the set 𝒲 ⊂ 𝒳 is used to refer to all
work pieces in the plant. The content of this set is defined later in the plant model in
Section 4.4.2 (see for example equation (4.96)).

4.4.1.1. Stacking Magazine

A stacking magazine (compare Figure 4.1 (a)) is a passive hardware module type with
one operating position 𝜋bottom. According to the assumptions in Section 3.4, a work
piece is always available at position 𝜋bottom when one is needed. Hence:

Π := Π ∪ {𝜋bottom} (4.23)
𝜙Magazine := (∅, {𝜋bottom}, ∅, ∅, ∅) (4.24)

ΦH0 := ΦH0 ∪ {𝜙Magazine} (4.25)

Equation (4.23) extends the (initially empty) set of operating positions by 𝜋bottom. Equa-
tion (4.24) defines the stacking magazine module type with empty sets of behavioral

4These hardware modules correspond to the following Festo Modular Production System (MPS) [Fes12]
components (compare Sections 7.5 and 7.6): 162 385 (stack magazine), 526 873 (branch module), 654 972
(rotary index table), 195 773 (testing module), 196 974 (drilling module), 532 934 (slide module).

56

4. System Modeling and Task Description

(a) Stacking magazine (b) Lever (c) Rotary plate with 6 pos. (d) Height sensor (e) Drill (f) Slide

𝜋bottom

𝜋from 𝜋to

𝜋p1

𝜋p2 𝜋p3

𝜋p4

𝜋p5𝜋p6
𝜋probe 𝜋drill

𝜋top

Figure 4.1.: Generalized representation of components from the running example.

interfaces, I/O signals and parameters (according to the passive nature of the module
type, compare Definition D5 on page 48). Equation (4.25) extends the (initially empty)
set of available module types in hardware model H0 by 𝜙Magazine.

4.4.1.2. Lever

A lever (compare Figure 4.1 (b)) is an active hardware module with two operating posi-
tions 𝜋from and 𝜋to. For transferring a work piece between these positions, a behavioral
interface blever-push is defined. In order to implement the behavioral interface, the posi-
tion of work pieces needs to be formally represented. For this purpose two predicates
are introduced:

at : 𝒲 ×Π → B (4.26)
occupied : Π → B (4.27)

𝒱H0 := 𝒱H0 ∪ {at, occupied} (4.28)

The predicate at(𝑤, 𝜋) denotes whether a given work piece 𝑤 ∈ 𝒲 is present at the
position denoted by 𝜋 ∈ Π.As mentioned before, 𝒲 is defined later in the plant model.
The predicate occupied(𝜋) denotes whether a given operating position is occupied by
a work piece. In this example, it is assumed that the following invariants always hold
(compare Section 5.2):

∀𝜋 ∈ Π: occupied(𝜋) ⇔ ∃𝑤 ∈ 𝒲 : at(𝑤, 𝜋) (4.29)
∀𝑤1, 𝑤2 ∈ 𝒲, 𝜋 ∈ Π: at(𝑤1, 𝜋) ∧ at(𝑤2, 𝜋) ⇔ 𝑤1 = 𝑤2 (4.30)

Equation (4.29) models that whenever an operating position is occupied, there exists a
work piece that actually takes up this position and vice versa. Equation (4.30) specifies
that each operating position can only be taken up by at most one work piece.

In addition to these predicates, one more predicate is required to represent where a
lever is located in the assembly line. The reason for this is that when synthesizing a
suitable strategy, we need to ensure that the solver may only pick the respective behav-
ioral interface of the lever when there actually exists a lever in the plant between two

57

4. System Modeling and Task Description

given operating positions. Hence, the lever-located predicate is introduced as follows:

lever-located : Π×Π → B (4.31)
𝒱H0 := 𝒱H0 ∪ {lever-located} (4.32)

Recall that we did not introduce such a predicate for the stacking magazine. The reason
for this is that the stacking magazine is a passive hardware module. Since such modules
do not have any behavioral interfaces and hence the solver cannot choose a wrong
behavioral interface for a given operating position, we can skip the addition of this
predicate.

Based on the predicates defined above, the behavioral interface blever-push of the lever is
defined. In this example, cost 1 is assumed for this behavioral interface.

Π := Π ∪ {𝜋from, 𝜋to} (4.33)
blever-push := ((aobj ∈ 𝒲, afrom ∈ Π, ato ∈ Π), 𝒞𝒫blever-push

,

ℰblever-push , ∅, ∅, 𝑝lever-push, 1, 1) (4.34)

𝒞𝒫blever-push := {lever-located(afrom, ato), at(aobj, afrom),¬occupied(ato)} (4.35)

ℰblever-push := {¬at(aobj, afrom), at(aobj, ato),¬occupied(afrom), occupied(ato)} (4.36)

𝜙Lever := ({blever-push}, {𝜋from, 𝜋to}, ∅, {𝑜setLever}, {𝑝holdTime}) (4.37)
ΦH0 := ΦH0 ∪ {𝜙Lever} (4.38)

Equation (4.33) extends the set of operating positions by 𝜋from and 𝜋to. Equation (4.34)
defines the behavioral interface blever-push (compare Definition D6 on page 49) with the
three arguments aobj, afrom and ato for moving the given object from 𝜋from to 𝜋to. The
primitive control function (PCF) 𝑝lever-push is triggered on the target platform to invoke the
lever. The preconditions for the behavioral interface as defined in equation (4.35) are
that a lever is located between 𝜋from and 𝜋to, that a work piece is located at 𝜋from and that
𝜋to is not occupied. The notation predicate(. . .) is used to indicate that the respective
predicate has to be true and ¬predicate(. . .) to indicate that it has to be false in order
to enable the behavioral interface. The effects of the behavioral interface specified in
equation (4.36) are that the object is now located at 𝜋to instead of 𝜋from. The occupancy
state is updated accordingly. The notation predicate(. . .) is used to indicate that the
respective predicate is set to true at the given parameters and ¬predicate(. . .) to indicate
that it is set to false. Equation (4.37) defines one output channel and one configurable
parameter for the module type.

The digital output channel 𝑜setLever is used to trigger the lever. The lever stays in the
pushed position until the output signal is reset. The PCF 𝑝lever-push that executes this
behavioral interface implements the following functionality:

1. Set digital output 𝑜setLever to high.

2. Wait 𝑝holdTime milliseconds (interpreting the value of the parameter as a number).

3. Set digital output 𝑜setLever to low.

58

4. System Modeling and Task Description

4.4.1.3. Rotary Plate

A rotary plate with six operating positions (compare Figure 4.1 (c) on page 57) is an
active hardware module with operating positions 𝜋p1 through 𝜋p6 . For reasons of sim-
plicity, assume that only one work piece is located on any of the six operating positions
at any point in time:

∀𝑖 ∈ {1, 2, . . . , 6} : occupied(𝜋p𝑖) ⇒ ∀𝑗 ∈ {1, 2, . . . , 6} ∖ 𝑖 : ¬occupied(𝜋p𝑗) (4.39)

A more complicated model of this module type is required otherwise.

For rotating work pieces in clockwise direction, a behavioral interface bplate-rotate is de-
fined. In order to implement the behavioral interface, we need to formally represent
the relative position of operating positions on the plate. For this purpose, an additional
predicate is introduced that models the fact that one operating position on the plate is
followed by another operating position:

clockwise-next : Π×Π → B (4.40)
𝒱H0 := 𝒱H0 ∪ {clockwise-next} (4.41)

Based on this predicate, the behavioral interface bplate-rotate of the rotary plate is defined.
In this example, cost 1 is assumed for this behavioral interface.

Π := Π ∪ {𝜋p1 , . . . , 𝜋p6} (4.42)
bplate-rotate := ((aobj ∈ 𝒲, afrom ∈ Π, ato ∈ Π), 𝒞𝒫bplate-rotate ,

ℰbplate-rotate , ∅, ∅, 𝑝plate-rotate, 1, 0) (4.43)

𝒞𝒫bplate-rotate := {clockwise-next(afrom, ato), at(aobj, afrom)} (4.44)

ℰbplate-rotate := {¬at(aobj, afrom), at(aobj, ato),¬occupied(afrom), occupied(ato)} (4.45)

𝜙RotaryPlate := ({bplate-rotate}, {𝜋p1 , . . . , 𝜋p6},
{𝜄isRotaryPlateInPosition}, {𝑜setStartRotaryPlate}, ∅) (4.46)

ΦH0 := ΦH0 ∪ {𝜙RotaryPlate} (4.47)

Due to the fact that, when triggering bplate-rotate, the synthesis engine is free to select one
of the six pairs of positions for afrom and ato that respect the clockwise-next predicate, a
single pair of operating positions as a precondition in equation (4.44) is sufficient.

Notice the zero used as last element in bplate-rotate in equation (4.43), which indicates that
parallelization of this behavioral interface is disabled. Hence, even if parallel execution
of actions is enabled, this action will execute on its own. This restriction is set up to
optimize the synthesis time at the cost of optimality of the resulting control program.

For simplicity, assume that the rotary plate is activated by the digital output channel
𝑜setStartRotaryPlate that needs to be set to high in order to trigger a rotation by 60∘ in clock-
wise direction. The rotary plate automatically stops when it has reached the respective
next position if the 𝑜setStartRotaryPlate channel has been reset in the meanwhile. Further
assume that the digital input channel 𝜄isRotaryPlateInPosition is present that indicates when

59

4. System Modeling and Task Description

the rotary plate has reached the respective next position5. The PCF 𝑝plate-rotate that exe-
cutes this behavioral interface implements the following functionality:

1. Set digital output 𝑜setStartRotaryPlate to high.

2. Wait6 for digital input 𝜄isRotaryPlateInPosition to become low.

3. Set digital output 𝑜setStartRotaryPlate to low.

4. Wait for digital input 𝜄isRotaryPlateInPosition to become high.

4.4.1.4. Height Sensor Module

A height sensor (compare Figure 4.1 (d) on page 57) is an active hardware module with
one operating position 𝜋probe. A behavioral interface bprobe-height is defined for prob-
ing the height of a work piece at that position. In order to implement this behavioral
interface, the height of work pieces needs to be formally represented. Without loss
of generality, this example only distinguishes between two types of heights. For this
purpose, introduce a new predicate:

𝒳 height := {𝑥small, 𝑥large} (4.48)
height : 𝒲 ×𝒳 height → B (4.49)
𝒳H0 := 𝒳H0 ∪ 𝒳 height (4.50)
𝒱H0 := 𝒱H0 ∪ {height} (4.51)

The predicate height(𝑤, ℎ) evaluates to a true Boolean value if work piece 𝑤 is of the
height specified by ℎ and false otherwise. This representation is favored over a simple
predicate such as height-small(𝑤), because the height of a work piece may be initially
unknown, which could not be represented with a predicate such as height-small.

Similar to the lever module, one more predicate is needed to represent where a
height sensor module instance is located in the assembly line. Hence, introduce the
height-sensor-located predicate as follows:

height-sensor-located : Π → B (4.52)
𝒱H0 := 𝒱H0 ∪ {height-sensor-located} (4.53)

Based on these predicates, the sensor triggering action bprobe-height of the height sensor
module is defined according to Definition D8 on page 51. Cost for this behavioral
interface is set to zero according to the constraints for sensor triggerings.

Π := Π ∪ {𝜋probe} (4.54)
bprobe-height := ((aobj ∈ 𝒲, apos ∈ Π), 𝒞𝒫bprobe-height ,

∅, ∅,ℛbprobe-height , 𝑝probe-height, 0, 1) (4.55)

𝒞𝒫bprobe-height
:= {height-sensor-located(apos), at(aobj, apos)} (4.56)

ℛbprobe-height := {(0, height(aobj, 𝑥large)), (1, height(aobj, 𝑥small))} (4.57)

5This design matches the design of the Festo MPS station 648 813 (processing), see also Section 7.3.
6No busy waiting is used in order to not constrain parallel execution of multiple behavioral interfaces.

60

4. System Modeling and Task Description

𝜙HeightSensor := ({bprobe-height}, {𝜋probe}, {𝜄isRodDown}, {𝑜setRod}, {𝑝probeTime}) (4.58)

ΦH0 := ΦH0 ∪ {𝜙HeightSensor} (4.59)

As long as the digital output channel 𝑜setRod is high, an electromagnet pushes the probe
rod down. If the probe rod is not blocked by the work piece (because it is small),
then the digital input 𝜄isRodDown becomes high. Otherwise, the 𝜄isRodDown input stays
low, which is also the default if 𝑜setRod is low7. The PCF 𝑝probe-height that executes this
behavioral interface implements the following functionality:

1. Set digital output 𝑜setRod to high.

2. Wait 𝑝holdTime milliseconds (interpreting the value of the parameter as a number).

3. Sample the value of digital input 𝜄isRodDown.

4. Set digital output 𝑜setRod to low.

5. If the sampled 𝜄isRodDown channel was high, return sensor result value 1, otherwise
return sensor result value 0 (compare sensor result conditions in equation (4.57)).

4.4.1.5. Drill

A drill (compare Figure 4.1 (e) on page 57) is an active hardware module with one
operating position 𝜋drill. A behavioral interface bdrill is defined for drilling a work piece
at that position. For representing the effects of the drill, we introduce a new predicate
drilled:

drilled : 𝒲 → B (4.60)
𝒱H0 := 𝒱H0 ∪ {drilled} (4.61)

The predicate drilled(𝑤) evaluates to a true Boolean value if work piece 𝑤 is drilled and
false otherwise. Notice that unlike the height predicate introduced in equation (4.49),
this representation requires the initial drilling state of a work piece to be known. Since
all predicates are considered to be false for all valuations by default, this means that we
consider all work piece to be initially undrilled8.

Similar to the lever and height sensor modules, one more predicate is needed to rep-
resent where a drill is located in the assembly line. Hence, introduce the drill-located
predicate as follows:

drill-located : Π → B (4.62)
𝒱H0 := 𝒱H0 ∪ {drill-located} (4.63)

Based on this predicate, formally define the behavioral interface bdrill of the drill mod-
ule. In this example, cost 1 is assumed for this behavioral interface.

7This design matches the design of the Festo MPS station 648 813 (processing), see also Section 7.3.
8If this semantics is not desired, the same approach used in the height predicate can be followed by

defining a predicate drilled-state(𝑤, 𝑥) with 𝑥 ∈ {𝑥drilled, 𝑥undrilled} and 𝒳H0 := 𝒳H0 ∪ {𝑥drilled, 𝑥undrilled}.

61

4. System Modeling and Task Description

Π := Π ∪ {𝜋drill} (4.64)
bdrill := ((aobj ∈ 𝒲, apos ∈ Π), 𝒞𝒫bdrill , ℰbdrill , ∅, ∅, 𝑝drill, 1, 1) (4.65)

𝒞𝒫bdrill := {drill-located(apos), at(aobj, apos)} (4.66)
ℰbdrill := {drilled(aobj)} (4.67)
𝜙Drill := ({bdrill}, {𝜋drill}, {𝜄isDrillDown, 𝜄isDrillUp},

{𝑜setClamp, 𝑜setDrill, 𝑜setMoveDrillDown, 𝑜setMoveDrillUp}, {𝑝drillTime}) (4.68)
ΦH0 := ΦH0 ∪ {𝜙Drill} (4.69)

The following digital I/O channels are involved: the 𝑜setMoveDrillDown and 𝑜setMoveDrillUp
outputs are used to make the linear axis on which the drill is mounted to go down
and up, respectively. Only one of them may be high at any one time. If both outputs
are low, the linear axis does not move. The 𝜄isDrillDown and 𝜄isDrillUp inputs indicate that
the respective position is reached. The 𝑜setClamp output is used to activate a clamp that
fixes the work piece in place for drilling. Finally, the 𝑜setDrill output controls whether the
drill is on or off9. The PCF 𝑝drill that executes this behavioral interface implements the
following functionality (we implicitly assume that the linear axis of the drill is initially
up):

1. Set digital output 𝑜setClamp to high.

2. Set digital output 𝑜setDrill to high.

3. Set digital output 𝑜setMoveDrillUp to low and 𝑜setMoveDrillDown to high.

4. Wait for digital input 𝜄isDrillDown to become high.

5. Wait 𝑝drillTime milliseconds (interpreting the value of the parameter as a number).

6. Set digital output 𝑜setMoveDrillDown to low and 𝑜setMoveDrillUp to high.

7. Wait for digital input 𝜄isDrillUp to become high.

8. Set digital output 𝑜setDrill to low.

9. Set digital output 𝑜setClamp to low.

4.4.1.6. Slide

A slide (compare Figure 4.1 (f) on page 57) is a passive hardware module with one
operating position 𝜋top. According to the description in Section 3.4, we can assume that
a work piece dropped at 𝜋top will vanish immediately. Hence:

Π := Π ∪ {𝜋top} (4.70)
𝜙Slide = (∅, {𝜋top}, ∅, ∅, ∅) (4.71)
ΦH0 := ΦH0 ∪ {𝜙Slide} (4.72)

9This design matches the design of the Festo MPS station 648 813 (processing), see also Section 7.3.

62

4. System Modeling and Task Description

4.4.1.7. ECU Types

Finally, the supported ECU types are formally represented. In our example, two ECU
of type Siemens S7-313C are used, which have the following properties:

∙ 16 digital input channels organized in two bytes with 8 channels each.

∙ 16 digital output channels organized in two bytes with 8 channels each.

∙ Ability to be “remote controlled” via Siemens Multi-Point Interface (MPI) and open
platform communications (OPC) [IL01].

Hence, the formal model of the ECU type is defines as follows:

𝑢S7-313C := (Siemens-S7, {𝜄0.0, 𝜄0.1, . . . , 𝜄0.7, 𝜄1.0, 𝜄1.1, . . . , 𝜄1.7},
{𝑜0.0, 𝑜0.1, . . . , 𝑜0.7, 𝑜1.0, 𝑜1.1, . . . , 𝑜1.7},
{𝑝mpiAddress}) (4.73)

𝒰H0 := 𝒰H0 ∪ {𝑢S7-313C} (4.74)

Equation (4.73) specifies that the ECU conforms to the platform type Siemens-S7, which
is one of the supported target systems. The configurable ECU parameter 𝑝mpiAddress
represents the address of the ECU on the MPI bus which it is attached to.

4.4.1.8. Summary

Here is a summary of hardware model H0:

ΦH0 = {𝜙Magazine, 𝜙Lever, 𝜙RotaryPlate, 𝜙HeightSensor, 𝜙Drill, 𝜙Slide} (4.75)

𝒱H0 = {at, occupied, lever-located, clockwise-next,

height, height-sensor-located, drilled, drill-located} (4.76)
𝒳H0 = {𝜋bottom, 𝜋from, 𝜋to, 𝜋p1 , . . . , 𝜋p6 , 𝜋probe, 𝜋drill, 𝜋top, 𝑥small, 𝑥large} (4.77)
𝒰H0 = {𝑢S7-313C} (4.78)⋃︁

ℬ𝜙,𝜙∈ΦH0

= {blever-push, bplate-rotate, bprobe-height, bdrill} (4.79)

4.4.2. Formal Description of the Assembly Line from the Running
Example

Using hardware model H0, the concrete assembly line from the running example in
Section 3.4 is described in a plant model P0 as follows:

P0 = (H0,𝒳P0
,ΨP0

, ̂︀𝒰P0
, LP0

) (4.80)

The individual elements of this tuple are defined in the following. First, consider the
set of ECU instances ̂︀𝒰P0

. In the running example, two ECUs are used to control the
module instances.

63

4. System Modeling and Task Description

̂︀𝒰P0
:= {�̂�Plant, �̂�Drill} (4.81)

�̂�Plant := (𝑢S7-313C, �⃗�Plant) (4.82)
�̂�Drill := (𝑢S7-313C, �⃗�Drill) (4.83)
�⃗�Plant := {𝑝mpiAddress ↦→ 1} (4.84)

�⃗�Drill := {𝑝mpiAddress ↦→ 2} (4.85)

The mapping of the configurable parameter 𝑝mpiAddress corresponds to the example
setup. Next, the set of operating position instances required to represent two levers and
one instance of the other module types needs to be defined. The notation 𝜋SM1.bottom is
a short form to refer to the operating position instance 𝜓SM1.𝜋bottom.

𝒳P0
:= {𝜋SM1.bottom, 𝜋L1.from, 𝜋L1.to, 𝜋RP1.p1

, . . . , 𝜋RP1.p6
,

𝜋H1.probe, 𝜋D1.drill, 𝜋L2.from, 𝜋L2.to, 𝜋S1.top} (4.86)

Subsequently, the respective module instances need to be defined:

ΨP0
:= {𝜓SM1, 𝜓L1, 𝜓RP1, 𝜓H1, 𝜓D1, 𝜓L2, 𝜓S1} (4.87)

Recall that items from this set are defined according to Definition D12 on page 52:

𝜓 = (𝜙𝜓, 𝑢𝜓,Θ𝜓, 𝜃𝜓, 𝒞ℐ𝜓, �⃗�𝜓, �⃗�𝜓, 𝑝𝜓)

𝜙𝜓 and 𝑢𝜓 reference the module type and the ECU instance of the module instance.
Θ𝜓 is the set of operating position instances and 𝜃𝜓 is the function that maps operating
positions of the module type to the module instance. 𝒞ℐ𝜓 is the set of initial module
conditions for module instance 𝜓. �⃗�𝜓, �⃗�𝜓 and 𝑝𝜓 are the functions that map I/O signals
and parameters to the respective channels and values, respectively.

Before defining the respective module instances, it is worth to mention how the 𝒞ℐ𝜓
argument works. In order for the solver to not parameterize a behavioral interface
invocation with a wrong set of operating positions (e.g., attempting to trigger a lever
between operating positions 𝜋bottom and 𝜋top), the initial module conditions initialize
the predicates that were introduced to specify valid combinations of operating position
arguments to behavioral interfaces. Those predicates have been defined in the equa-
tions (4.31), (4.40), (4.52) and (4.62). They are used as preconditions in the respective
behavioral interfaces and hence constrain the solver to choose positional arguments
only for valid combinations of operating positions. With this background knowledge,
the definition of the module instances is straightforward10:

10We set �⃗�𝜓 , �⃗�𝜓 and 𝑝𝜓 to ⊥ if the domain of the respective functions is empty.

64

4. System Modeling and Task Description

Table 4.2.: Digital input channel assignment in the running example.
ECU Byte Digital input channels

0 1 2 3 4 5 6 7

�̂�Plant
𝜄0 – 𝜄isRotaryPlateInPosition 𝜄isRodDown – – – – –
𝜄1 – – – – – – – –

�̂�Drill
𝜄0 – – – 𝜄isDrillDown 𝜄isDrillUp – – –
𝜄1 – – – – – – – –

𝜓SM1 = (𝜙Magazine, �̂�Plant, {𝜋SM1.bottom}, {𝜋bottom ↦→ 𝜋SM1.bottom}, ∅,⊥,⊥,⊥) (4.88)

𝜓L1 = (𝜙Lever, �̂�Plant, {𝜋L1.from, 𝜋L1.to}, {𝜋from ↦→ 𝜋L1.from, 𝜋to ↦→ 𝜋L1.to},
{lever-located(𝜋L1.from, 𝜋L1.to)},⊥, {𝑜setLever ↦→ 𝑜0.0},
{𝑝holdTime ↦→ 1000ms}) (4.89)

𝜓RP1 = (𝜙RotaryPlate, �̂�Plant, {𝜋RP1.p1
, . . . , 𝜋RP1.p6

}, {𝜋p1 ↦→ 𝜋RP1.p1
, . . . , 𝜋p6 ↦→ 𝜋RP1.p6

},
{clockwise-next(𝜋RP1.p1

, 𝜋RP1.p2
), clockwise-next(𝜋RP1.p2

, 𝜋RP1.p3
),

clockwise-next(𝜋RP1.p3
, 𝜋RP1.p4

), clockwise-next(𝜋RP1.p4
, 𝜋RP1.p5

),

clockwise-next(𝜋RP1.p5
, 𝜋RP1.p6

), clockwise-next(𝜋RP1.p6
, 𝜋RP1.p1

)},
{𝜄isRotaryPlateInPosition ↦→ 𝜄0.1}, {𝑜setStartRotaryPlate ↦→ 𝑜0.1},⊥) (4.90)

𝜓H1 = (𝜙HeightSensor, �̂�Plant, {𝜋H1.probe}, {𝜋probe ↦→ 𝜋H1.probe},
{height-sensor-located(𝜋H1.probe)}, {𝜄isRodDown ↦→ 𝜄0.2}, {𝑜setRod ↦→ 𝑜0.2},
{𝑝holdTime ↦→ 200ms}) (4.91)

𝜓D1 = (𝜙Drill, �̂�Drill, {𝜋D1.drill}, {𝜋drill ↦→ 𝜋D1.drill}, {drill-located(𝜋D1.drill)},
{𝜄isDrillDown ↦→ 𝜄0.3, 𝜄isDrillUp ↦→ 𝜄0.4}, {𝑜setClamp ↦→ 𝑜0.0, 𝑜setDrill ↦→ 𝑜0.1,

𝑜setMoveDrillDown ↦→ 𝑜0.2, 𝑜setMoveDrillUp ↦→ 𝑜0.3}, {𝑝drillTime ↦→ 1000ms}) (4.92)
𝜓L2 = (𝜙Lever, �̂�Plant, {𝜋L2.from, 𝜋L2.to}, {𝜋from ↦→ 𝜋L2.from, 𝜋to ↦→ 𝜋L2.to},

{lever-located(𝜋L2.from, 𝜋L2.to)},⊥, {𝑜setLever ↦→ 𝑜0.3},
{𝑝holdTime ↦→ 1000ms}) (4.93)

𝜓S1 = (𝜙Slide, �̂�Plant, {𝜋S1.top}, {𝜋top ↦→ 𝜋S1.top}, ∅,⊥,⊥,⊥) (4.94)

Tables 4.2 and 4.3 summarize the digital I/O channel assignment of the ECU in the run-
ning example, where “–” indicates that the respective channel is unused. Finally, the
arrangement of module instances is specified according to Definition 13 on page 53:

LP0
:= ((𝜋SM1.bottom, 𝜋L1.from), (𝜋L1.to, 𝜋RP1.p1

), (𝜋RP1.p2
, 𝜋H1.probe),

(𝜋RP1.p3
, 𝜋D1.drill), (𝜋RP1.p4

, 𝜋L2.from), (𝜋L2.to, 𝜋S1.top)) (4.95)

Each pair of operating positions in this set represents the same physical location in
the plant. Hence, the possible material flow between module instances is implicitly
specified.

65

4. System Modeling and Task Description

Table 4.3.: Digital output channel assignment in the running example.
ECU Byte Digital output channels

0 1 2 3 4 . . . 7

�̂�Plant
𝑜0 𝑜setLever (L1) 𝑜setStartRotaryPlate 𝑜setRod 𝑜setLever (L2) –
𝑜1 – – – – –

�̂�Drill
𝑜0 𝑜setClamp 𝑜setDrill 𝑜setMoveDrillDown 𝑜setMoveDrillUp –
𝑜1 – – – – –

For describing automation tasks on work pieces, they need to be represented as objects
in the model. Without loss of generality, define a set of work piece objects 𝒲 with the
objects 𝑥wp1 (work piece 1) and 𝑥wp2 (work piece 2) and add it to the set of objects in the
plant model:

𝒲 := {𝑥wp1, 𝑥wp2} (4.96)
𝒳P0

:= 𝒳P0
∪𝒲 (4.97)

This allows to reason about the work pieces, for example in (goal) conditions like
drilled(𝑥wp1) and at(𝑥wp2, 𝜋top).

4.4.3. Task Description for the Running Example

This section defines example task models for plant model P0 that correspond to dif-
ferent automation tasks in the running example. The task models are referred to in
subsequent sections of this work. Recall that a task specification consists of the follow-
ing elements according to Definition D14 on page 54:

T = (PT, 𝒞ℐT, 𝜎T, 𝑔T, 𝜂maxT,⊙T,⊗T, 𝑑T)

where PT is the corresponding plant model, 𝒞ℐT is the set of initial task conditions, 𝜎T
the solver type, 𝑔T the goal condition, 𝜂maxT the cost bound, ⊙T and ⊗T the sequential
and parallel composition operator and 𝑑T the maximum degree of parallelization. No-
tice that the following examples are just for illustration purposes, refer to Chapter 7 for
more in-depth evaluations.

4.4.3.1. Task 1: Drill Work Pieces

Informal task description:

Drill a work piece 𝑥wp1 initially located at the stacking magazine and move it to the
slide.

66

4. System Modeling and Task Description

Formal task description:

T1 = (P0, 𝒞ℐ1, 𝜎1, 𝑔1,⊥,⊥,⊥, 𝑑1) (4.98)
𝒞ℐ1 = {at(𝑥wp1, 𝜋SM1.bottom), occupied(𝜋SM1.bottom)} (4.99)
𝑔1 = at(𝑥wp1, 𝜋S1.top) ∧ drilled(𝑥wp1) (4.100)

In this example, assume 𝜎1 ∈ {𝜎r, 𝜎rp} (“reachability only” or “reachability + paral-
lelization”). Parameters 𝜂max1, ⊙1 and ⊗1 are set to ⊥, because these solvers ignore
them anyway (compare Table 4.1 on page 55). Notice that we do not explicitly repre-
sent the fact that a drilled work piece does not need to be drilled again. This is fine
as long as excessive drilling does not cause any harm and we do not consider the op-
timality of the synthesized control program. This fact leads to the synthesized control
program to be purely deterministic, because no sensors need to be triggered in order
to achieve the task. Algorithm 4.1 shows a simplified version of a suitable centralized
control program in pseudocode. In the algorithm, action(. . .) is used as a short-hand
for the invocation of the primitive control function 𝑝baction

(. . .) for behavioral interface
baction with the given parameters.

4.4.3.2. Task 2: Drill Undrilled Work Pieces

In the next step, consider an example that requires sensor triggerings.

Informal task description:

Transport a work piece 𝑥wp1 initially located at the stacking magazine to the slide. If
𝑥wp1 is small, drill it.

Formal task description:

T2 = (P0, 𝒞ℐ2, 𝜎2, 𝑔2,⊥,⊥,⊥, 𝑑2) (4.101)
𝒞ℐ2 = {at(𝑥wp1, 𝜋SM1.bottom), occupied(𝜋SM1.bottom)} (4.102)
𝑔2 = at(𝑥wp1, 𝜋S1.top) ∧ (drilled(𝑥wp1) ⇔ height(𝑥wp1, 𝑥small)) (4.103)

In this example, assume 𝜎2 ∈ {𝜎r, 𝜎rp}. The difference between T1 and T2 is sub-
tle: since the value of height(𝑥wp1, 𝑥small) is not known in advance, this specification
requires sensory input from the height sensor module11. Hence, the suitable central-
ized control program shown in Algorithm 4.2 contains a guard for executing the drill
operation. Notice that this approach assumes all predicate valuations that are not ex-
plicitly specified as initial conditions to be set to false. For example, the initial condition
¬drilled(𝑥wp1) implicitly holds. In order to match this expectation, no work pieces that
are already drilled may be inserted into the stacking magazine, otherwise the initial
assumptions in the model would not match the “real world”.

11Notice that the solver being used in this work requires the additional term height(𝑥wp1, 𝑥small) ∨

67

4. System Modeling and Task Description

4.4.4. Semantics of Cost in Quantitative Synthesis

In order to support quantitative evaluation of synthesized control programs, a notion
of cost has been introduced for behavioral interfaces. The two operators sequential
composition (⊙) and parallel composition (⊗) were introduced to formulate how the
total cost is calculated from the individual costs.

Tables 4.4 and 4.5 provide intuitive examples for semantics of cost with respect to the
choice of the composition operators. Table 4.4 assumes that cost corresponds to execu-
tion time (ET) and Table 4.5 assumes that it corresponds to power consumption. Table
cells marked with “–” indicate that no intuitive example was found. See Chapter 7 and
[CGB13] for more details.

4.4.5. Limitations of Modeling

Although the presented modeling language covers a number of aspects, its expressive-
ness is not ideal for certain use cases which are listed in the following.

The hardware model should be as generic as possible to allow a control engineer to use
the modular model elements in a large variety of concrete automation tasks. How-
ever, the more generic the modules and their behavioral interfaces in the hardware
model are specified, the harder it is to connect the respective state variables with each
other. In the running example, the generic predicates at and occupied were defined that
are shared among all behavioral interfaces. These predicates are quite generic and it
is meaningful to share them between the behavioral interfaces, but when it comes to
less generic shared predicates, the question arises what is the right amount of inter-
dependencies between behavioral interfaces. If behavioral interfaces are too loosely
coupled, the number of predicates is high (increasing synthesis time) and the effects
that one predicate valuation has on another one needs to be represented in what we
call spontaneous state changes, i.e., behavioral interfaces with disjoint predicates in their
preconditions and effects and an “empty” PCF. Although they feel like environment
moves, spontaneous state changes should be modeled as Controller moves in order to
not increase the number of sensor inputs, which can increase synthesis time.

A related issue is concerned with modeling the order of execution of behavioral inter-
faces. Consider an automation task where one processing step on a certain work piece
needs to be guaranteed to be performed before another processing step. A simple ex-
ample would be the mounting of a screw in a hole that first needs to be drilled. In this
example, the predicate drilled(𝑥wp1) can be used as a precondition for the behavioral
interface bmount-screw, because it is not meaningful to mount a screw in an undrilled
work piece. However, order of execution of behavioral interfaces is not always as eas-
ily defined. Consider the automation task where a work piece should be painted after
a hole has been drilled. In this case, drilled(𝑥wp1) should not be a precondition for be-
havioral interface bpaint, because there may well be use cases of the same hardware model

height(𝑥wp1, 𝑥large) to be added to the goal condition as a conjunction in this case (otherwise it does
not find a solution). This term is omitted here for brevity.

68

4. System Modeling and Task Description

Algorithm 4.1: Suitable centralized control program for task model T1.

1 lever-push (𝑥wp1, 𝜋L1.from, 𝜋L1.to);
2 plate-rotate (𝑥wp1, 𝜋RP1.p1

, 𝜋RP1.p2
);

3 plate-rotate (𝑥wp1, 𝜋RP1.p2
, 𝜋RP1.p3

);
4 drill (𝑥wp1, 𝜋D1.drill);
5 plate-rotate (𝑥wp1, 𝜋RP1.p3

, 𝜋RP1.p4
);

6 lever-push (𝑥wp1, 𝜋L2.from, 𝜋L2.to);

Algorithm 4.2: Suitable centralized control program for task model T2.

1 lever-push (𝑥wp1, 𝜋L1.from, 𝜋L1.to);
2 plate-rotate (𝑥wp1, 𝜋RP1.p1

, 𝜋RP1.p2
);

3 probe-height (𝑥wp1, 𝜋H1.probe);
4 plate-rotate (𝑥wp1, 𝜋RP1.p2

, 𝜋RP1.p3
);

5 if height (𝑥wp1, 𝑥small) then
6 drill (𝑥wp1, 𝜋D1.drill);
7 end
8 plate-rotate (𝑥wp1, 𝜋RP1.p3

, 𝜋RP1.p4
);

9 lever-push (𝑥wp1, 𝜋L2.from, 𝜋L2.to);

Table 4.4.: Semantics of composition operators when cost equals execution time.
cost ≈ execution time ⊙ := max ⊙ := sum

⊗ := max
Worst case execution time Total worst case

of any single action execution time

⊗ := sum –
Total execution time

of all actions

Table 4.5.: Semantics of composition operators when cost equals power consumption.
cost ≈ power ⊙ := max ⊙ := sum

⊗ := max
Peak power consumption

–
of any single action

⊗ := sum
Worst case peak Worst case total

power consumption power consumption

69

4. System Modeling and Task Description

where undrilled objects should be painted. Formally speaking, the causal dependency
between the two behavioral interfaces is not present in all use cases.

In such cases, modeling the desired order of execution should be performed in the
plant model as opposed to the hardware model in order not to “contaminate” the
(generic) hardware model with application-specific assumptions. Such a concept is
currently not implemented, hence the only option to model order of execution until
now is to specify explicit dependencies using predicates in the hardware model. A
suitable implementation would be an extension of the plant model to allow specifi-
cation of a total or relative order between processing operations on a work piece, for
example bdrill(aobj) < bpaint(aobj). However, such ordering could depend on properties
only known at runtime, for example: “If 𝑥wp1 is red, first drill and then mount. If 𝑥wp1
is black, first mount and then drill”.

4.5. Summary

This chapter answers the question on how modular assembly lines and the tasks to
be performed on them can be formally described in order to enable further automatic
processing. For this purpose, we define a three-step approach, namely specification
of hardware model, plant model and task model. Each step has different requirements on
the background knowledge of the engineers that are responsible for the specification.
Hence, the presented modeling workflow partitions the specification of the model ac-
cording to different user roles.

An important aspect of the task model is that it does not specify the concrete steps
to reach the production goal. Instead, it formally specifies the production goal itself.
This approach intentionally forces an engineer to focus on the high-level outcome of
the production task rather than the low-level implementation details required to im-
plement it.

Although the formal specification seems quite tedious, the hierarchical structure of the
models allows them to be reused: a hardware model for a specific type of MAL needs
to be defined only once and can be reused in any plant model defined on top of it.
Similarly, a plant model for a specific MAL only needs to be defined once, while an
arbitrary number of task models can be defined for it.

Some deficits of the presented modeling language have also been identified; for exam-
ple the tradeoff between the generality of the hardware model and the dependencies
between the behavioral interfaces. The balancing of these parameters depends on the
concrete application scenario.

The next chapter deals with how the formal description presented in this chapter is
applied to automatic synthesis of control programs.

70

4. System Modeling and Task Description

4.6. Related Work

Basile et al. state that in automation, “it is usual to start the control design from a de-
scription of the components of a system and of the interactions among them in terms of
events, states and constraints” [BCDG08]. Modeling of automation systems as intro-
duced in this chapter follows the same philosophy: system components are specified at
the granularity of hardware modules, interactions are specified as behavioral interfaces
with predicates that represent the state, while execution is bound to various precondi-
tions that serve as constraints.

In order to allow intuitive modeling, some of the approaches for modeling automation
systems have been achieved in general purpose modeling languages such as Unified
Modeling Language (UML) [LLJ04]. However, “UML diagrams alone are not very use-
ful as analysis, control synthesis or validation framework, especially [in] automation
contexts” [BCDG08]. The reasons for this are that the various UML diagrams allow to
model a system in many different ways and that they are not very precise with respect
to formal analysis or verification.

Hence, automation processes are widely modeled using Petri nets [Mur89]. Reasons
for their success are their “formal semantics, the graphical nature, the expressiveness,
the availability of analysis techniques to prove structural properties (invariance prop-
erties, deadlock, liveness, etc.) and the possibility to define and evaluate performance
indices (throughput, occupation rates, etc.)” [BCDG08]. Petri nets allow modeling
“process synchronization, asynchronous events, concurrent operations, and conflicts
or resource sharing for a variety of industrial automated systems at the discrete-event
level” [Zho98]. Such modeling techniques have been widely applied to semiconduc-
tor manufacturing systems, for example in [Zho98, JCC97, KD97]. The strengths of
Petri net based modeling of automation systems lie in the analysis. However, analy-
sis “becomes impossible” for processes with “uncertainty due to resource contention,
expected maintenance downtime, and unexpected failures”. Hence, “simulation is a
dominant approach to obtaining the performance data” [Zho98].

In order to be able to synthesize control programs, the approach considered in this
work borrows some concepts from Petri nets, but applies them in a different context.
For example, the model presented in this work considers work pieces and operating po-
sitions on which those work pieces may be located. Work pieces can be seen as tokens
in a Petri net with the restriction that only one token is allowed per place (operating
position). Transitions in Petri nets are represented by behavioral interfaces that define
actions in order to change the state of the work pieces and to move them through the
plant. Preconditions of the behavioral interfaces can be seen as enabling conditions for
the transitions. However, not all information in the model is represented by tokens:
a predicate model allows representing global knowledge by discrete values. Further-
more, the developed models feature additional information that is required in order
to directly map a synthesized control program to the target platform. As opposed to
Petri nets, these extensions adapt the presented approach to the automation domain.
Furthermore, the two-player nature of the game modeled by the approach presented in
this work models an automation tak more intuitively than a generic Petri net.

71

4. System Modeling and Task Description

Capability-based modeling is common in order to describe the functionality a specific
module is capable of. Keddis et al. demonstrated that the information technology (IT)
systems for industrial automation can be automatically adapted based on a capabil-
ity model of all stations in a plant [KKB13]. Their approach is based on a modular
hardware platform and can even be extended to mobile robots. The approach in this
work follows a similar approach: capabilities of the individual modules are encoded in
behavioral interfaces and bound to certain preconditions to determine their availabil-
ity. In contrast to Keddis et al., where material flow is calculated separately by adding
transport operations manually, this work integrates material flow modeling directly
into the software synthesis by modeling them as overlapping operating positions. This
allows applying optimizations such as cost-bounded synthesis directly to processing
and transport operations, which makes the approach more uniform.

72

CHAPTER 5

Industrial Control Program Generation Workflow

Contents
5.1. Approach . 74
5.2. Constraint Checking . 77
5.3. Model-to-model Transformation . 79
5.4. Model-to-text Transformation . 86
5.5. Game-based Solving . 93
5.6. Translation of Solver Output to Control Programs 96
5.7. Discussion and Application to Running Example 100
5.8. Summary . 102
5.9. Related Work . 103

Overview

The research question tackled in this chapter is the following:
Given a formal description of the structure and capabilities of a modular as-
sembly line (MAL) and the production task to achieve, how can (possibly
decentralized) control programs be automatically synthesized for the elec-
tronic control units (ECUs) of the MAL?

This question is answered by defining a fully automatic process that transforms the
formal description into a two-player game that serves as input to a suitable solver. The
solver calculates a strategy such that one of the players wins the game if such a strategy
exists. The resulting strategy in form of a finite state machine is then transformed into
executable code for simulation or execution on the ECU(s).

73

5. Industrial Control Program Generation Workflow

5.1. Approach

In order to be able to apply game-based synthesis as introduced in Section 2.3, we
transform the process model introduced in the previous chapter into a suitable input
language for the game-based solver that represents the task to execute as a game be-
tween the two players Controller and Environment.

The available moves of the Controller correspond to the triggering of control commands
on the ECU(s) in the plant, while the moves of Environment correspond to the observ-
able (sensor) environment. Synthesizing a suitable control algorithm for Controller cor-
responds to a respective winning strategy in the two-player game. The solver reports
that no winning strategy exists for Controller if the given task is infeasible.

The presented approach allows generating a single centralized control program or mul-
tiple decentralized control programs, one for each ECU. In the following, we compare
the two approaches with each other.

5.1.1. Centralized Control Strategy

A centralized control strategy assumes that the full knowledge about the current (global)
state is always available and that the invocation of all primitive control functions that
implement the behavioral interfaces defined in the plant model is possible from a single
program. If multiple ECUs are present in the plant, they are remotely controlled from
that single program.

In this case, the information specified in the hardware model is used to connect the
global control program to every single ECU in order to trigger the respective primitive
control functions when appropriate. Figure 5.1 (a) illustrates this situation.

As indicated in Figure 5.1 (a), the program does not need to run on one of the ECUs in
this case; it could instead be running on a development personal computer (PC), for ex-
ample. This setup has the advantage that debugging of the generated control program
is easy, because no concurrency is involved.

5.1.2. Decentralized Control Strategy

In contrast, a decentralized control strategy consists of a dedicated control program per
ECU. From a functional perspective, the parallel execution of all dedicated control
programs has the same effects than the execution of the centralized control strategy.
However, advantages of decentralized control include reduced communication over-
head and hence the opportunity for tighter timing guarantees in the implementation,
offering of modular “services” in the form of production steps that are carried out by
the decentralized control programs as well as easier maintenance and exchange of indi-
vidual control programs without affecting others. Since decentralized control programs
are automatically derived from the centralized control strategy, there is no additional
development effort involved, provided the respective target system is compatible to
this approach – switching between centralized and decentralized execution can be per-
formed simply by re-synthesis.

74

5. Industrial Control Program Generation Workflow

ECU 1

Centralized
control program

ECU 1 ECU 2 ECU 3

Global state

Control prog. 1

Local state

ECU 1

Control prog. 2

Local state

ECU 2

Control prog. 3

Local state

ECU 3

Remotely
controlled

Remotely controlled

Communication
network

Control prog. 1

Local state

Communication
network

ECU 2

Control prog. 2

Local state

ECU 3

Control prog. 3

Local stateRemotely controlled

(a) Centralized control (b) Decentralized control (remote) (c) Decentralized control (local)

Figure 5.1.: Comparison of centralized and decentralized control strategies on an exam-
ple with three ECUs: (a) centralized control program with remote control
of all ECUs; (b) decentralized control programs with remote control of all
ECUs; (c) decentralized control programs with local control of their associ-
ated ECU.

Dedicated control programs only have a limited view on the global system state and
may trigger primitive control functions of devices that are connected to the respective
control unit only. Figure 5.1 (b) shows a set of three decentralized control programs that
remotely control one ECU each. Figure 5.1 (c) depicts the same setup, but this time the
control program runs directly on the respective ECUs. Mixed forms are also possible.

In order to coordinate with the other ECUs specified in the hardware model, the dedi-
cated control programs are connected to a communication network that allows to send
values of local predicates and synchronization signals to other ECUs or to receive re-
motely available predicate values and to wait for synchronization signals. As indicated
in Figure 5.1 (b) and (c), this work assumes bidirectional communication channels to be
available between all ECUs in order to realize this requirement.

Information exchange in such a system is in general required if an ECU-local control
program contains at least one sensor triggering, i.e., if the control program contains
potential uncertainty. However, in the chosen approach, a transfer of the state between
ECUs is required whenever the execution context switches between ECUs. The reason
for this is that when a behavioral interface is executed, the predicate value updates are
only applied in the control program that executed the behavioral interface; they are not
“simulated” on the other ECUs. Implementing such a simulation would further reduce
the required network bandwidth and is considered future work.

Algorithms 5.1 and 5.2 show the anticipated decentralized control programs for ECU
instances �̂�Plant and �̂�Drill in task model T2 (compare to the centralized control program
shown in Algorithm 4.2 on page 69). This example uses the approach that is called
“token-based replication of the full state” that is described in detail in Section 5.3.3.1.
Some noteworthy properties of these programs are listed in the following:

∙ For decentralized control strategies, only one ECU is active at any point in time.

75

5. Industrial Control Program Generation Workflow

Algorithm 5.1: Anticipated decentralized
version of Algorithm 4.2 for ECU �̂�Plant.

1 set-current-ecu (𝑥�̂�Plant);
2 lever-push-�̂�Plant (𝑥wp1, 𝜋L1.from, 𝜋L1.to);
3 plate-rotate-�̂�Plant (𝑥wp1, 𝜋RP1.p1

, . . .);
4 probe-height-�̂�Plant (𝑥wp1, 𝜋H1.probe);
5 plate-rotate-�̂�Plant (𝑥wp1, 𝜋RP1.p2

, . . .);
6 set-current-ecu (𝑥�̂�Drill);
7 transfer-state (𝑥�̂�Plant , 𝑥�̂�Drill);
8 nop ();

9 nop ();
10 transfer-state (𝑥�̂�Drill , 𝑥�̂�Plant);
11 plate-rotate-�̂�Plant (𝑥wp1, 𝜋RP1.p3

, . . .);
12 lever-push-�̂�Plant (𝑥wp1, 𝜋L2.from, 𝜋L2.to);

Algorithm 5.2: Anticipated decentralized
version of Algorithm 4.2 for ECU �̂�Drill.

1 set-current-ecu (𝑥�̂�Plant);
2 nop ();
3 nop ();
4 nop ();
5 nop ();
6 nop ();
7 transfer-state (𝑥�̂�Plant , 𝑥�̂�Drill);
8 if height-�̂�Drill (𝑥wp1, 𝑥small) then

drill-�̂�Drill (𝑥wp1, 𝜋D1.drill);
end

9 set-current-ecu (𝑥�̂�Plant);
10 transfer-state (𝑥�̂�Drill , 𝑥�̂�Plant);
11 nop ();
12 nop ();

The set-current-ecu behavioral interface, for which the placement in the control
program is automatically derived by the solver, is used to switch context from
one ECU to another. In order to ensure that the solver picks the correct behavioral
interfaces for a given ECU, the behavioral interfaces are replicated on all ECUs
where they may be executed and a respective ECU-specific suffix is added to the
behavioral interface name (e.g., lever-push-�̂�Plant). For details, see Section 5.3.3.

∙ Additional guards in each step of the control program ensure that an ECU exe-
cutes a no-operation (nop) if it is not the current ECU. The no-operation is non-
blocking, i.e., the program immediately continues with the next statement.

∙ The transfer-state behavioral interface is used to transfer changes in the ECU-local
state from the active ECU to another ECU. On the sending side (identified by
the fact that the ECU the code is executed on corresponds to the first parame-
ter), this operation ensures that the receiver is listening and sends the respective
state update. On the receiving side (identified by the fact that the ECU the code
is executed on corresponds to the second parameter), the operation blocks until
a state update is received. A state update may contain an arbitrary number (in-
cluding zero) of predicate updates, followed by a synchronization signal. Notice
that the state transfer may include a new current ECU value, which is the reason
why ECU �̂�Drill executes behavioral interfaces after receiving the state from �̂�Plant
in line 7, where the new current ECU was determined as �̂�Drill in line 6.

∙ In this simple example, the transfer between ECUs is deterministic. In general,
setting of the next active ECU could depend on sensor input. In the case that
multiple ECUs might be the next active ECUs, a state update and synchronization
signal has to be sent to all possible candidates.

76

5. Industrial Control Program Generation Workflow

5.1.3. Individual Steps of the Approach

The following list provides an overview of the steps carried out in order to obtain a syn-
thesized (centralized or decentralized) control program from a process model. These
steps are described in detail in the following sections.

1. Constraint checking: A set of check constraints is applied to the process model
in order to ensure that only consistent models are used for game-based synthesis.
This procedure reveals many design errors at an early stage of development and
encourages confidence in the correct specification of the process model.

2. Model-to-model transformation: The model is subsequently extended and
adapted in a model-to-model transformation in multiple steps. The transformation
includes preparative steps in order to execute the resulting control program in a
distributed way as introduced in the previous sections. Notice that the transfor-
mation does not modify the original model, instead the model specified by the
user is cloned and the modifications carried out on the copy.

3. Model-to-text transformation: Model-to-text transformation converts the model
into the input language for the solver, the Planning Domain Definition Language
(PDDL).

4. Game-based solving: The solver is applied to the PDDL specification and returns
a finite state machine (FSM) of a suitable strategy if the specification is feasible or
an error otherwise.

5. Translation of solver output to control programs: If the specification was fea-
sible, the final step is to optimize and translate the finite state machine’s textual
representation into executable code1.

5.2. Constraint Checking

Before translating the models into an input language for the solver, the consistency of
the models is checked. For this purpose, we define a set of check rules C = {c1, c2, . . . , cc}
where each check rule c𝑖, 1 ≤ 𝑖 ≤ c is a function

c𝑖 : ℳ → B (5.1)

where ℳ is the set of all possible process models M = (H,P,T).

Check Rule CR1 At least one operating position per module type:

c1(M) =

{︃
1 if ∀𝜙 ∈ ΦH : Π𝜙 ̸= ∅
0 otherwise

(5.2)

Check Rule CR2 Predicates are nullary, unary or binary:

c2(M) =

{︃
1 if ∀𝑣 ∈ 𝒱H : 𝑎𝑣 ∈ {0, 1, 2}
0 otherwise

(5.3)

1Without loss of generality, the FSM is translated into C/C++ code in this work.

77

5. Industrial Control Program Generation Workflow

This check rule is currently required due to limitations in the underlying solver. It is not a
limitation of the approach itself.

Check Rule CR3 All modules in the plant model are topologically connected:

ΘLP :=
⋃︁

ℓ=(𝜃𝑠,𝜃𝑟)∈LP

{𝜃𝑠, 𝜃𝑟}

c3(M) =

{︃
1 if |ΨP| ≤ 1 ∨ ¬∃𝜓 ∈ Ψ: ∀𝜋 ∈ Π𝜙𝜓 : {𝜃𝜓(𝜋)} ∩ΘLP = ∅
0 otherwise

(5.4)

where ΘLP is the set of all operating position instances referenced in the plant model, both
source and replacement instances (compare Definition D13). The constraint ensures that either
the number of modules is at most one or there exists no module instance 𝜓 for which none of its
operating position instances, expressed by 𝜃𝜓(𝜋), is in ΘLP .

Assuming we use the predicates “at” and “occupied” to represent the location of work
pieces and the occupancy state of an operating position as introduced in Section 4.4.1,
we add one more check rule to ensure the consistency between the two predicates:2

Check Rule CR4 Consistent use of predicates “at” and “occupied”3:

c4(M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (∀b ∈ ℬH : ∀𝑒 ∈ ℰb :

(𝑒 ≡ at(𝑤, 𝜋) ⇒ ∃𝑒2 ∈ ℰb : 𝑒2 ≡ occupied(𝜋))∧
(𝑒 ≡ ¬at(𝑤, 𝜋) ⇒ ∃𝑒2 ∈ ℰb : 𝑒2 ≡ ¬occupied(𝜋))∧
(𝑒 ≡ occupied(𝜋) ⇒ ∃𝑒2 ∈ ℰb, 𝑤 ∈ 𝒲 : 𝑒2 ≡ at(𝑤, 𝜋))∧
(𝑒 ≡ ¬occupied(𝜋) ⇒ ∃𝑒2 ∈ ℰb, 𝑤 ∈ 𝒲 : 𝑒2 ≡ ¬at(𝑤, 𝜋))

) ∧ (∀b ∈ ℬH : ∀𝑒 ∈ ̂︀ℰb :(︁
𝑒 ≡ at(𝑤, 𝜋) ⇒ ∃𝑒2 ∈ ̂︀ℰb : 𝑒2 ≡ occupied(𝜋)

)︁
∧(︁

𝑒 ≡ ¬at(𝑤, 𝜋) ⇒ ∃𝑒2 ∈ ̂︀ℰb : 𝑒2 ≡ ¬occupied(𝜋)
)︁
∧(︁

𝑒 ≡ occupied(𝜋) ⇒ ∃𝑒2 ∈ ̂︀ℰb, 𝑤 ∈ 𝒲 : 𝑒2 ≡ at(𝑤, 𝜋)
)︁
∧(︁

𝑒 ≡ ¬occupied(𝜋) ⇒ ∃𝑒2 ∈ ̂︀ℰb, 𝑤 ∈ 𝒲 : 𝑒2 ≡ ¬at(𝑤, 𝜋)
)︁

) ∧ (∀𝑐𝑖 ∈ 𝒞ℐT :

(𝑐𝑖 ≡ at(𝑤, 𝜋) ⇒ ∃𝑐𝑖2 ∈ 𝒞ℐT : 𝑐𝑖2 ≡ occupied(𝜋))∧
(𝑐𝑖 ≡ ¬at(𝑤, 𝜋) ⇒ ∃𝑐𝑖2 ∈ 𝒞ℐT : 𝑐𝑖2 ≡ ¬occupied(𝜋))∧
(𝑐𝑖 ≡ occupied(𝜋) ⇒ ∃𝑐𝑖2 ∈ 𝒞ℐT, 𝑤 ∈ 𝒲 : 𝑐𝑖2 ≡ at(𝑤, 𝜋))∧
(𝑐𝑖 ≡ ¬occupied(𝜋) ⇒ ∃𝑐𝑖2 ∈ 𝒞ℐT, 𝑤 ∈ 𝒲 : 𝑐𝑖2 ≡ ¬at(𝑤, 𝜋))

)

0 otherwise

(5.5)

2For simplification reasons, we assume here that no 𝒞ℐ𝜙, 𝜙 ∈ ΦH contains any condition that deals with
“at” or “occupied”. This is a meaningful assumption, because it does not make sense that an initial
module condition in the hardware model specifies the location of work pieces in the plant model.

3Some of the individual checks presented here only produce warnings as opposed to errors in the real
implementation (MGSyn tool).

78

5. Industrial Control Program Generation Workflow

These constraints force the clearing of an operating position to be represented as an
effect even if it is known to be filled by a different work piece in the same step. How-
ever, this is not a problem, because the effect lists are ordered and hence the subsequent
filling of the same operating position can be specified at a subsequent item in the list.

Definition D16 (consistency) A process model M is called consistent if

∀1 ≤ 𝑖 ≤ c : c𝑖(M) = 1 (5.6)

A model that is not consistent is called inconsistent.

If a model is inconsistent, a respective diagnostic message is reported to the user. Game-
based synthesis is unavailable for inconsistent process models.

Notice that a specific implementation of a process model in form of a domain specific
language requires the addition of many more check constraints. These checks are nec-
essary, because implementing a real domain-specific language (DSL) requires the addition
of artifacts such as unique objects names. In contrast, uniqueness of objects is guaran-
teed by the kind of notation in the presented strict mathematical formalism. Hence, the
MGSyn tool presented in Section 7.1 implements more than 100 checks for detection of
duplicate object names, ambiguities and correct referencing of types and objects across
elements of the DSL.

Provided a process model M is consistent, we apply model-to-model transformation as
follows.

5.3. Model-to-model Transformation

5.3.1. Addition of Sensor Response Actions

The input model contains behavioral interfaces for Controller actions (actuations) and
Environment actions (sensor triggerings). However, a sensor triggering does not model a
move of the Environment. Instead, it primarily models the fact that Controller passes the
control over the game to Environment. The actual turn of Environment and its properties
are not yet explicitly represented. However, this information is required in order to
properly set up the game in the game-based solver.

Algorithm 5.3 shows the pseudocode of an algorithm that extends the model accord-
ingly. The algorithm consists of three steps.

In the first step, a sensor response is created for every sensor triggering. The sensor re-
sponse has the same properties as its sensor triggering with the following exceptions:

∙ The response is only executable when it is not Controller’s turn (¬P0TRAN) and
the predicate b-active is true, which is specifically created to represent whether
Controller wants to know the sensor input from exactly the given sensor4.

4This implies that we can handle only one instance of a certain type of sensor per plant model in central-
ized control program synthesis and one instance per ECU in decentralized control program synthesis.
This limitation can be removed by introducing a sensor-instance specific parameter to b-active.

79

5. Industrial Control Program Generation Workflow

∙ The effects of the response are that the next turn is carried out by Controller
(P0TRAN) and the sensor activation predicate is reset (¬b-active).

∙ Without loss of generality, cost of sensor responses is always zero; the cost of
sensor responses is represented instead in the respective sensor triggering.

In the second part of the algorithm, we modify the existing actions such that:

∙ All actions (except the not yet added sensor responses) are Controller moves
(P0TRAN).

∙ All sensor triggerings cause the next turn to be taken by Environment and activate
the respective sensor response.

This way, we force the environment to always answer Controller’s sensor triggerings
with a respective response. The newly created sensor responses are added to the set of
available actions in the last step.

5.3.2. Unique Identification of Module Instances

The control program from Algorithm 4.1 on page 69 contains two module instances of
type lever. Line 1 triggers L1, while on line line 6, L2 is activated. This can be easily seen
by inspecting the positional parameters passed to lever-push. However, it is undesirable
for the lever’s primitive control function (PCF) to interpret those parameters in order to
decide the module instance to trigger, because it requires topological information about
the plant to be present in the PCFs. An elegant solution for this problem is to let the
solver explicitly choose the instance to trigger. For this purpose, we extend the model
as follows.

1. Addition of device and behavioral objects: A new object type 𝒳 device is intro-
duced with objects {𝑥𝜓 | 𝜓 ∈ ΨP} (i.e., one object for every module instance) and
a new object type 𝒳 behavioral with objects {𝑥b | b ∈ ℬ𝜙, 𝜙 ∈ ΦH} (i.e., one object for
every behavioral interface).

2. Addition of module-specific predicates and initial conditions: A predicate
device-hold : 𝒳 device × Π → B is added that represents the fact that a module
instance “owns” a set of operating positions. For initialization, add for ev-
ery operating position of a module instance 𝜓 ∈ ΨP a set of initial conditions
𝒞ℐdevice-hold𝜓 := {device-hold(𝑥𝜓, 𝑥𝜋) | 𝜓 ∈ ΨP ∧ 𝜋 ∈ Π𝜓}.

Furthermore, we add a predicate device-use : 𝒳 device × 𝒳 behavioral → B that in-
dicates which behavioral interfaces are defined for a module type. For initial-
ization, we add for every module instance 𝜓 ∈ ΨP a set of initial conditions
𝒞ℐdevice-use𝜓 := {device-use(𝑥𝜓, 𝑥b) | 𝜓 ∈ ΨP ∧ b ∈ ℬ𝜙𝜓}.

3. Adaptation of behavioral interfaces: In order to let the game-based solver deter-
mine the correct module instance to trigger, add a parameter named 𝑥device with
domain 𝒳 device to every behavioral interface b. In order to constrain the possible
valuations for 𝑥device, we add a precondition device-hold(𝑥device, apos) for every po-
sitional argument apos ∈ Ab (i.e., for every argument of type Π). Furthermore, we
add a precondition device-use(𝑥device, 𝑥b), where 𝑥b is the object that corresponds
to b.

80

5. Industrial Control Program Generation Workflow

Algorithm 5.3: Pseudo-code for addition of sensor responses to the process model.

Input: Process model M = (H,P,T)
Output: Updated process model M

// First pass: create sensor responses
1 ℬ+ := ∅; // set of newly added sensor responses
2 foreach behavioral interface b ∈ ℬP do
3 if ℛb ̸= ∅ then // if 𝑏 is sensor triggering
4 𝒱P := 𝒱P ∪ {b-active}; // b-active → B indicates pending triggering
5 Ab𝑟 := Ab; // response has same arguments as triggering
6 𝒞𝒫b𝑟 := 𝒞𝒫b ∪ {¬P0TRAN, b-active}; // precondition: pending trig.
7 ℰb𝑟 := ℰb ∪ {P0TRAN,¬b-active}; // deactivate pending triggering

8 ̂︀ℰb𝑟 := ∅; // no conditional effects
9 ℛb𝑟 := ℛb; // same sensor response conditions as triggering

10 𝑝b𝑟 := 𝑝b; // apply control function from triggering
11 𝜂b𝑟 := 0; // actual cost represented in sensor triggering

12 b𝑟 := (Ab𝑟 , 𝒞𝒫b𝑟 , ℰb𝑟 ,
̂︀ℰb𝑟 ,ℛb𝑟 , 𝑝b𝑟 , 𝜂b𝑟 , 𝑝b𝑟); // new sensor response

13 ℬ+ := ℬ+ ∪ {b𝑟}; // schedule b𝑟 for addition
14 foreach module type 𝜙 ∈ ΦH do
15 if b ∈ ℬ𝜙 then
16 ℬ𝜙 := ℬ𝜙 ∪ {b𝑟}; // add the sensor response to the
17 break; // module that owns the sensor triggering

18 end
19 end
20 end
21 end

// Second pass: update original actions
22 foreach behavioral interface b ∈ ℬP do
23 𝒞𝒫b := 𝒞𝒫b ∪ {P0TRAN}; // ensure Controller takes turns
24 if ℛb ̸= ∅ then // if 𝑏 is sensor triggering
25 ℰb := ℰb ∪ {¬P0TRAN, b-active}; // enable env. sensor response
26 ℛb := ∅; // no sensor response conditions
27 𝑝b := ⊥; // remove control function from triggering,

// now triggered in sensor response

28 end
29 end

// Add new sensor responses to process model
30 ℬP := ℬP ∪ ℬ+;

81

5. Industrial Control Program Generation Workflow

This has two effects: on the one hand, the device argument has to be chosen
such that it represents the module instance with the correct set of operating po-
sitions. For example, if a plant model contains multiple lever module instances
with disjoint operating positions, then the interface lever-push will have its de-
vice parameter set to the device that owns the operating position where the work
piece is initially located5. On the other hand, we demand that the device parame-
ter is chosen such that the respective module type owns the respective behavioral
interface. Consider for example two levers, where L1 pushes a work piece from
operating position A to B and L2 from B to A and assume further that two differ-
ent behavioral interfaces are used for pushing forth and back. Then due to the
device-use related precondition, the device argument of the respective behavioral
interfaces will be correctly set to either L1 or L2 depending on the push direction.

5.3.3. Replication of Model Elements for Distributed Execution

A control engineer may select to generate a centralized or a decentralized control strat-
egy for a given plant model. If distributed control is applied, i.e., a dedicated control
program is to be generated for every ECU in the plant model, some constraints need to
be added to the plant model that encode the fact that the system state is not completely
observable from the point of view of a specific ECU.

The approach targets the following behavior: all ECUs start with the same initial state
as specified in the model. The individual control programs are executed in parallel with
suitable synchronization points. Whenever the triggering of a primitive control func-
tion depends on a predicate whose value may be influenced by behavioral primitives
that are executed on another ECU, ensure that the respective value is first transferred
to the ECU in question. Whenever such a “replicated” predicate is modified, make sure
that the outdated values present on remote ECUs are not used anymore.

The following three approaches to realize these constraints have been analyzed and
some of them implemented as part of this work.

∙ Token-based replication at granularity of predicates: This approach transfers
the state based on the individual predicates. For every predicate, a single token
exists in the distributed setup that determines which ECU owns the current value
of the predicate. Before reading or writing a predicate, its token needs to be ac-
quired, possibly implying a transfer action.

This approach is scalable with respect to network bandwidth at the cost of a
higher number of variables during game-based synthesis. Unfortunately, de-
tailed analysis shows that this approach leads to a high synthesis time and the
decentralized control programs are not feasible for execution if certain conditions
apply. In particular, this approach only networks the predicate values that are
either part of the preconditions or (conditional) effects of the actions being ex-

5 Notice that we assume that modules with at least one behavioral interface without positional ar-
guments to be instantiated only once; otherwise the instance to trigger could not be decided when
the strategy is executed. For example, consider two signal lamps with interface set-state(𝒳 state) and
𝒳 state = {𝑥red, 𝑥yellow, 𝑥green}; then the valuation of the device parameter would not be constrained.

82

5. Industrial Control Program Generation Workflow

ecuted. However, the guards for action execution most probably contain other
predicates as well, whose values are not networked. Hence, this approach is not
feasible. Nevertheless, Appendix A depicts the algorithm in detail.

∙ Token-based replication of the full state: This approach uses just a single token
to determine which ECU owns the current “image” of all state predicates. Be-
fore reading or writing any predicate, the token needs to be acquired, possibly
implying a transfer action.

This approach is less modular than the first approach. Nevertheless, it allows for
a much shorter synthesis time and the synthesized control programs do not suffer
from the problem mentioned above.

∙ Pessimistic replication analysis: This approach completely omits the construc-
tion of transfer actions in the game-based solver. Instead, an analysis is performed
on the resulting control strategy in order to determine when it is required to trans-
fer a predicate value. The current implementation is a heuristic approach with
pessimistic replication: predicate values are transferred if there is at least one con-
trol flow where the predicate value is unknown on the receiving side when that
predicate is part of a guard expression (e.g., a precondition) or a (conditional) ef-
fect. As such, this approach has the advantage that it is performed at predicate
granularity while not adversely influencing synthesis time.

The following sections describe the latter two approaches in detail.

5.3.3.1. Token-based Replication of the Full State

In order to implement token-based replication of the full state, an automatic model
transformation is used to adapt the plant model. Algorithm 5.4 shows the pseudocode
for this transformation. Line numbers in the following refer to that algorithm.

1. Addition of ECU objects: In order to represent which ECU is currently active,
we add for every ECU instance �̂� ∈ ̂︀𝒰P a corresponding object 𝑥�̂� (lines 1 to 2).

2. Representation of token: A predicate current-ecu : 𝒳 ECU → B is added that rep-
resents which ECU currently owns the token and hence the current image of all
state predicates (line 3). This predicate is true for at most one ECU at a time6.
The initial state is “all false”, which means that no owner for the token has been
determined yet.

3. Splitting of behavioral interfaces: For every behavioral interface, we determine
whether it needs to be executed on different ECUs, and if yes, clone the behav-
ioral interface (lines 4 to 13). This ensures that the game-based solver indicates
on which ECU the action is to be triggered by choosing the respective variant.
For example, if behavioral interface lever-push is required on ECUs e1 and e2 (be-
cause each ECU controls at least one module of type lever), then two ECU-local
behavioral interfaces named lever-push-e1 and lever-push-e2 replace the original
behavioral interface. Assuming behavioral interface drill is only required on ECU
e1, then a single behavioral interface drill-e1 replaces the existing one.

6Notice that this predicate can profit from binary encoding as introduced later in Section 5.5.3.2.

83

5. Industrial Control Program Generation Workflow

Algorithm 5.4: Pseudo-code for token-based replication of the full state.

Input: Process model M = (H,P,T)
Output: Updated process model M

// Addition of ECU objects

1 𝒳 ECU := {𝑥e�̂� | �̂� ∈ ̂︀𝒰P}; // set of ECU objects
2 𝒳P := 𝒳P ∪ 𝒳 ECU; // add set of ECU objects to plant model

// Representation of token
3 𝒱H := 𝒱H ∪ {current-ecu} ;

// Splitting of behavioral interfaces
4 ℬ+ := ∅; // set of newly added behavioral interfaces
5 ℬ− := ∅; // set of behavioral interfaces to remove
6 foreach behavioral interface b ∈ ℬ do
7 foreach ECU instance �̂� ∈ ̂︀𝒰P do
8 if b /∈ ℬ𝜙𝜓 (�̂� does not control a module with behavioral interface b) then continue;

9 define new behavioral interface b�̂� := b and assign to same module type as b;
10 ℬ+ := ℬ+ ∪ {b�̂�}; // schedule b�̂� for addition
11 ℬ− := ℬ− ∪ {b}; // schedule b for removal

12 end
13 end

// Addition of token-related behavioral interfaces
14 bset-current-ecu := ((aecu ∈ 𝒳ECU), 𝒞𝒫bset-current-ecu , ℰbset-current-ecu , ∅, ∅,⊥, 0, 0);
15 𝒞𝒫bset-current-ecu := {¬current-ecu(𝑥�̂�) | �̂� ∈ ̂︀𝒰P};
16 ℰbset-current-ecu := {current-ecu(aecu)};

17 btransfer-state := ((asource, adest ∈ 𝒳ECU), 𝒞𝒫btransfer-state
, ℰbtransfer-state , ∅, ∅, 𝑝transfer-state, 0, 0);

18 𝒞𝒫btransfer-state
:= {current-ecu(asource)};

19 ℰbtransfer-state := {¬current-ecu(asource), current-ecu(adest)};

20 ℬ+ := ℬ+ ∪ {bset-current-ecu, btransfer-state}; // schedule for addition

// Update of set of behavioral interfaces
21 foreach module type 𝜙H do
22 ℬ𝜙 := ℬ𝜙 ∖ ℬ−;
23 end
24 ℬ := (ℬ ∖ ℬ−) ∪ ℬ+;

84

5. Industrial Control Program Generation Workflow

4. Addition of token-related behavioral interfaces: The last step is to add two ad-
ditional behavioral interfaces, one to determine the initial owner of the token and
one to transfer the token (along with an image of the current state) from one ECU
to another (lines 14 to 20). set-current-ecu(aecu) is executed to designate aecu as the
initial owner of the token. transfer-state(asource, adest) is executed to transfer the
token from ECU asource to ECU adest. In general, the availability of such transfer
actions between a pair of ECUs depends on the network topology available. A
fully connected topology is assumed in this work.

The primitive control function 𝑝transfer-state implements the actual state transfer
between the two ECUs. It is automatically provided by code generation from the
model and has the semantics described in Section 5.1.2. Notice that the cost for
both operations is set to zero here in order not to affect quantitative synthesis. In
case transfer operations are expensive, the cost may be set to a value larger than
zero in order to instruct the solver to reduce the number of transfer operations to
a minimum. Without loss of generality, bset-current-ecu and btransfer-state are added to
the set of behavioral interfaces of the first module in the plant model (not shown
in Algorithm 5.4).

5.3.3.2. Pessimistic Replication Analysis

Another possibility for replication of predicate values is based on a pessimistic anal-
ysis of the generated strategy. This technique combines the fine-granular replication
from the token-based approach at predicate granularity with fast synthesis time. In
the following, we sketch a suitable algorithm. The basic idea is to simulate all possible
execution traces of the control program and insert transfer operations in the execution
sequence where they are required in at least one execution trace. Notice that unlike
the previous algorithm, which harness the power of the game-based solver to find a
suitable solution, this one is a post-processing step applied to the generated strategy.

For every ECU �̂� ∈ ̂︀𝒰P, let 𝒱𝑢(�̂�) denote the set of unknown predicates in the ECU-
specific control program, i.e., those predicates for which the respective control program
does not “know” the current value. The initial state is globally known, hence the sets are
initially empty. The following algorithm is then applied to all blocks in the strategy:

1. Determination of target ECU: First, determine on which ECU �̂�𝑒 the current ac-
tion is to be executed.

2. Required transfer operations for guard condition and (conditional) effects: De-
termine the set of predicates 𝒱𝑔 that are tested in the current guard condition
(corresponding to the preconditions of the action to be executed) as well as the
set of predicates 𝒱𝑒 written in the (conditional) effects of the respective action.
Let 𝒱𝑚 = 𝒱𝑢(�̂�𝑒) ∩ (𝒱𝑔 ∪ 𝒱𝑒) denote the missing predicates for execution of the
current action. Transfer the predicate value for all 𝑣 ∈ 𝒱𝑚 from an arbitrary ECU
�̂�𝑘𝑛𝑜𝑤 for which 𝑣 /∈ 𝒱𝑢(�̂�𝑘𝑛𝑜𝑤). Such an ECU is guaranteed to exist. Then set
𝒱𝑢(�̂�𝑒) := 𝒱𝑢(�̂�𝑒) ∖ 𝒱𝑚.

3. Action execution and predicate invalidation: On ECU �̂�𝑒, evaluate the guard
condition in order to determine whether to execute the action. If the action is

85

5. Industrial Control Program Generation Workflow

executed, apply the (conditional) effects of the action to the local copies of the
predicates; those predicates are all contained in 𝒱𝑒.
On all other ECUs �̂� ∈ ̂︀𝒰 ∖ {�̂�𝑒}, we need to assume the worst case, which is that
the guard condition evaluates to true on �̂�𝑒. Hence, we need to invalidate the
local copies of the potentially modified predicates on these ECUs: set 𝒱𝑢(�̂�) :=

𝒱𝑢(�̂�) ∪ 𝒱𝑒 for all �̂� ∈ ̂︀𝒰 ∖ {�̂�𝑒}.

This algorithm statically inserts transfer operations between ECUs based on a safe over-
approximation of the situations where a transfer is required.

5.4. Model-to-text Transformation

This work uses PDDL to encode specifications for passing them to a solver. In the
following section, a brief summary of PDDL is given.

5.4.1. Planning Domain Definition Language

The planning domain definition language (PDDL) was originally designed for the AIPS-98
planning competition [GHK+98]. It combines features from previously existing lan-
guages such as ADL [Ped89] and UMCP [EHN94]. “PDDL is intended to express the
“physics” of a domain, i.e., what predicates there are, what actions are possible [. . .]
and what the effects of actions are” [GHK+98]. Since the original introduction, PDDL
has been extended in many ways [GL05, HET+06]. The Backus-Naur form (BNF) of the
most recent version 3.1 of PDDL is available in [Kov11]. A PDDL specification consists
of two definitions:

∙ The domain specification (compare Listing 5.1) usually defines requirements, types,
constants, (parameterized) predicates and actions. Actions are guarded by pre-
conditions over predicates that must hold in order for the action to be executable.
Actions define effects in terms of updates to the predicate values. Effects may
also depend on predicate values (so-called conditional effects).

∙ The problem specification (compare Listing 5.2) defines the initial state and goal
state for a concrete planning problem. States are specified in terms of the predi-
cates defined in the domain specification.

Listings 5.1 and 5.2 show examples for PDDL domain and problem specifications. List-
ing 5.1 defines a domain called stackDomain (line 1) that allows us to reason about lo-
cations and objects (line 4). For this purpose, a suitable solver must implement certain
requirements (line 2). The predicates loc : object × location → B (object is at location)
and on : object × object → B (first object is on top of second object) are used to represent
the state of the system (lines 5f). Action put−obj−on : object × object × location defined
in lines 7ff specifies that an object can be stacked onto another object if they are at the
same location and neither of the objects is stacked or has an object stacked on it. Ac-
tion put−obj−off : object × object unstacks an object (lines 22ff) and action move−obj :
object × location × location moves an object including the object stacked on it, if any
(lines 27ff).

86

5. Industrial Control Program Generation Workflow

Listing 5.1: Example of a PDDL domain specification
1 (define (domain stackDomain)
2 (: requirements : s t r i p s : typing : conditional−e f f e c t s
3 : negative−preconditions)
4 (: types l o c a t i o n o b j e c t)
5 (: predica tes (l o c ? ob j − o b j e c t ? a t − l o c a t i o n)
6 (on ? top ? bot − o b j e c t))
7 (: act ion put−obj−on
8 : parameters (? ob j ?newbot − o b j e c t ? a t − l o c a t i o n)
9 : precondition (and

10 ; ; ? o b j and ? newbot i s a t l o c a t i o n ? a t
11 (l o c ? ob j ? a t) (l o c ?newbot ? a t)
12 ; ; ? o b j not s t a c k e d i t s e l f
13 (f o r a l l (? bot − o b j e c t) (not (on ? ob j ? bot)))
14 ; ; n o t h i n g s t a c k e d on ? o b j
15 (f o r a l l (? top − o b j e c t) (not (on ? top ? ob j)))
16 ; ; ? newtop not s t a c k e d
17 (f o r a l l (? bot − o b j e c t) (not (on ?newbot ? bot)))
18 ; ; n o t h i n g s t a c k e d on ? newtop
19 (f o r a l l (? top − o b j e c t) (not (on ? top ?newbot))))
20 : e f f e c t (on ? ob j ?newbot)
21)
22 (: act ion put−obj−o f f
23 : parameters (? ob j ? oldbot − o b j e c t)
24 : precondition (on ? ob j ? oldbot)
25 : e f f e c t (not (on ? ob j ? oldbot))
26)
27 (: act ion move−obj
28 : parameters (? ob j − o b j e c t ? from ? to − l o c a t i o n)
29 : precondition (l o c ? ob j ? from)
30 : e f f e c t (and (l o c ? ob j ? to) (not (l o c ? ob j ? from))
31 (f o r a l l (? top)
32 (when (on ? top ? ob j)
33 (and (not (l o c ? top ? from))
34 (l o c ? top ? to))
35)
36)
37)
38)
39)

Listing 5.2: Example of a PDDL problem specification
40 (define (problem stackAndMove)
41 (: domain stackDomain)
42 (: objec ts loc1 loc2 − l o c a t i o n obj1 ob j2 − o b j e c t)
43 (: i n i t (l o c ob j1 loc1) (l o c ob j2 loc2))
44 (: goal (and (l o c ob j1 loc2) (on obj2 obj1)))
45)

87

5. Industrial Control Program Generation Workflow

The problem specification stackAndMove (Listing 5.2) states which object and locations
are available (line 42), what their initial configuration is (line 43) and defines a goal
for the solver (line 44). The output of a solver for such kinds of problems is typically
of form of an execution trace of actions such that the goal state is reached after the last
action in the trace has been executed. A solver might come up with one of the following
execution traces:

∙ move−obj(obj1, loc1, loc2), put−obj−on(obj2, obj1)

∙ move−obj(obj2, loc2, loc1), put−obj−on(obj2, obj1), move−obj(obj1, loc1, loc2)

Notice that many more (most probably uninteresting) traces are possible, because the
effects of put−obj−on and put−obj−off cancel each other out.

This simple example is based on perfect information, i.e., no uncertainty is present.
When problems with imperfect information need to be handled, actions are introduced
that retrieve the required information during execution using conditional effects. In
this case, the solver has to make sure that the goal is reached in all possible execution
traces. This means that the output is not a sequence of parameterized actions, but an
FSM, in which the transitions depend on the trace of actions already executed. Instead
of storing the execution trace, the transition conditions are typically formulated over
the current state, i.e., the values of the predicates.

Assume for example that a hostile environment might decide to let a stacked object fall
down. Without loss of generality, assume that this might only happen directly after
the object has been stacked onto another object and that this might only happen once7

during the execution of the control program. In this case, a suitable control program
has to check the valuation of predicate “on” after an execution of put-on to ensure that
the state is as expected.

The Game Arena Visualization and Synthesis Plus! (GAVS+) solver used in this work uses
a subset of PDDL as input language and produces a suitable FSM as output for games
with incomplete information if a solution exists. It is introduced in the following.

5.4.2. GAVS+

Game arena visualization and synthesis (GAVS) [CBLK10] and the extended version
GAVS+ [CKLB11] are software frameworks for solving and visualizing games typically
encountered in theoretical computer science. While Game Arena Visualization and Syn-
thesis (GAVS) focuses on turn-based two-player games on finite graphs, GAVS+ greatly
extends the set of supported game types and offers better interoperability with other
tools [Che12]. Both frameworks consist of a graphical user interface (GUI) and a set of
synthesis engines for different types of games, among them reachability games, Büchi
games and parity games.

The original motivation for creating GAVS was that many problems from theoretical
computer science can be encoded as two-player games and solving these games corre-

7This restriction ensures that no infinite loop of stacking and falling down is possible. By fine-tuning
the maximum number of allowed hostile actions, we can express how tolerant the control program
should be with respect to these uncertainties. The more likely it is for the stacked object to fall down,
the higher the number of tolerated hostile actions should be.

88

5. Industrial Control Program Generation Workflow

sponds to proving properties of the respective problems. The graphical user interface of
GAVS allows step-by-step solving and visualization of games and hence fosters the un-
derstanding of the respective algorithms. It also allows steepening the learning curve
in teaching the respective algorithms. Refer to [Che12] for more information.

In this work, we use the game solving capability of GAVS+ to synthesize industrial
control programs from PDDL specifications. For this purpose, we first need to translate
the process model P = (H,P,T) introduced in Sections 4.2 and 4.3 into PDDL.

Notice that the PDDL domain and problem specification could be written manually and
directly used as input for the solver.However, maintaining the process model in this
form is tedious and error-prone. Generating the PDDL files from a suitable model has
the advantage that a model is easier to maintain and due to its high level of abstraction,
it can be directly validated against the check constrains defined in Section 5.2 before
any subsequent steps are performed.

5.4.3. Translation of Process Model to PDDL Domain Specification

In the following, we describe how a consistent process model M = (H,P,T) con-
sisting of a hardware model H = (ΦH,𝒱H,𝒳H,𝒰H), a suitable plant model P =

(H,𝒳P,ΨP, ̂︀𝒰P, LP) and a respective task model T = (P, 𝒞ℐT, 𝜎T, 𝑔T, 𝜂maxT,⊙T,⊗T, 𝑑T)
are translated into a PDDL domain specification.

5.4.3.1. PDDL Requirements Section

The following fixed list of flags is listed in the :requirements field of the PDDL do-
main:

∙ : strips: Allows use of STRIPS [NF70, FN72] semantics. This means that a suitable
planner must understand concepts of conditions, operations, initial state and goal
state, i.e., interpret the keywords :predicates, :action, :objects, : init and :goal.

∙ : typing: Allows use of : types keyword for defining variable types and use of type
names in declaration of variables. In addition to meaningful grouping of objects,
this allows to restrict the valuation of predicate and action parameters.

∙ :negative−preconditions: Allows to use negated preconditions for actions. For
example, this is required for environment actions, which have the precondition
¬P0TRAN (see Section 5.4.3.4).

∙ :disjunctive−preconditions: Allows “or” in :goal and :preconditions terms.

∙ :conditional−effects: Allows to use “when” as an operator in action effects. Used
to represent conditional effects of behavioral interfaces.

∙ :equality: Supports “=” (equality operator) as built-in predicate. Required for
comparison of parameter values in preconditions of parallelized actions8.

∙ :fluents: Allows function definitions and use of effects with assignement opera-
tors and numeric preconditions. Required for quantitative synthesis9.

8May be omitted if 𝜎T /∈ {𝜎rp, 𝜎rcp}.
9May be omitted if 𝜎T /∈ {𝜎rc, 𝜎rcp}.

89

5. Industrial Control Program Generation Workflow

5.4.3.2. PDDL Types Section

For every object type 𝒳 𝑖 from the set of objects 𝒳H ∪ 𝒳P, add an item with name 𝑖 to
the : types section of the PDDL domain. This allows to use the types in parameters of
predicates and actions.

5.4.3.3. PDDL Constants Section

For all objects 𝑥 ∈ 𝒳H ∪𝒳P, add an item to the :constants section of the PDDL domain,
along with the respective type. This allows to refer to those objects in parameters of
predicates and actions.

5.4.3.4. PDDL Predicates Section

For all predicates 𝑣 ∈ 𝒱H, add an item to the :predicates section of the PDDL domain,
listing the parameters and their types accordingly. If multiple types are allowed, use
the “either” keyword, for example :parameters ?param − (either type1 type2).

The additional zero-argument predicate P0TRAN is added to represent which player
takes turns next: if P0TRAN is 1, the it is player 0’s turn (i.e., Controller), otherwise the
next turn is performed by player 1 (i.e., Environment). Uncontrollable non-determinism
is assumed (with respect to the available environment moves) when P0TRAN is 0.

5.4.3.5. PDDL Functions Section

If quantitative synthesis is considered (i.e., 𝜂maxT < ∞), a :functions block is added to
the PDDL domain specification as follows: (: functions (total-cost)) The total-cost func-
tion is a so-called fluent that is used to represent the accumulated cost of the invoked
actions. In contrast to normal (Boolean) predicates, the value of a fluent is an integer
number. The name of this function is recognized by the solver and treated specially in
order to only synthesize strategies that do not violate the cost bound in case a quanti-
tative solver is selected. Within the solver, total-cost is encoded as a predicate and the
number of state variables increases accordingly.

5.4.3.6. PDDL Actions Section

Single actions:

For every behavioral interface b ∈ ℬ, where ℬ =
⋃︀
𝜙∈ΦH

𝐵𝜙, add an :action section to
the PDDL domain as follows:

∙ The name of the action is derived from the name of the behavioral interface.

∙ :parameters are derived from the ordered argument list Ab (including adevice).

∙ :precondition is derived from the behavioral interface preconditions 𝒞𝒫b. For ac-
tions that represent Environment moves, the additional precondition ¬P0TRAN is
added. For all other actions, the additional precondition P0TRAN is added.

90

5. Industrial Control Program Generation Workflow

∙ : effect is derived from the list of unconditional and conditional behavioral inter-
face effects ℰb and ̂︀ℰb. For sensor triggerings, set P0TRAN to 0, meaning an en-
vironment action must follow. For environment actions, set P0TRAN back to 1 in
order to let the control program continue with the next action. Conditional effects
are represented using the “when” operator. In case of quantitative synthesis (i.e.,
𝜂max < ∞), the following statement is added to the effects of the action if 𝜂b > 0:
(increase (total-cost) 𝜂b) The “increase” effect is available when “ :fluents” is used
as a requirement. It increases the value of the provided fluent by 𝜂b [GL13].

Parallelized actions:

In case of parallel action execution (compare R12 on page 54), i.e., when the degree of
parallelization 𝑑 is larger than one10 and a solver 𝜎T ∈ {𝜎rp, 𝜎rcp} is selected, then we
need to add actions representing parallel execution. Given the set of behavioral inter-
faces ℬ and a degree of parallelization 𝑑 > 1, then actions from set ℬ‖𝑑‖ =

⋃︀
1<𝑖≤𝑑 ℬ

𝑖

with ℬ𝑖 = ℬ × ℬ × . . .⏟ ⏞
𝑖 times

are automatically generated with the following restrictions:

1. (b1, . . . , b𝑑) contains at most one Environment action (i.e., sensor triggering)11.

2. No parallelized action has already been generated for a different permutation of
(b1, . . . , b𝑑).

3. All behavioral interfaces (b1, . . . , b𝑑) ∈ ℬ𝑖 are parallelizable, i.e., ∀1 ≤ 𝑖 ≤ 𝑑 : 𝑝b𝑖 =
1. This flag may be set to 0 in situations where:

a) Parallelization is not possible due to reasons not represented in the model
(e.g., due to physical constraints in the real plant).

b) Parallelization is known to not be of any benefit (to reduce synthesis time).

c) Technical limitations of the synthesis engine do not allow parallelization.
This is for example the case when multiple behavioral interfaces with condi-
tional effects are combined.

4. None of the effects ℰb𝑖 and conditional effects ̂︀ℰb𝑖 , 1 ≤ 𝑖 ≤ 𝑑 conflict with each
other, i.e. no concurrent updates with different valuation are performed on any
predicates. This work implements a heuristic to detect such situations in conjunc-
tion with the fact that none of the arguments to a parallelized behavioral interface
may be identical (see below).

An element of the set ℬ𝑖 is denoted as (b0‖b1‖ . . . ‖b𝑖−1). The properties of such a par-
allelized actions are derived as follows:

∙ The name of the parallelized action is a concatenation of the names of the indi-
vidual actions and a prefix.

∙ :parameters is the concatenated list of parameters from the underlying behavioral
interfaces. Let Ab = (𝒳 b0 ,𝒳 b1 , . . . ,𝒳 b𝑏−1

) denote the list of argument domains of
behavioral interface b ∈

⋃︀
𝜙∈ΦH

ℬ𝜙 according to Definition D6 on page 49. Fur-
thermore, let A(b0‖b1‖...‖b𝑖−1) = (𝒳 b00 ,𝒳 b01 , . . . ,𝒳 b10 ,𝒳 b11 , . . .) denote the con-

10Currently only 𝑑 ∈ {1, 2, 3} is supported, where 1 means no parallelization.
11An option exists to enable parallelization of multiple sensor triggerings, but is not fully supported.

91

5. Industrial Control Program Generation Workflow

catenated list of the argument domains of the parallelized action of degree 𝑖 over
the behavioral interfaces b0, b1, . . . , b𝑖−1. Then the :parameters section is filled
with elements from A(b0‖b1‖...‖b𝑖−1) and their respective types. A numeric suffix 𝑗
indicating the number 1 ≤ 𝑗 ≤ 𝑖 of the behavioral interface the parameter was
derived from is appended to the parameter names to ensure uniqueness.

∙ :precondition: A parallelized action is eligible for execution only if no con-
current update on predicates takes place. Such situations are safely un-
derestimated by assuming that a parallel action is eligible for execution if
the underlying behavioral interfaces are invoked with mutually exclusive pa-
rameters. This runtime assumption is sufficient in combination with the
static restrictions for parallel execution from above. Rewrite A(b0‖b1‖...‖b𝑖−1)

as (𝒳 (b0‖b1‖...‖b−1𝑖)0
,𝒳 (b0‖b1‖...‖b𝑖−1)1

, . . . ,𝒳 (b0‖b1‖...‖b𝑖−1)𝑎−1
), where 𝑎 is the total

number of arguments. Then we need to ensure that the following holds12:

∀𝑗, 𝑘 : 𝒳 (b0‖b1‖...‖b𝑖−1)𝑗
̸= 𝒳 (b0‖b1‖...‖b𝑖−1)𝑘

∨ 𝑗 = 𝑘 (5.7)

These constrains are expressed in the precondition of the parallelized action in
a list combined by conjunctions of the form (not (= a𝑝1

a𝑝2
)) . In addition, the

preconditions 𝒞𝒫b𝑖 of the underlying behavioral interfaces b0, b1, . . . , b𝑖−1 of the
parallelized action are added as conjunctions.

∙ : effect: The effect of the parallelized action is the conjunction of the effects of
the behavioral interfaces b0, b1, . . . , b𝑖−1. The guards in the precondition pro-
tect from concurrent updates on the predicates. In case of quantitative synthe-
sis (i.e., 𝜎T ∈ {𝜎rc, 𝜎rcp}), the cost of the parallelized action (b0‖b1‖ . . . ‖b𝑖−1) is
calculated statically (i.e., at generation time of the PDDL domain) by evaluating⨂︀

0≤𝑗<𝑖−1 𝜂b𝑗 .

As an example, consider action blever-push(𝑥dev, 𝑥wp, 𝜋from, 𝜋to) of the lever, which al-
lows to use module instance 𝑥dev to move a work piece 𝑥wp from operating posi-
tion 𝜋from to operating position 𝜋to, and action bdrill(𝑥dev, 𝑥wp, 𝜋pos) of the drill, which
allows to drill work piece 𝑥wp at operating position 𝜋pos. For parallel execution,
action bpar_lever-push_lever-push(𝑥dev1 , 𝑥wp1 , 𝜋from1

, 𝜋to1 , 𝑥dev2 , 𝑥wp2 , 𝜋from2
, 𝜋to2) is automati-

cally derived for moving two different work pieces on two different levers at the same
time. The preconditions of this action include 𝑥dev1 ̸= 𝑥dev2 , 𝑥wp1 ̸= 𝑥wp2 , 𝜋from1

̸= 𝜋from2
,

𝜋from1
̸= 𝜋to2 , 𝜋to1 ̸= 𝜋from2

and 𝜋to1 ̸= 𝜋to2 to ensure that parameter values are differ-
ent13. Furthermore, an action bpar_lever-push_drill(𝑥dev1 , 𝑥wp1 , 𝜋from1

, 𝜋to1 , 𝑥dev2 , 𝑥wp2 , 𝜋pos2)
is derived for concurrent pushing of one work piece and drilling of another. Notice
that an action bpar_drill_lever-push is not added, because a different permutation of bdrill
and blever-push has already been added.

In case of quantitative synthesis, the cost of the parallelized actions is calculated as
follows14: assume ⊗ := sum and action blever-push has cost 3, then parallelized action
bpar_lever-push_lever-push has cost 3⊗3 = 6. Likewise, if ⊗ := max, then total cost is 3.
12Actually we just need to ensure that parameters of the same type have different values. The tool de-

veloped along with this thesis honors this fact. For reasons of simplicity, we omit it here and give an
example below where comparisons are listed only for parameters with matching types.

13Constraints such as 𝑥dev1 ̸= 𝜋from2 as not generated, because 𝑥dev1 and 𝜋from2 have different types.
14Notice that since ⊗T should be commutative, the order of input parameters does not matter.

92

5. Industrial Control Program Generation Workflow

5.4.4. Translation of Process Model to PDDL Problem Specification

In the following, we describe how relevant parts of the given hardware model H, plant
model P and task model T are translated into a PDDL problem specification.

5.4.4.1. Initial State

The : init list of the PDDL problem specification is derived from all initial conditions of
the module instances in the plant model and the initial conditions in the task model.
Consider the set 𝒞ℐ of all initial conditions:

𝒞ℐ =

⎛⎝ ⋃︁
𝜙∈ΦH

𝒞ℐ𝜙

⎞⎠ ∪ 𝒞ℐT (5.8)

For every element in 𝒞ℐ , an item is added to the : init list in the PDDL problem specifi-
cation. All unlisted parameter combinations of predicates are considered to be 0.

5.4.4.2. Goal State

The goal specification 𝑔T in the task model is directly interpreted as reachability condi-
tion in the game. It is hence put as :goal condition in the PDDL problem specification.

According to the definition of PDDL, all predicates that are not explicitly referred to in
the goal specification can take an arbitrary value. This matches the expected semantics
in the game-based solver.

5.4.4.3. Selection of Appropriate Solver

The type of solver 𝜎T is directly passed to the underlying synthesis engine as a param-
eter when it is invoked. Hence, it does not need to be represented in the PDDL domain
or problem specification.

5.5. Game-based Solving

This section provides a cursory overview of the GAVS+ solver used in the context of
this work. Notice that the respective implementation is not part of this work and was
originally designed in the context of [Che12, CJG+11].

5.5.1. Purpose of GAVS+

GAVS+ is an open source software framework that allows to “visualize and solve
some of the most common two-player games encountered in theoretical computer sci-
ence” [Che12]. It focuses on two-player turn-based games on finite graphs. GAVS+
solves many types of games (e.g., reachability, safety, Büchi, (weak) parity, Staiger-
Wagner, Muller, Streett). For details, please refer to [Che12].

93

5. Industrial Control Program Generation Workflow

5.5.2. Restrictions of GAVS+

Currently, GAVS+ does not support quantification over objects [Che12]. Quantifica-
tions need to be rewritten as enumerations of concrete objects in the problem. Since
this is possible in all cases, this constraint does not limit the expressiveness of the solver
input language.

Furthermore, the game-based extension of GAVS+ currently fully supports predicates
with at most two parameters only (compare Check Rule CR2 on page 77). Conse-
quently, predicates with more parameters have to be manually split and consistently
treated in initial state specifications, preconditions and effects. For example, consider
the predicate moved(aobj, afrom, ato) indicating that an object aobj has moved from lo-
cation afrom to location ato. Then we can split this predicate into three by introducing
a new type of object 𝒳 key and three predicates moved-obj(akey, aobj), moved-from(akey,
afrom) and moved-to(akey, ato) with akey ∈ 𝒳 key. Although this notation is tedious, it
does not limit the expressiveness of the solver input language.

5.5.3. Optimizations for Game-based Synthesis

The complexity of game-based synthesis in a discrete arena is dominated by the num-
ber of states, which in turn depends on the number of Boolean variables in the do-
main.

Game solving in GAVS+ is based on a symbolic representation of the state transition
system. A state in this system is a specific valuation of the predicates. Consider the
domain 𝒳 = 𝒳H∪𝒳P of all objects and the set 𝒞𝒫

𝑖 of all predicates of arity 𝑖. Assuming
the worst case, which is that all predicate parameters range over all objects in 𝒳 , a state
of the system is an element of the following tuple [CJG+11]15:

B|𝒞𝒫
0| × B|𝒞𝒫

1|·|𝒳 | × · · · × B|𝒞𝒫
𝑥|·|𝒳 |𝑥 (5.9)

A high number of variables leads to the state explosion problem: every added Boolean
variable doubles the number of possible states. Even with a small number of variables,
this can lead to a surprisingly large number of states that makes it impossible to solve
the problem in acceptable time, which is usually within the range of seconds to minutes
on common PC hardware (compare Chapter 7).

In order to reduce game solving time, a set of optimization techniques is applied that
identifies relevant regions of the game graph defined by the state transition system (so-
called subarenas or local games) that are sufficient to solve the game. The following
paragraphs summarize some of these optimizations.

15Notice that the approach presented in this work is currently limited to predicates with at most two
parameters, i.e., ∀𝑖 > 2: |𝒞𝒫

𝑖| = 0. Nevertheless, the number of states is huge for typical values of |𝒳 |.

94

5. Industrial Control Program Generation Workflow

5.5.3.1. Constant Replacement

Some predicates in the state transition system may never change, because they are not
part of any effect of any action in the domain. Hence, they can be replaced by their
constant value (depending on the initial state) in the state transition system [CJG+11].

5.5.3.2. Binary Encoding

For some predicates 𝑣 ∈ 𝒱 in the state transition system, the invariant holds that they
are true for at most one combination of parameters. The predicate can be represented
by ⌈log2(𝑛+ 1)⌉ instead of 𝑛 variables in this case16. This approach is called binary
encoding. Binary encoding is currently implemented for predicates with two parameters
for concrete values of the first parameter and for predicates with one parameter.

The at(aobj, apos) predicate from Section 4.4.1.2 is a good example: an object aobj may
only be located at (at most) one operating position. If seven locations are possible for
the object, only 3 instead of 7 Boolean variables are required to represent the state17.

Whether a predicate can be binary encoded or not is automatically determined from the
initial state and the potential modifications applied to the predicates in the effects of be-
havioral interfaces. A heuristic that considers actions where preconditions and effects
are represented as conjunction of (negated) predicates is presented in [CJG+11].

5.5.3.3. Goal-indifferent Variable Analysis

Modifications to some variables in the state transition system may be identified as irrel-
evant to reaching the goal: whenever there exists a winning strategy that modifies the
variables, there exists another winning strategy that does not modify them. A heuristic
is based on a recursive backward analysis of the predicates and their valuation in the
preconditions of actions whose effects lead to the set of winning states. When goal-
indifferent variables are identified, actions whose preconditions and effects only con-
tain these variables may be completely omitted [CJG+11].

5.5.3.4. Cost Bound Exceeding Path Elimination

In quantitative synthesis, the sequential composition operator ⊙ is used to calculate the
total cost of a play while it is being constructed18. As soon as the calculated total cost for
the current play exceeds the cost bound 𝜂max, the respective branch can be eliminated,
because it does not lead to a feasible strategy.

16 ⌈log2(𝑛)⌉ is not enough, because the default state “all false” needs to be represented as well.
17Notice that the state must be represented separately for every valuation of the first parameter aobj. For

example, if 𝒲 = {𝑥wp1, 𝑥wp2}, then 6 Boolean variables would be required instead of 14.
18Notice that the implementation of ⊙ is part of the synthesis algorithm and hence we know the concrete

total cost value during construction.

95

5. Industrial Control Program Generation Workflow

5.6. Translation of Solver Output to Control Programs

In case the specification is feasible, the output from the solver is an FSM represented in
a “Java-like controller program” [Che12]. Even if distributed synthesis is enabled, the
output is still a single FSM. The following sections describe the structure of the output
and how ECU-local control programs are automatically derived if distributed synthesis
is used.

Grammar 5.1 denotes the BNF of the output. This kind of output can be translated
into a C/C++ program by using suitable text-based transformations as described in the
following.

5.6.1. Optimization of Guard Conditions

Due to the nature of the solver, the guards typically contain checks for predicate values
that can be statically calculated from the initial state and the potential updates happen-
ing in any control flow of the program. Hence, we first optimize the guard conditions
in the generated strategy in order to remove “superfluous” tests. A superfluous test is
a condition whose value is guaranteed to be known as true or false.

There are two major reasons why this optimization is performed: on the one hand,
eliminating guard conditions that do not influence the semantics of the control pro-
gram increases its readability. On the other hand, this technique allows reducing the
complexity of the analysis in the following steps, which for example reduces the com-
munication required between ECUs in distributed synthesis.

The transformation approach used is an heuristic approach with complexity 𝒪(𝑛),
where 𝑛 is the number of blocks. For example, the guard to the action lever-push-e1
(. . .) on line 2 of Algorithm 5.1 on page 76 actually contains the expression depicted in
Algorithm 5.5 when output by the solver.

Algorithm 5.5: Actual guard conditions generated by solver for Algorithm 5.1.

1 if . . . ∧ at(𝑥wp1, 𝜋L1.from) ∧ occupied(𝜋L1.from) ∧ . . . then
2 lever-push-e1 (𝑥wp1, 𝜋L1.from, 𝜋L1.to);
3 end
4 . . .

Since this is the first action performed, work piece 𝑥wp1 must be located at operating
position 𝜋L1.from, because the set of initial conditions specifies this state. Hence, both
terms are replaced by the constant “true”. Repeated application of this technique leads
to all guard conditions that appear before the first sensor triggering to be replaced by
the constant “true”, because the state is deterministically decidable until that point.

A suitable algorithm for predicates with up to two parameters is described in the fol-
lowing. Let 𝒮 denote the set of potentially true predicate valuations.

∙ A predicate 𝑣 → B with zero parameters is either not contained in 𝒮 or 𝒮 contains
either “𝑣 = 1” or “𝑣 ∈ {0, 1}”, where the latter means that the value may be true
or false. The fact that 𝑣 is not present in 𝒮 represents a guaranteed false value.

96

5. Industrial Control Program Generation Workflow

⟨output⟩ ::= ⟨block⟩*
⟨block⟩ ::= ⟨block-header⟩ ⟨transition⟩+ ⟨block-footer⟩
⟨block-header⟩ ::= ‘/* Start of block ’ ⟨digit⟩+ ‘: */’

‘/* ==================== */’

⟨block-footer⟩ ::= ‘/* End of block ’ ⟨digit⟩+ ‘: */’

⟨transition⟩ ::= ‘if (’ ⟨guard⟩ ‘) {’ ⟨action⟩ ‘}’

⟨guard⟩ ::= ⟨clauses⟩
⟨clauses⟩ ::= ⟨clause⟩ [‘ || ’ ⟨clauses⟩]

⟨clause⟩ ::= ‘(’ ⟨expressions⟩ ‘)’

⟨expressions⟩ ::= ⟨expression⟩ [‘ && ’ ⟨expressions⟩]

⟨expression⟩ ::= [‘!’] ⟨term⟩
⟨term⟩ ::= ⟨predicate-0⟩

| ⟨predicate-1⟩ ‘(’ ⟨identifier⟩ ‘)’
| ‘(’ ⟨predicate-1-binary⟩ ‘==’ ⟨identifier⟩ ‘)’
| ⟨predicate-2⟩ ‘(’ ⟨identifier⟩ ‘,’ ⟨identifier⟩ ‘)’

⟨predicate-0⟩ ::= ⟨identifier⟩ of zero-argument predicate

⟨predicate-1⟩ ::= ⟨identifier⟩ of one-argument predicate

⟨predicate-1-binary⟩ ::= ⟨identifier⟩ of one-argument predicate with binary encoding

⟨predicate-2⟩ ::= ⟨identifier⟩ of two-argument predicate

⟨action⟩ ::= ⟨action-name⟩ ‘(’ ⟨action-params⟩ ‘)’;

⟨action-name⟩ ::= ⟨identifier⟩ of behavioral interface whose primitive control func-
tion is to be executed

⟨action-params⟩ ::= ⟨identifier⟩ [‘, ’ ⟨action-params⟩]

⟨identifier⟩ ::= ⟨letter⟩ ⟨literal⟩*
⟨literal⟩ ::= ⟨letter⟩ | ⟨digit⟩
⟨letter⟩ ::= ‘A’ | ... | ‘Z’ | ‘a’ | ... | ‘z’ | ‘_’ | ‘#’

⟨digit⟩ ::= ‘0’ | ‘1’ | ... | ‘9’

Grammar 5.1: Simplified Backus-Naur form (BNF) of output produced by the GAVS+
solver: the resulting FSM is encoded in imperative form. The root node
⟨output⟩ consists of a sequence of blocks, where the 𝑛th block represents
the 𝑛th Controller move in the corresponding game. Each block contains
the possible state transitions guarded by “if” statements, each one with
a condition over the predicates that encode the respective game state.
The condition is built from a disjunction of conjunctions (i.e., it is in dis-
junctive normal form). The triggered primitive control functions, identi-
fied by ⟨action-name⟩, update the state space internally.

97

5. Industrial Control Program Generation Workflow

∙ A predicate 𝑣 : 𝒳 → B with one parameter is not contained in 𝒮 or 𝒮 contains
either “𝑣 = 𝑥” with 𝑥 ∈ 𝒳 or “𝑣 ∈ 𝒱𝒮” with 𝒱𝒮 ⊆ 𝒳 , where the latter means that
the value is any of the ones in the given set. The fact that 𝑣 is not present in 𝒮
represents a guaranteed “all false” value.

∙ A predicate 𝑣 : 𝒳 1 × 𝒳 2 → B with two parameters is either not contained in 𝒮 or
𝒮 contains either “𝑣(𝑥1) = 𝑥2” with 𝑥2 ∈ 𝒳 2 or “𝑣(𝑥1) ∈ 𝒱𝒮” with 𝒱𝒮 ⊆ 𝒳 2 for
𝑥1 ∈ 𝒳 1, where the latter means that the value is any of the ones in the given set.
The fact that 𝑣(𝑥1) is not present in 𝒮 represents a guaranteed “all false” value for
a first parameter valuation of 𝑥1.

𝒮 is initialized with the guaranteed valuations from the initial conditions in the hard-
ware model 𝒞ℐ𝜙 for 𝜙 ∈ ΦH and the task model 𝒞ℐT. Then the following algorithm is
applied for every block in the synthesized strategy:

1. Encoding of terms in guard condition: For every guard condition, inspect every
individual term that tests for a valuation of a predicate. Let (¬)𝑣(. . .) denote
the predicate with the valuation being tested (where ¬ indicates a negated term),
then:

a) If 𝑣 has zero parameters, the term is negated and “𝑣 = 1” ∈ 𝒮 , the term
evaluates to false and hence the whole guard condition as well.

b) If 𝑣 has zero parameters, the term is negated and 𝑣 is not at all contained in 𝒮
(i.e., guaranteed to be false), the term evaluates to true and may be omitted.

c) If 𝑣 has zero parameters, the term is not negated and “𝑣 = 1” ∈ 𝒮, the term
evaluates to true and may be omitted.

d) If 𝑣 has zero parameters, the term is not negated and 𝑣 is not at all contained
in 𝒮 (i.e., guaranteed to be false), the term evaluates to false and hence the
whole guard condition as well.

e) If 𝑣(. . . , 𝑥𝑥) has at least one parameter with last parameter 𝑥𝑥, the term is
negated and either 𝑣(. . .) is not at all contained in 𝒮 (i.e., guaranteed to be
false) or “𝑣(. . .) = 𝑥′” ∈ 𝒮 with 𝑥𝑥 ̸= 𝑥′ or “𝑣(. . .) ∈ 𝒳 ′” ∈ 𝒮 with 𝑥𝑥 /∈ 𝒳 ′,
the term evaluates to true and may be omitted.

f) If 𝑣(. . . , 𝑥𝑥) has at least one parameter with last parameter 𝑥𝑥, the term is
negated and “𝑣(. . .) = 𝑥𝑥” ∈ 𝒮 , the term evaluates to false and hence the
whole guard condition as well.

g) If 𝑣(. . . , 𝑥𝑥) has at least one parameter with last parameter 𝑥𝑥, the term is not
negated and either 𝑣(. . .) is not at all contained in 𝒮 (i.e., guaranteed to be
false) or “𝑣(. . .) = 𝑥′” ∈ 𝒮 with 𝑥𝑥 ̸= 𝑥′ or “𝑣(. . .) ∈ 𝒳 ′” ∈ 𝒮 with 𝑥𝑥 /∈ 𝒳 ′,
the term evaluates to false and hence the whole guard condition as well.

h) If 𝑣(. . . , 𝑥𝑥) has at least one parameter with last parameter 𝑥𝑥, the term is
not negated and “𝑣(. . .) = 𝑥𝑥” ∈ 𝒮, the term evaluates to true and may be
omitted.

Otherwise the term may evaluate to true and is hence retained.

2. State update: If the guard condition is guaranteed to evaluate to true, apply the
effects of the executed behavioral interface directly to 𝒮 (i.e., remove negated

98

5. Industrial Control Program Generation Workflow

predicate valuations from 𝒮 and add non-negated valuations). If the guard condi-
tion may be true, apply the effects of the executed behavioral interface as potential
updates as follows. Let (¬)𝑣(. . . , 𝑥𝑥) denote the effect under consideration, then:

∙ If the term is negated and 𝑣 is not at all contained in 𝒮, do nothing.

∙ If the term is negated and “𝑣(. . .) = 𝑥” ∈ 𝒮 with 𝑥 ̸= 𝑥𝑥, do nothing.

∙ If the term is negated and “𝑣(. . .) = 𝑥𝑥” ∈ 𝒮, remove it from 𝒮.

∙ If the term is negated and “𝑣(. . .) ∈ 𝒳” ∈ 𝒮 , remove 𝑥𝑥 from 𝒳 if it exists.
Replace “𝑣(. . .) ∈ 𝒳” with “𝑣(. . .) = 𝑥” if only one element 𝑥 remains in 𝒳 .

∙ If the term is not negated and 𝑣 is not contained at all in 𝒮 , add “𝑣(. . .) = 𝑥𝑥”
to 𝒮.

∙ If the term is not negated and “𝑣(. . .) = 𝑥𝑥” ∈ 𝒮, do nothing.

∙ If the term is not negated and “𝑣(. . .) = 𝑥” ∈ 𝒮 with 𝑥 ̸= 𝑥𝑥, replace it with
“𝑣(. . .) ∈ {𝑥, 𝑥𝑥}”.

∙ If the term is not negated and “𝑣(. . .) ∈ 𝒳” ∈ 𝒮, add 𝑥𝑥 to 𝒳 if it is not yet
contained.

This algorithm is currently implemented in MGSyn as an external post-processing step
to optimize the output strategy. For this purpose, a so-called annotation file is gener-
ated during model transformation that contains a summary of all required information
as an additional input to the external post-processing step.

5.6.2. Implementation of Inter-ECU Synchronization

In order to illustrate how synchronization and state transfer is implemented between
ECUs, we assume token-based replication of the full state being used as described in
Section 5.3.3.1. In this case, transfer-state (𝑥�̂�source , 𝑥�̂�dest) actions are synthesized by the
solver at points where control flow needs to switch from ECU 𝑥�̂�source to ECU 𝑥�̂�dest as
illustrated in Algorithms 5.1 and 5.2 on page 76. Although the state transfer itself is
implemented by the PCF 𝑝transfer-state of transfer-state as described in Section 5.3.3.1, this
action needs special treatment.

In order to explain why, consider a control program where the guard condition of the
transfer-state action on 𝑥�̂�source depends on sensor input on that ECU that has been ac-
quired since the last transfer of the control flow to 𝑥�̂�source . In this case, the execution
of 𝑝transfer-state on 𝑥�̂�source is not guaranteed and hence the other ECUs cannot “know”
whether or not it will happen. However, the control program on 𝑥�̂�dest must wait for a
synchronization signal (and a potential state transfer) independent of its current state,
because that state is potentially outdated.

In order to resolve this problem, the transfer-state action is treated specially: the auto-
matic post-processing ensures that on 𝑥�̂�source , we send the synchronization signal inde-
pendent of whether the guard condition evaluates to true or not. If a state transfer fol-
lows, because the guard condition was true and 𝑝transfer-state was actually executed, this
signals 𝑥�̂�dest to continue execution of its control program. Otherwise, the local value
of the current-ecu predicate on 𝑥�̂�dest still tells the control program that another ECU is

99

5. Industrial Control Program Generation Workflow

currently active and hence it does not execute any actions until the next invocation of
transfer-state or until the control program finishes, whichever happens first.

This algorithm synchronizes the two ECUs specified by the parameters of a transfer-state
action at any point where a state transfer might be necessary. Notice that ECUs that are
not referred to by the parameters of the transfer-state action are not affected by this
post-processing step.

5.6.3. Addition of ECU-specific Guards

Since we split the behavioral interfaces before passing them to the solver (compare Sec-
tion 5.3.3), it is guaranteed that each action invocation corresponds to a specific ECU. In
order to derive local control programs for every ECU, we determine for every ⟨action⟩
on which ECU it is to be executed. Then, we add an additional global conjunction to
the guard of the respective block that tests whether the “current ECU” (i.e., the one
the control program is executed on) corresponds to the one that should execute the
action.

For example, the command lever-push-e1 (. . .) shown on line 2 of Algorithm 5.1 is actu-
ally of the following form after this step:

Algorithm 5.6: ECU-specific guards generated by solver for Algorithm 5.1.

1 if currentEcu == e1 then
2 lever-push-e1 (𝑥wp1, 𝜋L1.from, 𝜋L1.to);
3 end

This also explains the no-operations in Algorithms 5.1 and 5.2: the above condition
simply evaluates to false on the respective ECU. In this way, we derive individual
control programs for every ECU from the output generated by the solver.

5.6.4. Cleanup

Some final steps are carried out to obtain a valid C/C++ program: for more concise
code, each block is split into a separate C/C++ function. A function strategy () is added
that calls the individual block functions in sequence. Finally, all characters that may not
be part of identifiers in C/C++ programs are replaced by underscore characters. The re-
sulting code is used during compilation of the executable program for both simulation
and execution on the real hardware.

5.7. Discussion and Application to Running Example

The presented approach generates optimized (not optimal) control programs for a
given process model. Tracking of cost in quantitative synthesis allows “forbidding” so-
lutions that are not acceptable with respect to metrics such as execution time or power
consumption. Complex examples with quantitative synthesis are provided in Chap-
ter 7. When decentralized control programs are synthesized, the process model is

100

5. Industrial Control Program Generation Workflow

transformed in order to represent the constraints that are present during decentralized
control program execution. This approach allows switching between centralized and
decentralized execution. Since both the centralized and decentralized control program
generation use the same input and output interfaces to communication with the solver,
the solver can in principle be exchanged by a different game-based algorithm.

With few exceptions, the terminology used in the generated control program corre-
sponds to the names of the elements in the model. This makes the generated control
programs easily understandable by humans. The fact that only a single control pro-
gram is generated for distributed synthesis (which is run with different parameters
depending on which ECU it represents) avoids the need to reconstruct the control flow
across different source files or functions during debugging.

However, the suggested approach has a few downsides that are listed in the following.
The most significant problem is that when the specification is infeasible (i.e., the syn-
thesis engine does not find a control strategy), no counter-example or partial execution
trace is provided to indicate the cause. A manual review of the model and the inter-
mediate steps is required in such cases. Countermeasures such as counter-example
generation would need to be implemented in the solver.

Another issue is that the structural complexity of the control program increases with
the number of sensor inputs, because more sensor inputs require more complex guard
expressions to determine whether a behavioral interface should be executed or not.
Furthermore, due to the fact that the contained FSM is sequentially encoded in the con-
trol program, the synthesis result consists of an “overlap” of multiple execution traces.
This is a limitation of the solver currently being used. Consider for example the task
specification “Drill undrilled work pieces” from Section 4.4.3.2. While Algorithm 4.2
on page 69 shows the expected control program in the ideal case, a simplified version
of the actually generated centralized control program is shown in Algorithm 5.7. On
the right side, the so-called block numbers are indicated as output by the game-based
solver. They correspond to the 1-based number of the Controller move being executed.
Notice that in the algorithm, the triggering of all behavioral interfaces after the drill
operation is listed twice, one time for the execution trace that does not involve drilling
(block numbers indicated with suffix “a”) and one time shifted by one step in case the
drilling operation is performed (suffix “b”). The representation of the control program
makes it harder to read than the functionally equivalent program from Algorithm 4.2.

Another limitation of the current approach is that the number of ECUs directly influ-
ences the number of predicates and hence the number of states. This means that syn-
thesis time is exponential in the number of ECUs in distributed synthesis. Although
not considered in this work, further optimizations to the encoding of state variables
could partially mitigate this problem.

Finally, the game-based synthesis algorithm being used generates a “Java-like con-
troller program” [Che12]. The translation to a program to run on a programmable logic
controller (PLC) is possible but not straightforward. A promising approach is to trans-
late the control program to structured text (compare Section 2.1.4). In this work, we
do not support native execution of synthesized control programs on PLCs. Instead, we
remotely control PLCs from PCs as described later in Section 6.3.1.

101

5. Industrial Control Program Generation Workflow

Algorithm 5.7: Simplified centralized control program for the task specification T2

“drill undrilled work pieces” (compare Section 4.4.3.2).

1 lever-push (𝑥wp1, 𝜋L1.from, 𝜋L1.to); // block 1
2 plate-rotate (𝑥wp1, 𝜋RP1.p1

, 𝜋RP1.p2
); // block 2

3 probe-height (𝑥wp1, 𝜋H1.probe); // block 3
4 plate-rotate (𝑥wp1, 𝜋RP1.p2

, 𝜋RP1.p3
); // block 4

5 if height (𝑥wp1, 𝑥small) then
6 drill (𝑥wp1, 𝜋D1.drill); // block 5a
7 end
8 if ¬height (𝑥wp1, 𝑥small) then
9 plate-rotate (𝑥wp1, 𝜋RP1.p3

, 𝜋RP1.p4
); // block 5b

10 end
11 if height (𝑥wp1, 𝑥small) then
12 plate-rotate (𝑥wp1, 𝜋RP1.p3

, 𝜋RP1.p4
); // block 6a

13 end
14 if ¬height (𝑥wp1, 𝑥small) then
15 lever-push (𝑥wp1, 𝜋L2.from, 𝜋L2.to); // block 6b
16 end
17 if height (𝑥wp1, 𝑥small) then
18 lever-push (𝑥wp1, 𝜋L2.from, 𝜋L2.to); // block 7a
19 end

/* nothing to do */ // block 7b

5.8. Summary

This chapter answered the question how (decentralized) control programs are automat-
ically derived from a formal description of a MAL and the production task to achieve.
For this purpose, we apply a game-based synthesis approach with the solver GAVS+.
Synthesis is performed in four steps, namely checking of model constraints, translation
of model to solver input language, game-based solving and translation of synthesis re-
sult to source code for the respective control programs. If a specification is feasible,
the solver generates an FSM that implements the specification, otherwise it reports the
specification as infeasible. The presented approach allows synthesizing centralized and
decentralized control programs. Furthermore, guarantees on the performance of the
synthesized control programs, for example with respect to worst-case execution time
or worst-case power consumption, are provided using quantitative synthesis. Chap-
ter 7 presents evaluation results for these scenarios.

The source code that is generated by the presented workflow contains references to
state space variables and the triggering of actuations in the plant. The next chapter fills
the remaining gap between the generated source code and an executable program by
mapping the source code to the respective platform. For his purpose, code is automat-
ically generated that implements the state space variables and actuations.

102

5. Industrial Control Program Generation Workflow

5.9. Related Work

The ideas of game theory were originally developed in the 1920s and found a broad
audience when being successfully applied in modeling of decision situations during
the Second World War. Since then, many distinct research areas in the context of game
theory have formed, from analysis of people’s decisions over evolution of genes to com-
puter science [Tho84]. Game theory has earned a lot of attention in computer science
in the past years. One of the reasons for this is that computational power of modern
computers allows synthesizing strategies for games much faster than it was possible in
the past. Using a suitable abstraction, this allows such approaches to be applied to real-
world problems. This is illustrated by the fact that a number of tool implementations
from the field of game theory and verification are presented every year at well-known
computer science conferences such as CAV [MS12, SV13] and SPIN [BR13].

As summarized in [JGWB07], early works on controller synthesis include the one from
Büchi and Landweber [BL67] as well as Rabin [Rab69]. Twenty years later, Pnueli and
Rosner applied it to discrete event systems [PR89] and used specifications in linear tem-
poral logic (LTL) to synthesize a controller that reaches a certain goal independent of
the actions of the (adverse) environment. Shortly afterwards, they extended the ap-
proach to distributed systems [PR90]. Apart from distributed games (e.g., Mohalik
and Walukiewicz [MW03]), controller synthesis has also been applied to timed systems
(e.g., Asarin, Pnueli and Sifakis [AMPS98]).

In 1992, Rosner proved that synthesis of LTL formulas is 2EXPTIME-complete [Ros92].
In order to reduce the runtime complexity of LTL synthesis, subsets of LTL were
analyzed in greater detail. Piterman, Pnueli and Sa’ar’s synthesis of reactive(1) de-
signs [PPS06] is a recent example that is based on a symbolic algorithm for synthesis
on a subset of LTL of cubic complexity in the size of the state space [JGWB07].

Recent LTL-based modeling and synthesis tools include Anzu [JGWB07] that uses the
approach from [PPS06], Acaia+ [BBF+12] that reduces LTL reachability and synthesis
problems to safety games and GAVS+ [CKLB11] that solves various types of games and
allows to synthesize suitable strategies.

While most of these approaches are motivated by problems from the real world, many
tool implementations lack the extent of the approach presented in this work: starting
from modeling of automation systems and tasks over synthesis up to the mapping to
the actual target platform. However, common to all the implementations that target
real-world applications is the reluctance of decision makers to apply novel technolo-
gies in areas where flawless operation is essential for economic success, especially if
those technologies apply a completely different workflow. It is expected that this reluc-
tance can only be overcome by stable, reliable and conservative approaches that offer
immediate benefits and that allow incremental transition from the existing to the new
technology. By basing upon existing technologies and standards, the approach pre-
sented in this work attempts to ease this transition and to show immediate benefits for
reconfigurable automation systems.

103

104

CHAPTER 6

Platform Mapping and Execution

Contents
6.1. Platform Mapping Overview . 106
6.2. Generation of Platform Mapping Code . 106
6.3. Mapping of Behavioral Primitives . 107
6.4. Manually Written Platform Library . 111
6.5. Discussion and Application to Running Example 113
6.6. Summary . 114

Overview

This chapter answers the following research question:
Given a formal description of the structure, capabilities, electronic control
units (ECUs) and communication infrastructure of a modular assembly line
(MAL) as well as control primitives for each capability, how can abstract
(possibly decentralized) control programs be automatically mapped to the
ECUs of the MAL?

This question is motivated by the fact that the “code” output by the workflow described
in Chapter 5 is not directly executable. It is rather a sequential representation of a finite
state machine in which transition conditions are evaluated in context of state space
variables and states trigger actions via function calls (compare Algorithms 5.1 and 5.2).
What is still missing is a software layer that implements the variables and functions such
that the variables represent the state of the real plant and the functions trigger actions
in the real plant. This layer can be automatically generated from the models defined in
Chapter 4.

105

6. Platform Mapping and Execution

6.1. Platform Mapping Overview

Algorithms 5.1 and 5.2 on page 76 show simplified versions of decentralized control
programs synthesized using the approach in this work. Both algorithms consist of a
sequence of function calls, where a function call has one of the following semantics:

∙ Invocations of behavioral interfaces trigger actions in the plant. Such actions
are either actuations (e.g., lever-push-e1, plate-rotate-e1) or sensor triggerings (e.g.,
probe-height-e2).

∙ Barriers synchronize all decentralized control programs by using blocking wait.
Notice that in centralized control programs, the barriers are effectively no-
operations, because no synchronization is required.

∙ Send operations transmit information from one control program to another (e.g.,
send-height-to-e1). Receive operations are set up accordingly. Notice that send/re-
ceive operations are not required in centralized control programs, because the
system state (as specified in the model) is fully observable.

The next section depicts how the implementation for these functions is realized.

6.2. Generation of Platform Mapping Code

When game-based synthesis is successful, we apply model-to-text transformation
based on the process model (i.e., code generation) to automatically generate a C++
source file that contains the following functionality:

∙ Main entry point: In order to run the generated strategy, a suitable software
program needs a main entry point (in C/C++ programs typically indicated by
a function called main()). The main entry point is generated automatically and
performs the following tasks:

– Parsing of command line arguments. Command line arguments to the con-
trol program executable are used to determine which ECU in a decentralized
execution should be run.

– Initialization of the plant’s state according to the initial conditions 𝑐𝑖 ∈ 𝒞ℐ .

– Initialization of the communication interfaces between the machine running
the control program and the plant (if required).

– Initialization of all module instances with the respective channel bindings
(explained in detail below).

– Establishment of network connections to all other ECUs if running in decen-
tralized execution mode.

– Execution of the synthesized control program.

– Cleanup and exit.

∙ Numeric object identifiers: In order to uniquely refer to every object instance
𝑥 ∈ 𝒳 in the model, a numeric constant is generated for each of them. This
includes operating positions, work pieces, devices and behavioral interfaces.

106

6. Platform Mapping and Execution

∙ State variables: The generated source file contains variable definitions for every
predicate 𝑣 ∈ 𝒱 . Variables are generated according to their arity:

– For predicates with zero parameters, a simple Boolean variable is generated.

– For predicates with one parameter, a map (e.g., bitmap, C++ std :: map) from
the type of the first parameter to a Boolean value is created. If the predicate
is binary encoded (compare Section 5.5.3.2), an integer variable whose value
is one of the object constants as defined above may be created instead.

– For predicates with two parameters, a map between the type of the first and
the second parameter is generated. The presence of an item in the map indi-
cates that the predicate value is true for this valuation, otherwise it is false.
If the predicate is binary encoded, a separate map between the type of the
second parameter and a Boolean value may be generated instead for every
valuation of the first parameter.

This approach minimizes the memory requirements for the state variables accord-
ing to the analyses performed during game-based synthesis. Notice that predi-
cates that have been determined as read-only are completely omitted, because the
solver has already replaced them by constant values during game-based synthe-
sis (compare Section 5.5.3.1). All predicate values are considered false by default
to match the semantics of the game-based solver.

In order to ensure consistent access to the state variables, a lock is generated for
every variable data structure. This is of special importance with respect to par-
allel action execution (compare Section 6.3.2). A pessimistic locking strategy is
currently implemented that protects every read and write access to a variable by
a critical section.

∙ Behavioral interface functions: For every behavioral interface b, a C++ function
is generated that implements the effects of b. More details are provided in Sec-
tion 6.3.

∙ Send and receive functions: For every predicate, a pair of send and receive func-
tions is generated that allows sending a specific valuation of a predicate to an-
other ECU. These functions are invoked by the transfer actions introduced during
model-to-model transformation as described in Section 5.3.3.

Since the execution of a send operation depends on the state of the variables on
the sending side which might not have the same value on the receiving side, the
receiver typically does not know that a state transfer is about to happen. Hence,
the listening for transfer operations is implemented as part of the inter-ECU syn-
chronization process as illustrated later in Section 6.4.

6.3. Mapping of Behavioral Primitives

In order to execute a control program, each behavioral primitive b ∈ ℬ of every module
type in the hardware model is mapped to an automatically generated C/C++ function
b(A), where A is the lists of parameters for b. The function b1(A) in lines 22ff of List-
ing 6.1 illustrates the individual steps that are performed. First, it invokes the function

107

6. Platform Mapping and Execution

b1_impl() (line 24). The rationale for this design is explained later. b1_impl() first runs the
primitive control functions (PCFs) 𝑝b1 of b1 (line 11). The structure of the PCF is discussed
in detail below. After that, the effects ℰb1 and conditional effects ̂︀ℰb1 of b1 are applied
(lines 12f). Finally, b1_impl() returns the execution context to b1(), which calculates the
new total cost based on the sequential composition operator ⊙ (line 28). Notice that
since the parallelCost vector contains just a single element, the choice of the parallel
composition operator ⊗ has no effect.

6.3.1. Primitive Control Functions

A primitive control function, denoted by 𝑝b, is associated to every behavioral interface
b (compare Definition D6 on page 49). It is responsible for causing the actual effects
of b in the real plant, possibly returning a sensor input if the behavioral interface is a
sensor triggering.

For the running example, the implementation of each PCF has already been informally
described in Section 4.4. For example, the height sensor module’s PCF was indicated
as follows (compare Section 4.4.1.4):

1. Set digital output 𝑜setRod to high.

2. Wait 𝑝holdTime milliseconds (interpreting the value of the parameter as a number).

3. Sample the value of digital input 𝜄isRodDown.

4. Set digital output 𝑜setRod to low.

5. If the sampled 𝜄isRodDown signal was high, return sensor result value 1, otherwise
return sensor result value 0.

Implementing the PCF is a manual task. It requires the domain knowledge of ex-
perts in mechatronics as indicated in Figure 3.1 (a) on page 32. For implementing the
PCF, established software tools may be used as required, for example tools supporting
IEC 61131-3 programming languages.

A PCF is very similar to a hardware driver in an operating system (OS): it is a low-
level piece of software that makes the functionality of a device accessible to high-level
software components. For this purpose, it provides a clearly defined programming
interface. PCFs provide the following programming interface:

∙ I/O channel binding: The caller of a PCF configures all its input and output chan-
nels. For example, the height sensor module’s PCF allows to configure which
physical input/output (I/O) interfaces are to be used for 𝑜setRod and 𝜄isRodDown. This
information is automatically extracted from the hardware model.

Since a plant may contain multiple instances of the same module type, multiple
configurations of the channel bindings may be present. For example, if a plant
contains two height sensor modules, then we need to distinguish which one is to
be triggered when the control program invokes the corresponding PCF. For this
purpose, every module instance is assigned a unique device identifier that is used
as an additional parameter in every behavioral interface (compare Section 5.3.2).

∙ Triggering: Each PCF offers a function that is called to trigger its execution. If

108

6. Platform Mapping and Execution

Listing 6.1: Functions generated to implement behavioral interface execution.
1 unsigned i n t t o t a l C o s t = 0U;
2 std : : vector <unsigned int > p a r a l l e l C o s t ;
3 Lock para l l e lCos tLock ;
4

5 unsigned i n t c a l c u l a t e C o s t (unsigned i n t currentCost ,
6 const std : : vector <unsigned int >& p a r a l l e l C o s t) {
7 return ⊙ (currentCost , ⊗ (p a r a l l e l C o s t)) ;
8 }
9

10 void b1_impl (A1) {
11 𝑝b1 (A1) ;
12 a p p l y E f f e c t s (ℰb1 , A1) ;
13 a p p l y C o n d i t i o n a l E f f e c t s (̂︀ℰb1 , A1) ;
14

15 / / Record c o s t in p a r a l l e l C o s t us ing a c r i t i c a l s e c t i o n
16 {
17 ScopedLock lock (para l l e lCos tLock) ;
18 p a r a l l e l C o s t . push_back (𝜂b1) ;
19 }
20 }
21

22 void b1 (A1) {
23 p a r a l l e l C o s t . c l e a r () ;
24 b1_impl (A1) ;
25

26 / / C a l c u l a t e new t o t a l c o s t a c c o r d i n g t o ⊙
27 / / (p a r a l l e l C o s t c o n t a i n s one e l ement , h e n c e ⊗ i s i r r e l e v a n t)
28 t o t a l C o s t = c a l c u l a t e C o s t (t o t a l C o s t , p a r a l l e l C o s t) ;
29 }
30

31 void b2_impl (A2) {
32 . . .
33 }
34

35 void b2 (A2) {
36 b2_impl (A2) ;
37 t o t a l C o s t = c a l c u l a t e C o s t (t o t a l C o s t , p a r a l l e l C o s t) ;
38 }
39

40 void p a r a l l e l _b1_b2 (A1 , A2) {
41 p a r a l l e l C o s t . c l e a r () ;
42

43 TaskGroup tg ;
44 tg . createTask (&b1_impl , A1) ;
45 tg . createTask (&b2_impl , A2) ;
46 tg . resumeAll () ;
47 tg . wait () ;
48

49 / / C a l c u l a t e new t o t a l c o s t a c c o r d i n g t o ⊙ and ⊗
50 t o t a l C o s t = c a l c u l a t e C o s t (t o t a l C o s t , p a r a l l e l C o s t) ;
51 }

109

6. Platform Mapping and Execution

required, additional parameters from the behavioral interface are passed to the
PCF when it is executed. In the tool accompanying this work, these parameters
are called hardware parameters and are specified in a module’s operating positions.

For example, the PCF for a storage rack with a number of physical operating po-
sitions that is managed by a robot may be implemented in a generic way and re-
quire a parameter specifying which operating position to navigate to. In this case,
it is meaningful to treat the concrete position to navigate to as a parameter that is
derived from the respective positional parameter of the triggering behavioral in-
terface. In the software tool accompanying this work, this feature is implemented
as an additional property of operating positions.

Depending on the type of the module being controlled and the type of ECU, different
realizations of a PCF are possible. If the ECU is an (industrial) personal computer (PC),
the PCF is typically realized as a local control loop in a different thread or process
that interacts with the environment using special I/O or communication adapters. If
the ECU is a microcontroller, the PCF is typically a simple C/C++ function that ma-
nipulates the control unit’s digital and/or analog I/O channels. If the ECU is a pro-
grammable logic controller (PLC), two scenarios are possible: either the control program
runs directly on the PLC and triggers function blocks as appropriate or it runs on a sep-
arate device such as a PC and remotely controls the PLC, for example via open platform
communications (OPC) [IL01] or Siemens Multi-Point Interface (MPI) using third-party
software libraries such as libnodave [Her13]. In the latter case, the remote control pro-
gram changes the values of PLC-internal variables, which are periodically checked by
the program running on the PLC. The PLC then executes the commands and stores
the results in other variables that are subsequently queried by the remote control pro-
gram. Some PLCs (e.g., Siemens SIMATIC) even allow directly manipulating the out-
put channels and read the input channels of the PLC. I this case, no PLC program or
PLC programming experience is required.

6.3.2. Parallel Execution

If a specification with parallel execution capabilities is selected (i.e., 𝜎 ∈ {𝜎rp, 𝜎rcp},
compare Section 4.3.2), then the platform mapping needs to ensure that the respective
behavioral interfaces are actually executed in parallel. For this purpose, the underlying
platform needs to support explicit (quasi-)parallelism, for example in form of multi-
threading (e.g., on a PC) or function blocks (e.g., on a PLC with IEC 61131-3 support).

For every set of behavioral interfaces to execute in parallel, we generate a function that
invokes the individual behavioral interfaces as parallel tasks, blocks until the individ-
ual tasks have finished and calculate the new total cost. The function parallel_b1_b2()
in line 40 of Listing 6.1 illustrates the parallel execution of two behavioral interfaces
b1 and b2. A𝑖 = (ab𝑖0, ab𝑖1, . . . , ab𝑖𝑎−1) is the list of parameters for b𝑖. The TaskGroup
class (line 43) provides functionality to launch multiple tasks in parallel and wait for
their completion. Newly created tasks are in suspended state by default. The Lock
class (line 3) is non-copyable and can be owned by at most one task at a time. The

110

6. Platform Mapping and Execution

Figure 6.1.: Inter-ECU networking class hierarchy.

ScopedLock class (line 17) acquires the given lock on construction, blocking as long as it
is not available. The lock is automatically released at the end of the current scope.

6.4. Manually Written Platform Library

In addition to the automatically generated content listed above, the platform mapping
consists of a manually written software library for the following aspects:

∙ Communication between decentralized control programs: Inter-ECU communi-
cation in decentralized execution mode is twofold: on the one hand, the execution
of all ECUs needs to be synchronized at the granularity of the blocks generated by
the game-based solver (compare Algorithm 5.7 on page 102). On the other hand,
information about the state of an ECU needs to be communicated to another ECU.
Since the execution of a transfer operation depends on the state of the variables
on the sending side, the receiver typically does not know that a state transfer is
about to happen. Hence, we distinguish between two types of messages.

When an ECU waits for synchronization with other ECUs (i.e., it executes a
barrier () statement), it either receives a synchronization message, in which case
no transfer from the respective ECU happens in the current step, or it receives one
or multiple transfer message before the synchronization message, in which case it
updates its local state accordingly. This approach allows communicating the nec-
essary information from the sender to the receiver before the receiver attempts to
evaluate the guard(s) of the next execution block.

Depending on the type of replication strategy used (compare Section 5.3.3), ei-
ther the complete state is transferred (token-based replication of the full state)
or individual predicates (token-based replication at granularity of predicates) or
predicate values are exchanged (pessimistic replication analysis).

Figure 6.1 shows the C++ class hierarchy for this implementation. The Networking
class is initialized with the set of ECUs to communicate with and introduces
purely virtual functions for connecting to and disconnecting from all other ECUs,
sending and receiving data between ECUs as well as waiting for the synchroniza-
tion barrier. The NoNetworking class is used in case a centralized control program

111

6. Platform Mapping and Execution

Figure 6.2.: ECU class hierarchy.

Figure 6.3.: Communication class hierarchy.

is generated; in this case all functions are implemented as no-operations. The
TcpNetworking class implements connection-oriented sockets to all other ECUs,
hence forming a fully connected graph between the ECUs. Connection oriented
communication is preferred over connectionless communication, because inter-
ECU synchronization requires reliable transfer.

∙ Communication between control program and ECU: If an ECU is remotely con-
trolled as indicated in Figure 5.1 (b) on page 75, the control program(s) need(s)
to be able to communicate with the ECU(s). The implementation currently sup-
ports remote control of ECUs of the families Siemens S7-300 (using MPI, libno-
dave [Her13] and OPC [IL01]), Festo FC 640 (via UDP/IP; TCP/IP not supported
by the PLC) and Siemens LOGO! (using digital I/O via a custom “Siemens LOGO!
Proxy”). Figure 6.2 shows a class diagram of the implementation. The Ecu class
introduces a number of purely virtual functions for marshaling and demarshal-
ing of data being sent to or received from an ECU. The subclasses of Ecu in turn
rely on classes derived from Communication (compare Figure 6.3) to implement
the actual communication. This design allows easily combining arbitrary com-
munication mechanisms with arbitrary ECUs. The subclasses of Communication

112

6. Platform Mapping and Execution

Figure 6.4.: Primitive control function class hierarchy.

are initialized with the address of the ECU to control an subsequently establish
the respective communication channels. Furthermore, we provide a C++ class
Controller that forms the base for the implementation of primitive control func-
tions. The next section describes this class in detail.

∙ Utility implementation: An implementation for the C++ classes Lock, ScopedLock
and TaskGroup needs to be provided as a base for parallel execution of behavioral
interfaces.

6.5. Discussion and Application to Running Example

Figure 6.4 shows a Unified Modeling Language (UML) class diagram of all PCFs imple-
mented in order to realize the platform mapping for the automation components in the
running example and the other plants evaluated along with this work. The Controller
class provides the basic interface for all PCFs. It derives from a class ChannelBinding
that implements the channel bindings as described in Section 6.3.1. The subclasses im-
plement the respective control functions for the individual hardware modules in the
plant. Whenever an action is executed, the respective Controller object receives a ref-
erence to an object of class ECU and is hence able to read or write the respective I/O
channels on the target ECU. See the actual implementation accompanying the MGSyn
tool for details.

113

6. Platform Mapping and Execution

6.6. Summary

This chapter answers the question how a platform abstraction layer for execution of
synthesized control programs for MALs is semi-automatically generated from a formal
model of a MAL. Support PCs, PLCs and microcontrollers as target platforms has been
illustrated.

Although the largest part of the platform mapping layer can be automatically derived
from the MAL model, some parts – namely the low-level driver layer – need to be
manually written once per hardware module. This is by design, because the realiza-
tion of actions on a specific platform is typically quite different from another platform.
Consider for example the driver layer of a microcontroller versus a PLC:

∙ On a microcontroller, the driving of a sensor or actuator is realized via digital and
analog I/O interfaces with hardware interrupt support. Implementing a con-
trol algorithm typically implies a looped execution of a function in the program.
Hence, it is most efficient to implement the driver layer directly in hardware-
near C/C++ code and offer respective communication interfaces (e.g., Ethernet,
RS232) for triggering them.

∙ On a PLC, the driving of a sensor or actuator is typically realized by a function
block in an IEC 61131-3 language [IEC03a]. Implementation of a control algo-
rithm is realized by higher-level function blocks. Hence, it is most efficient to
implement the driver layer in an IEC 61131-3 language and offer respective appli-
cation programming interfaces (APIs) (e.g., OPC) for triggering them.

Introducing a model that covers these aspects is feasible, but would most probably
make specification overly complex. For this purpose, we decided to leave this part to
a software developer in order to retain the possibility to use appropriate tooling and
debugging methods.

Notice that the generated mapping layer is independent of the task to execute. Hence,
it only needs to be regenerated when either the hardware model or the plant model
changes. This approach fosters modularity and reuse of code.

114

CHAPTER 7

Realization and Evaluation

Contents
7.1. Model-driven Development Tool MGSyn . 116
7.2. Simulation of Control Program Execution . 118
7.3. Evaluation Overview . 119
7.4. Evaluation of the Running Example . 121
7.5. Evaluation of Circular Material Flow Example:

Focus on Parallel Execution . 122
7.6. Evaluation of Bidirectional Material Flow Example:

Focus on Decentralized Execution . 126
7.7. Summary . 132

Overview

This chapter depicts how the concepts from the previous chapters are implemented in
a model-driven development tool called MGSyn. MGSyn serves as a end user front-
end for game-based synthesis and covers the whole workflow from model specification
over synthesis to simulation and execution. This chapter also provides some technical
details on the realization of the platform mapping on the respective target systems,
namely personal computers (PCs), microcontrollers and programmable logic controllers
(PLCs).
The second part of this chapter is dedicated to in-depth evaluations. It compares se-
quential and parallel action execution, quantitative and non-quantitative synthesis, cen-
tralized and decentralized control program synthesis, simulation and execution on real
hardware as well as remote controlled and local execution.

115

7. Realization and Evaluation

Figure 7.1.: MGSyn main application window: 1○ Project Explorer with models and gen-
erated files, 2○ model editor with expanded and collapsed model elements,
3○ Console with synthesis progress and result, 4○ Properties window show-
ing the properties of model element “Reversible Conveyor Belt CB01”.

7.1. Model-driven Development Tool MGSyn

Along with this work, the model-driven development tool MGSyn, for which devel-
opment was originally started by Chih-Hong Cheng in 2011 [Che12], was heavily ex-
tended according to the approach presented in this work [CGR+12a]. MGSyn is the
abbreviation for “Model, Game and Synthesis” [for13]. The purpose of this tool is to
capture the whole development workflow from specification of the hardware, plant
and task model over game-based synthesis to platform mapping of the resulting con-
trol strategy. Implementing a model-driven tool is a very important step to make the
theoretic results illustrated in this thesis accessible to control engineers.

MGSyn is implemented as a plug-in to the Eclipse Platform and is based on Eclipse
Modeling Framework (EMF) [BSM+04]. Parts of it are licensed under the Eclipse Public
License. All other parts are licensed under the GNU General Public License, Version
3.0. The tool is available for download at http://mgsyn.fortiss.org/. Figure 7.1
shows a screenshot of the tool.

116

http://mgsyn.fortiss.org/

7. Realization and Evaluation

Figure 7.2.: MGSyn game-based synthesis wizard dialog.

In order to invoke game-based synthesis on a model file (represented in XML Meta-
data Interchange (XMI) format), the command Verfication → MGSyn: Apply Game-based
Synthesis is chosen from the popup menu in the Project Explorer. Subsequently, the
configuration dialog as illustrated in Figure 7.2 pops up and allows the user to adjust
options for game-based synthesis:

∙ Active specification: This drop-down box allows the user to select one of the
problem specifications defined in the model. This allows to quickly switch be-
tween different control strategies. Problem specifications are either quantitative
or non-quantitative. For quantitative specifications, the cost bound 𝜂max is speci-
fied in the model.

∙ Steps to perform: This drop-down box allows to select which steps related to
game-based synthesis are to be performed:

1. Transform model applies constraint checking and model transformation as
specified in Sections 5.2 and 5.3 and outputs the transformed model as an
XMI file (named new_file.transformed.xmi by default).

2. Generate synthesis model (Planning Domain Definition Language (PDDL)
domain and PDDL problem) performs model transformation and translates
the resulting model into a PDDL domain file and a PDDL problem specifi-
cation as discussed in Section 5.4.

117

7. Realization and Evaluation

3. Synthesize strategy in high-level control format performs all the steps from
above and runs game-based synthesis in order to obtain an abstract control
program as specified in Section 5.5.

4. Generate execution platform mapping performs all the steps from above
and generates the files required for execution platform mapping as dis-
cussed in Sections 5.6 and 6.1.

∙ Degree of parallelization: This drop-down box allows to select the degree of
parallelization 𝑑. Currently values of 1 (no parallelization), 2 (parallelization of
two behavioral interfaces) and 3 (parallelization of two behavioral interfaces plus
parallelization of three actuations) are currently supported.

∙ Distributed synthesis: This check box specifies whether decentralized control
programs should be generated as opposed to a centralized control program. The
state of this check box influences the model transformation and post-processing
performed as discussed in Section 5.3.

∙ Allow STrig+STrig: This check box specifies whether two sensor triggerings can
be executed in parallel if 𝑑 ≥ 2. The reason why this is handled separately is
that the parallel triggering of two sensor inputs requires specific measures in the
PDDL specification and the platform mapping.

∙ Allocate more memory for BDD (64-bit only): This check box assigns more mem-
ory to the binary decision diagram (BDD) data structure used internally in the game
solving engine Game Arena Visualization and Synthesis Plus! (GAVS+). This option
is only meaningful on 64-bit platforms with large address space. It allows solving
more complex problems at the cost of higher memory consumption.

7.2. Simulation of Control Program Execution

MGSyn distinguishes between execution mode and simulation mode. In execution mode,
the primitive control functions (PCFs) are executed as specified in the model. This means
that actuations are visible in the real plant and sensor triggerings retrieve values from
the real plant.

In simulation mode, the synthesized control programs execute directly on the devel-
opment machine. In this case, the PCFs of all actuations are replaced by no-operations
and the PCFs of all sensor triggerings are replaced by a prompt asking the user to select
one of the possible sensor inputs. This means that whenever a sensor triggering is exe-
cuted, the user may specify one of the valid values from the model in order to simulate
a sensor input. It allows to verify the functionality of the synthesized control program
by testing all possible execution traces. This is very useful to evaluate control programs
for plants that do not actually exist or have not yet been built.

Figure 7.3 shows a screenshot of the simulated execution of four decentralized con-
trol programs for the specification “drill the object at position A in the storage rack
and mount a cap if it is red and small” (corresponds to task T4 introduced later in
Section 7.6). The individual control programs are mapped to operating system (OS) pro-
cesses in this case. Processes communicate with each other via Transmission Control

118

7. Realization and Evaluation

Figure 7.3.: Simulating execution of decentralized control programs for four ECUs: the
control program for each ECU runs as a separate process. Inter-process
communication is realized via TCP/IP.

Protocol (TCP)/Internet Protocol (IP) in this example. All control programs synchronize
with each other during startup. This means that execution of the control programs
starts as soon as all control programs are “online”.

7.3. Evaluation Overview

7.3.1. Scope

In the following, some in-depth evaluations of the approach presented in this thesis
are provided. Analyses are performed with respect to various synthesis and platform
mapping parameters, such as:

∙ Parallel vs. sequential action execution: If a degree of parallelization of 𝑑T ≥ 2 is
selected, multiple behavioral interfaces may execute in parallel. In setups that are
suitable for parallelization, this reduces the average number of execution steps.

∙ Quantitative vs. non-quantitative synthesis: In quantitative synthesis, cost 𝜂bH
is associated to each behavioral interface bH and sequential and parallel composi-

119

7. Realization and Evaluation

tion operators ⊙T and ⊗T as well as a cost bound 𝜂maxT is selected. Every success-
fully synthesized control program is guaranteed to not exceed the cost bound.

∙ Centralized vs. decentralized control program synthesis: A centralized control
program is a single control program that “remotely controls” all electronic con-
trol units (ECUs) �̂�P in a plant. In decentralized control program synthesis, an
individual control program is synthesized for every ECU as well as respective
communication patterns for state exchange at runtime.

∙ Simulation vs. execution on real hardware: In simulation mode, synthesized
control programs do not interact with a “real” plant; required sensor inputs are
supplied by the user. If executed on real hardware, synthesized control programs
trigger actuations in the real plant and read sensor values from the plant’s envi-
ronment.

∙ Remote control vs. local execution: If ECUs are remotely controlled, the control
program is connected to every ECU via a communication network and exchanges
control signals with the ECU. A proxy application is running on the ECU that
handles the requests. This execution model is good for debugging and step-wise
execution of the control programs. In local execution mode, the control program
is directly executed on the ECU. For a comparison of different execution models,
see also [GBWK09].

In case of feasibility, synthesis times presented in the following include execution of the
complete workflow including C/C++ code generation for execution on real hardware
or simulation. Worst case numbers of moves were directly extracted from the generated
strategy. Worst case costs were derived by inspecting all possible paths in the gener-
ated strategy using simulation. The Java Virtual Machine is by default started with a
parameter of -Xmx3072m (3.0 GB maximum Java heap size).

7.3.2. Demonstration Platform: Festo Modular Production System

The demonstration platforms presented in the following are not only of theoretical na-
ture; most have been built up in form of real plants and execution of the control pro-
grams verified on the respective ECUs. The plants are built of components from the
Festo Modular Production System (MPS) [Fes12]. MPS is designed as a learning envi-
ronment for students and trainees in mechanical engineering, electrical engineering,
control theory and mechatronics. As such, it is built from industrial-grade components
which are used in similar form in real plants. Hence, the MPS provides a good com-
promise between flexibility and truth to the original.

As the name implies, the MPS is built from modular components that are combined
to form so-called stations. Each station has a dedicated purpose and can be combined
with a number of neighboring stations. The “goods” being processed are small circular
work pieces that are transported through the plant using conveyor belts, levers, rotary
plates and robot arms. Supported processing steps include distribution of work pieces
from a stacking magazine, testing of certain properties of work pieces, processing of
work pieces (e.g., drilling, mounting), storing of work pieces in a rack and sorting of
work pieces for delivery to customers.

120

7. Realization and Evaluation

Control of the named production steps is by default performed using industrial PLCs,
one in each station. In order to implement the demonstration setups, we extended the
standard Festo MPS components and PLC programs in various ways with customized
equipment and code. The respective modifications are introduced in the individual
sections.

7.4. Evaluation of the Running Example

This section evaluates the tasks T1 and T2 from Section 4.4.3 on page 66.

Task 1 & 2: Drill Work Pieces and Drill Small Work Pieces

Scenarios:

The following scenarios are analyzed in this evaluation.

1a) T1, one work piece: Synthesize a strategy according to goal 𝑔1 of task T1.

1b) T1, two work pieces: Synthesize a strategy that requires two work pieces to be
drilled instead of one in order to demonstrate parallel execution of behavioral in-
terfaces. For this purpose, process model P1 is extended to obtain P′

1 as follows:

∙ Introduce a behavioral interface plate-rotate-two to rotate two work pieces
simultaneously.

∙ Introduce a behavioral interface output to “output” work pieces at the slide.
This is necessary to free the operating position of the slide.

For details, please refer to the models shipping with MGSyn.

2a) T2, one work piece: Synthesize a strategy according to goal 𝑔2 of task T2.

2b) T2, two work pieces: Synthesize a strategy that requires two work pieces to be
drilled instead of one if they are small. This evaluation uses the adapted process
model P′

1 from scenario 1b).

Evaluation results:

Table 7.1 summarizes the results for tasks T1 and T2. The “WC moves” column specifies
the worst-case number of moves (i.e., actions of player Controller) executed in order to
reach the goal. The “Num. vars” column names the number of Boolean variables in
the state space. Synthesis times generally vary by about ± 2 % due to effects such as
caching, paging and multitasking. Hence, the presented times in this chapter are best
ones out of three runs on a 3.2 GHz system with 8 GB of RAM unless noted otherwise.

If just one work piece is considered, the synthesized strategy is the same with and
without parallelization; only synthesis time differs slightly. This is expected, because
the model has no potential for parallel execution with just a single work piece. In the
scenarios with two work pieces, synthesis time is much higher, because the number of
variables is higher (24 as opposed to 13). This difference is due to the at, drilled and height
predicates being represented for both work pieces and the occupied predicate not being

121

7. Realization and Evaluation

Table 7.1.: Synthesis results for tasks T1 and T2 in the running example. Times are best
ones out of three runs on a 3.2 GHz system with 8 GB of RAM.

Experiment 𝜎 𝑑
WC Num. Synthesis

moves vars time (sec)
1a) One work piece,
unconditional drill

𝜎r 1 6 13 1.2
𝜎rp 2 6 13 1.5

1b) Two work pieces,
unconditional drill

𝜎r 1 11 24 15.1
𝜎rp 2 10 24 15.7

2a) One work piece,
conditional drill

𝜎r 1 7 13 1.4
𝜎rp 2 7 13 1.5

2b) Two work pieces,
conditional drill

𝜎r 1 13 24 15.4
𝜎rp 2 11 24 15.8

eligible for binary encoding anymore. Since synthesis time increases exponentially in
the number of variables in general, the synthesis time increases by more than an order
of magnitude. On further analysis, more than 90 % of that time is spent in the so-
called construction of symbolic transitions in the solver, that is the phase in which the
game transition graph is constructed. The actual game-based solving then only takes
a fraction of the total time. Parallelization allows to reduce the worst case number of
moves from 11 to 10 (9 %) for task T1 and from 13 to 11 (15 %) for task T2 when two
work pieces are processed. In the following, more complex examples are evaluated that
have more potential for parallelization.

7.5. Evaluation of Circular Material Flow Example:
Focus on Parallel Execution

The first complex example being evaluated is depicted in Figure 7.4. The real plant
built from Festo MPS components is depicted in Figure 7.5. It consists of the two Festo
MPS stations “Processing” and “Storage” as well as conveyor belts that interconnect
the output of each station with the input of the respective other station. Each station is
equipped with a PLC of type Festo FEC FC640-FST and the conveyor belts are controlled
using two PLCs of type Siemens LOGO! 12/24RC. The Festo FC PLCs are connected to a
PC running the control program via Ethernet. Since the Siemens LOGO! ECUs do not
offer a documented communication interface that would allow remotely controlling
them, the commands to execute are triggered by respective signals on the unused dig-
ital and analog input ports using a microcontroller-based setup that we call “Siemens
LOGO! Proxy”. For this purpose, an ATmega168 microcontroller with serial interface
and a suitable control program is used. The specific properties of the whole setup are
listed in the following:

∙ Circular material flow in counter-clockwise direction. This allows multiple work
pieces to be processed independently without “blocking” each other. Hence, this
scenario is particularly useful to evaluate synthesis with parallel execution.

122

7. Realization and Evaluation

A ST

D

C

B

E

F

G

L

H K

M

N

O

R

Q

P

Height
Sensor (H1)

Lever
(L1)

Lever
(L2)

Lever
(L3)

Drill (D1)

Conveyor Belt (B3)

Conveyor Belt (B1)

Robot Arm
Storage (S1)

Rotary plate (RP1)

ECU module instance assignment:
• ECU “Processing”: RP1, L2, H1, D1
• ECU “Storage”: S1
• ECU “Conveyor Belt A”: B4, B3, L1
• ECU “Conveyor Belt B”: B1, B2, L3

J

Conveyor Belt (B4)

Conveyor Belt (B2)

ECU “Processing”
ECU “Storage”
2x Festo FEC FC640

ECU “Conveyor
Belt A/B”

2x Siemens LOGO!
12/24RC

Figure 7.4.: Circular material flow example: in this plant, work pieces may move in a
counter-clockwise way between two processing stations. The left side is
almost identical to the running example from Section 3.4. The right side
shows a storage station with six storage locations (operating positions M
through R) and a robot arm that transports work pieces between the storage
locations and the input (operating position L) and output locations (operat-
ing position S). In addition, a color sensor is mounted on the robot arm. The
unidirectional conveyor belts (H → J, J → K, S → T and T → A) transport
work pieces between the processing stations (ECU icons by [Ele14, Sie14b]).

Figure 7.5.: Photos of real plant implementing circular material flow: on the left, Pro-
cessing unit with levers, height sensor and drill. On the right, Storage unit
with lever and robot arm. On the left, a small red work piece is located un-
derneath the drill (operating position D in Figure 7.4) and a large red work
piece is located on the conveyor belt (just arriving at operating position A).
On the right, the storage contains five small work pieces of different colors
(red, silver, black) and the robot arm carries a small red work piece.

123

7. Realization and Evaluation

∙ 11 hardware modules: 4 conveyor belts, 3 levers, rotary plate, height sensor, drill,
robot arm storage.

∙ 3 types of sensor inputs: work piece height and color, storage rack occupancy.

In order to represent all hardware modules, the following new model elements are
introduced in addition to the ones introduced in Section 4.4.1. For brevity, the for-
mal modeling of those elements is omitted. Please refer to the accompanying tool
MGSyn [for13] for details, which ships with the respective models.

∙ Hardware modules:

– Robot arm storage: models the storage, the robot arm and the color sensor
that is mounted at the robot. In the following evaluations, operating posi-
tions Q and R are omitted from the model, because they are not needed. This
improves synthesis time, because the number of variables is smaller.

∙ Behavioral interfaces:

– robot-move, robot-pick-ground, robot-drop-ground, robot-pick-rack, robot-drop-rack:
move robot and pick up respectively drop work pieces. “Ground” means
operating positions L or S and “rack” refers to positions M through R.

– belt-move, belt-move-robot: move conveyor belts; distinguishing is necessary
here, because the robot arm might block operating position S and hence
belt-move-robot, which is used for B4, ensures through a precondition that
the robot arm is not at that place.

– plate-rotate-two: rotate the plate with two work pieces on it.

– probe-color: detect the color of a work piece (only possible if work piece is in
one of the ground positions).

– probe-rack: use the color sensor to detect if a storage location is occupied.

∙ Predicates:

– in-robot: stores the current position of the robot arm (binary encoded).

– gripper-occupied: stores whether the gripper of the robot arm is occupied by a
work piece. The gripper itself is modeled as an additional operating position
of the robot arm storage.

– carry: stores which work piece is carried by the robot arm (binary encoded).

– belt-located: predicate that denotes that two operating positions are con-
nected via a conveyor belt (read only).

– color: stores the color of a work piece (binary encoded).

– rack-occupied: stores the occupancy state of a rack in the storage.

∙ Costs:

– robot-move, belt-move, belt-move-robot: cost 3.

– plate-rotate, plate-rotate-two: cost 2.

– All other behavioral interfaces (including sensor triggerings): cost 1.

These costs roughly correspond to the execution time of the individual actions
and/or their power consumption.

124

7. Realization and Evaluation

Task 3: Drill Small and Sort by Color with Output on Overflow

Informal task description:

Drill a work piece 𝑥wp1 initially located at operating position T if it is small and move it
to operating position J. In addition, sort a work piece 𝑥wp2 initially located at operating
position J by color into the storage rack (a red work piece to either operating position M
or N, a black work piece to either operating position O or P). If the respective spaces are
already occupied, move the work piece to operating position T instead. This scenario
is an extended version of the one in [CGB13]1.

Formal task description:

T3 = (P0, 𝒞ℐ3, 𝜎3, 𝑔3,⊙3,⊗3, 𝜂max3, 𝑑3) (7.1)
𝒞ℐ3 := {at(𝑥wp1, 𝜋T), occupied(𝜋T),

at(𝑥wp2, 𝜋J), occupied(𝜋J)} (7.2)
𝑔3 := (height(𝑥wp1, 𝑥small) ∨ height(𝑥wp1, 𝑥large))

∧ (height(𝑥wp1, 𝑥small) ⇔ drilled(𝑥wp1)) ∧ at(𝑥wp1, 𝜋J)

∧ (color(𝑥wp2, 𝑥red) ∨ color(𝑥wp2, 𝑥black) ∨ color(𝑥wp2, 𝑥none))

∧ (color(𝑥wp2, 𝑥red) ⇒ (at(𝑥wp2, 𝜋M) ∨ at(𝑥wp2, 𝜋N)

∨ (rack-occupied(𝜋M, 𝑥yes) ∧ rack-occupied(𝜋N, 𝑥yes) ∧ at(𝑥wp2, 𝜋T))))

∧ (color(𝑥wp2, 𝑥black) ⇒ (at(𝑥wp2, 𝜋O) ∨ at(𝑥wp2, 𝜋P)

∨ (rack-occupied(𝜋O, 𝑥yes) ∧ rack-occupied(𝜋P, 𝑥yes) ∧ at(𝑥wp2, 𝜋T)))) (7.3)

Two remarks:

∙ The color 𝑥none in equation (7.3) is added in order to model that fact that no work
piece might be in front of the color sensor when it is triggered. Notice that the
synthesized program will not be able to handle this situation, but in order to
correctly model the sensor input, all possible “colors” need to be represented.

∙ Since the initial state for rack occupancy needs to be unknown (and not “un-
occupied”), we model the occupancy state as a binary predicate rack-occupied :
Π × 𝒳 occupied → B with 𝒳 occupied = {𝑥yes, 𝑥no}. Hence, the default value “all
false” (i.e., neither rack-occupied(𝜋, 𝑥yes) nor rack-occupied(𝜋, 𝑥no)) represents that
the occupancy state is unknown for 𝜋 ∈ Π.

Scenarios:

The following scenarios are analyzed in this evaluation. For semantics of cost, refer to
Tables 4.4 and 4.5 on page 69.

1See also the following videos from execution of other task models on the same plant:
http://youtu.be/Sb3bre916o4 (storing by color), http://youtu.be/Foenmw31rB4 (error
handling), http://youtu.be/daHLnx2IsIs (processing and storing with occupancy check).

125

http://youtu.be/Sb3bre916o4
http://youtu.be/Foenmw31rB4
http://youtu.be/daHLnx2IsIs

7. Realization and Evaluation

3a) WCET optimization: Synthesize a strategy that does not exceed a specified max-
imal worst-case (WC) execution time (ET) 𝜂max3. The cost annotated to a behav-
ioral interface corresponds to its ET. In this scenario, ⊗3 := max is chosen as
parallel composition operator, because parallel execution of multiple behavioral
interfaces takes as long as the interface with the longest ET. ⊙3 := sum is cho-
sen as sequential composition operator, because ET accumulates over sequential
actions.

3b) WC total power consumption optimization: Synthesize a strategy not exceeding
a given WC total power consumption 𝜂max3. The cost annotated to a behavioral
interface corresponds to its power consumption. ⊗3 := sum is chosen as parallel
composition operator, because parallel execution of multiple actions consumes
the cumulative power of all executed actions. ⊙3 := sum is chosen as sequential
composition operator, because power consumption accumulates over sequential
actions.

3c) WC peak power consumption optimization: Synthesize a strategy not exceeding
a given WC peak power consumption 𝜂max3. The cost annotated to a behavioral
interface corresponds to its power consumption. Again ⊗3 := sum is chosen
as parallel composition operator, because parallel execution of multiple actions
consumes the cumulative power of all executed actions. ⊙3 := max is chosen
as sequential composition operator, because we are interested in the worst-case
power consumption at any point in time.

Evaluation results:

Table 7.2 summarizes the results for task T3. The results show that up to 30 % (7 of 23
and 7 of 24) of the control moves can be parallelized and that parallelization requires
typically more than twice the synthesis times for feasible specifications in these sce-
narios. Higher cost bounds require a slightly higher synthesis time, because more bits
are required to represent the current cost during game-based synthesis. When the cost
bound is very tight, the tool synthesizes a strategy with more, but cheaper moves (e.g.,
17 instead of 16). The generated strategy for experiment 3c) significantly differs from
the strategy for 3a) and 3b).

Due to its circular nature, this setup was specifically well suited for parallelization. One
reason for this is that multiple work pieces can be simultaneously processed without
the risk for one work piece to block another. In the following, an example with a linear
architecture is evaluated. That example is less well suited for parallelization.

7.6. Evaluation of Bidirectional Material Flow Example:
Focus on Decentralized Execution

The second complex example being evaluated is depicted in Figure 7.6. The real plant
built from Festo MPS components is depicted in Figure 7.7. It consists of the three Festo
MPS stations “Processing”, “Pick & Place” and “Storage” as well as a conveyor belt
that interconnects the output of the processing station to the input of the Pick & Place

126

7. Realization and Evaluation

Table 7.2.: Synthesis results for task T3 in the circular example. Results for experiments
without parallelization and without cost model are provided for comparison.
Times are best ones out of three runs on a 3.2 GHz system with 8 GB of RAM.

Experiment 𝜎3 𝑑3 𝜂max3 ⊙3 ⊗3
WC Num. Synthesis

moves vars time (sec)

3a) WCET
optimization

𝜎rcp 2 32 sum max inf.1 55 22.0
𝜎rcp 2 33 sum max 17 55 22.5
𝜎rcp 2 34 sum max 16 55 22.1
𝜎rcp 2 352 sum max 16 55 22.2

3b) WC total power
optimization

𝜎rcp 2 45 sum sum inf.1 55 38.6
𝜎rcp 2 46 sum sum 17 55 29.3
𝜎rcp 2 47 sum sum 16 55 28.0
𝜎rcp 2 48 sum sum 16 55 28.4

3c) WC peak power
optimization

𝜎rcp 2 2 max sum inf.1 46 14.93

𝜎rcp 2 3 max sum 20 49 16.3
𝜎rcp 2 4 max sum 17 49 18.7
𝜎rcp 2 52 max sum 17 49 19.0

3a)/3b) without
parallelization4

𝜎rc 1 45 sum N/A inf.1 55 13.8
𝜎rc 1 46 sum N/A 24 55 13.8
𝜎rc 1 472 sum N/A 23 55 13.8

3c) without
parallelization

𝜎rc 1 2 max N/A inf.1 46 6.8
𝜎rc 1 32 max N/A 23 49 8.3

Non-quantitative
(without cost model)

𝜎r 1 ∞ N/A N/A 23 49 8.3
𝜎r 2 ∞ N/A N/A 16 49 18.8

1 Infeasible (i.e., no solution) due to the cost bound being too restrictive.
2 The same strategy is generated for higher cost bounds, only synthesis time differs.
3 Since it is not clear whether behavioral interfaces with cost 3 are used in the generated

strategy, infeasibility cannot be directly decided from the cost bound.
4 If parallelization is disabled, 3a) and 3b) collapse to the same scenario.

station. Each station is equipped with a PLC of type Siemens S7-313C as well as a micro-
controller of type ARM Cortex M3 of type STM32F107VCT6 on an Olimex STM32-P107
board. The conveyor belt is steered by a Siemens LOGO! 12/24RC that is remotely con-
trolled via unused input ports as in the previous example or by an ARM Cortex M3
microcontroller. In order for the microcontrollers to be able to interact with the plant,
custom adapter boards and voltage converter boards to/from 3.3 V/24 V have been de-
signed and built (compare Figure 7.7). Either the PLCs or the microcontrollers may be
selected as controllers for the plant. The specific properties of this setup are:

∙ Bidirectional material flow: in order to transport work pieces forth and back,
the conveyor belts have been equipped with additional electric components in
order to switch the transport direction. In addition, the mechanical setup has
been slightly modified to allow the robot arm of the storage station to push a
work piece from operating position G to operating position H.

127

7. Realization and Evaluation

S

R

Q

N

O

P

G

M L

A

B

C

F

E

D

K

Height
Sensor (H1)

ECU module instance assignment:
• ECU “Storage”: S1
• ECU “Pick and Place”: B2, L3, PP1
• ECU “Conveyor Belt”: B1, L2
• ECU “Processing”: RP1, L1, H1, D1

Lever
(L1) Lever (L2)

Drill (D1)

Bidirectional
Conveyor
Belt (B2)

Bidirectional Conveyor Belt (B1)

Robot Arm
Storage (S1)

Rotary plate (RP1)

J

H

Barrier
(L3)

Pick & Place
unit (PP1)ECU “Processing”

(Siemens S7-313C)

ECU “Conveyor Belt”
(Siemens S7-313C)

ECU “Storage”
(Siemens S7-313C)

ECU “Pick and Place”
(Siemens S7-313C)

Figure 7.6.: Bidirectional material flow example: this plant has a linear material flow
with a number of processing stations. It includes a robot arm-based storage
(operating positions A to G), a pick and place unit that mounts caps on work
pieces (at operating position J), two bidirectional conveyor belts (H ↔ K
and L ↔ M) and a processing unit similar to the running example from
Section 3.4 (N to S). In order to transport work pieces forth and back, the
conveyor belts in this plant move forward and backward (icons by [Sie14a]).

Figure 7.7.: Photos of real plant implementing bidirectional material flow: on the left,
storage with black and red work piece, Pick & Place unit, conveyor belts,
rotary plate with height sensor, drill and levers (in clockwise direction). On
the right, microcontroller board (red) with custom adapter board (green,
supports up to 48 digital I/Os, 7 analog inputs and 6 PWM generators) and
3.3 V/24 V interface board (blue, 16 digital I/Os per board).

128

7. Realization and Evaluation

∙ 9 hardware modules: conveyor belt, conveyor belt with barrier, 2 levers, rotary
plate, height sensor, drill, pick & place module, robot arm storage.

∙ 3 types of sensor inputs: work piece height and color, storage rack occupancy.

∙ 4 ECUs of type Siemens S7-313C, where each controls a dedicated part of the plant
(compare icons in Figure 7.6).

In order to represent all hardware modules, the following new model elements are
introduced in addition to the ones introduced in Sections 4.4.1 and 7.5. For brevity, the
formal modeling of those elements is omitted. Please refer to the accompanying tool
MGSyn [for13] for details, which ships with the respective models.

∙ Behavioral interfaces:

– robot-input, robot-eject: input a work piece from H to G and eject a work piece
from G to H. The robot arm ejects the work piece by pushing it when the
gripper is closed.

– belt-move, belt-move-reverse: move a conveyor belt in (reverse) direction. Op-
eration position J can be also reached using these actions.

– mount-cap: mount a cap on a work piece located at operating position J.

∙ Predicates:

– robot-input-located, robot-eject-located, belt-located belt-reverse-located: predi-
cates that denote that two operating positions are connected via robot-input,
robot-eject or a conveyor belt in forward or reverse direction (all read only).

– pick-place-located: predicate that denotes where the pick & place unit is lo-
cated (read only).

– capped: predicate that denotes whether a cap is mounted on a work piece.

Task 4: Drill and Mount Cap on Small Red Work Pieces

Informal task description:

Drill and mount a cap on a work piece 𝑥wp1 initially located at operating position A if it
is small and has red color and put it back to operating position A in any case. The robot
arm is located at operating position G at beginning and end of the task2.

2See the following video for the execution of a similar task on the real plant (with unconditional drilling):
http://youtu.be/7p5EK52TgBs.

129

http://youtu.be/7p5EK52TgBs

7. Realization and Evaluation

Formal task description:

T4 = (P0, 𝒞ℐ4, 𝜎4, 𝑔4,⊙4,⊗4, 𝜂max4, 𝑑4) (7.4)
𝒞ℐ4 := {at(𝑥wp1, 𝜋A), rack-occupied(𝜋A, 𝑥yes), in-robot(𝜋G)} (7.5)
𝑔4 := (color(𝑥wp1, 𝑥red) ∨ color(𝑥wp1, 𝑥black) ∨ color(𝑥wp1, 𝑥none))

∧ (color(𝑥wp2, 𝑥red) ⇒ ((height(𝑥wp1, 𝑥small) ∨ height(𝑥wp1, 𝑥large))

∧ (height(𝑥wp1, 𝑥small) ⇔ drilled(𝑥wp1))

∧ (height(𝑥wp1, 𝑥small) ⇔ capped(𝑥wp1))))

∧ (¬color(𝑥wp1, 𝑥red) ⇒ (¬drilled(𝑥wp1) ∧ ¬capped(𝑥wp1)))

∧ at(𝑥wp1, 𝜋A) ∧ in-robot(𝜋G) (7.6)

Scenarios:

4a) Centralized execution with 1 work piece: Synthesize a single control program
for the specification that remotely controls the individual ECUs.

4b) Centralized execution with 2 work pieces: Scenario 4a) with 2 work pieces.

4c) Decentralized execution with 1 work piece: Synthesize a dedicated control pro-
gram for each ECU in the plant model.

4d) Decentralized execution with 2 work pieces: Scenario 4c) with 2 work pieces.

Evaluation results:

Table 7.3 summarizes the results for task T4. Some scenarios require a lot of memory
and hence the Java Virtual Machine is started with parameter -Xmx3584m (maximum
3.5 GB Java heap size) and the option Allocate more memory for BDD (64-bit only) is used
in the MGSyn wizard (compare Figure 7.2). Some scenarios would also work with the
default Java Heap Space of 3.0 GB, but suffer from bad performance due to extensive
garbage collection and swapping.

In this plant, only a few control moves can be parallelized. The application of 𝜎rp to sce-
nario 4b) yields a very good result of 36 % parallelized moves, but this is an exception.
In this case, the solver generates a strategy that, when both work pieces are red, first
moves them to the rotary plate, then puts one onto the rotary plate to probe its height
and then puts the second one on one of the free operating positions on the rotary plate
in order to avoid one work piece blocking the other. Then it continues with the second
work piece.

This evaluation reveals a couple of issues with this approach:

∙ When a work piece is not red, the control program might trigger useless moves
of the robot arm, especially when parallelization is enabled. This happens even
if quantitative synthesis is used, because the specified cost bound applies to the
worst case, which is the probing of a work piece’s height, its drilling and mount-
ing of a cap. However, if the work piece is not red, it “only” needs to be put
back into the storage, leaving a lot of “cost” to waste. Since the only guarantee is

130

7. Realization and Evaluation

Table 7.3.: Synthesis results for task T4 in the bidirectional example. Distributed syn-
thesis uses token-based replication of the full state. Times are best ones out
of two runs on a 3.2 GHz system with 8 GB of RAM.

Experiment 𝜎4 𝑑4 𝜂max4 ⊙4 ⊗4
WC Num. Synthesis

moves vars time (sec)

4a) Centralized
execution with
1 work piece

𝜎r 1 ∞ N/A N/A 28 51 2.9
𝜎rp 2 ∞ N/A N/A 282 51 16.2
𝜎rc 1 54 sum N/A inf.1 57 3.5
𝜎rc 1 55 sum N/A 28 57 3.5
𝜎rcp 2 54 sum sum inf.1 57 27.8
𝜎rcp 2 55 sum sum 283 57 28.5

4b) Centralized
execution with
2 work pieces

𝜎r 1 ∞ N/A N/A 55 51 6.1
𝜎rp 2 ∞ N/A N/A 444 51 21.3
𝜎rc 1 105 sum N/A inf.1 58 46.5
𝜎rc 1 106 sum N/A 55 58 61.6
𝜎rcp 2 105 sum sum inf.1 58 309.6
𝜎rcp 2 106 sum sum 553 58 425.0

4c) Decentralized
execution with
1 work piece

𝜎r 1 ∞ N/A N/A 35 54 3.2
𝜎rp 2 ∞ N/A N/A 353 54 14.5
𝜎rc 1 54 sum N/A inf.1 60 3.4
𝜎rc 1 55 sum N/A 35 60 3.9
𝜎rcp 2 54 sum sum inf.1 60 13.5
𝜎rcp 2 55 sum sum 353 60 14.3

4d) Decentralized
execution with
2 work pieces

𝜎r 1 ∞ N/A N/A 68 54 6.9
𝜎rp 2 ∞ N/A N/A 683 54 16.6
𝜎rc 1 105 sum N/A inf.1 61 66.9
𝜎rc 1 106 sum N/A 68 61 85.5
𝜎rcp 2 105 sum sum inf.1 61 81.6
𝜎rcp 2 106 sum sum 683 61 106.7

1 Infeasible (i.e., no solution) due to the cost bound being too restrictive.
2 7 of the 28 moves on the WC path are parallelized and cause useless side effects.
3 None of moves on the WC path are parallelized.
4 16 of the 44 moves on the WC path are parallelized.

131

7. Realization and Evaluation

that the cost bound is not exceeded, this useless triggering of actuations is valid
from the point of view of the model. The root cause is that quantitative synthe-
sis only optimizes the worst-case path; shorter paths may contain superfluous or
redundant executions of behavioral interfaces. Hence, increasing the cost for the
respective action does not solve the problem. This behavior could be prevented
by always forcing the solver to select the path with the least cost, which would
most probably increase synthesis time significantly. Hence, this behavior is the
price to pay for the trade-off between synthesis time and optimality of the solver
in the presence of partial knowledge.

∙ Notice that decentralized quantitative synthesis with parallelization is clearly
faster than centralized quantitative synthesis with parallelization. This result is
unexpected, but can be explained by the fact that ordering of variables in the
internal data structures of the game-based solver has a large effect on the syn-
thesis time. The solver internally uses BDD as data structures. The efficiency
of encoding Boolean terms in BDDs depends on the ordering of variables in the
decision diagram, which in turn depends on the sorting of the elements in the
PDDL specification. In the case at hand, the synthesis time differs roughly by the
factor 4, which may be a hint that four times as many iterations are performed
for the centralized control program, because variables are less efficiently encoded
than in the decentralized case. Reordering the variables in order to optimize the
encoding would require an adaptation in the game-based solver.

7.7. Summary

This chapter demonstrates how the workflow presented in this work is implemented
in a model-driven development tool and provides evaluation results for small and
medium scale applications. The evaluation scenarios represent typical automation
tasks found in industry.

MGSyn is designed as a plug-in to the well-known Eclipse platform and inherits the
concepts of operation from it. The hardware, plant and task model is specified in a
tree-based editor. Extensive constraint checking ensures that meaningful warnings and
error messages are produced in case the model is inconsistent. Synthesized control
programs are either simulated on the development machine, remotely control the ECUs
in the plant or run directly on the ECUs of the plant.

In conclusion, evaluation results show that the described approach leads to acceptable
synthesis time on modern PC hardware for synthesizing centralized and decentralized
control programs if the number of state space variables is reasonably small; a value of
about 60 seems to be still acceptable. Larger numbers of variables may cause synthesis
time to take several minutes or longer and pose more memory requirements.

The optimality of the synthesized control program is partially influenced by quanti-
tative synthesis. However, this approach only allows optimization of plays with a
worst-case number of moves for a given specification and is hence not a guarantee
for an optimized or even optimal control program. In case the control program is not
suitable, forcing the solver to produce a different result requires explicit elimination of

132

7. Realization and Evaluation

undesirable moves by adapting the model accordingly. Hence, the approach is recom-
mended for scenarios where cost efficient (re-)synthesis of a control program outper-
forms the need to obtain an optimized or optimal control program. Examples are small
or medium size enterprises that cannot afford experts in mechatronics who could man-
ually build or adapt the control program. It is hence not a replacement for traditional
workflows, but an alternative with certain restrictions.

Advantages of the approach include that it is correct by construction with respect to the
input model, that the formal model is generic enough to serve for other automated tasks
and that it facilitates the development of control software for decentralized systems.

133

134

CHAPTER 8

Conclusion

This thesis proposes a workflow for the synthesis of control software for specific types
of industrial automation lines. First, a formal model of the plant, its hardware modules
and capabilities is created in a domain specific language. The model also includes the
behavior of the environment, which represents uncertainty in the production process,
such as the detection of properties of a work piece only at runtime or the injection of
faults. Second, a task model is specified that expresses the initial state and the goal state
of the production process by describing the respective system state at both points in
time. Subsequently, a game-based solver is invoked to synthesize a centralized or multiple
decentralized control programs that achieve the functionality specified in the task model
in the presence of the environment, i.e., the synthesized control program(s) reach the
goal state from the initial state independent of the behavior of the environment. If no
such strategy exists, the task is reported as infeasible. Finally, the synthesized control
programs are mapped to the target platforms for simulation and execution.

The approach allows separating the traditional bottom-up development workflow into
different stages, thus forming a confluent workflow:

∙ In the first stage, experts in mechatronics create a generic hardware model and im-
plement primitive control functions that trigger certain actions in the plant. The
hardware model is independent of a concrete automation task and serves as a
kind of “driver library” for the real control programs. This is the “bottom-up”
part of the workflow, because it forms the base for higher-level functionality.

∙ In the second stage, experts in industrial automation create a plant model that spec-
ifies the exact hardware modules and topology of a specific plant based on the
previously defined hardware model.

∙ In the third stage, the task to perform is specified. This step can be performed
with less or even no expert knowledge in mechatronics or control theory. The
task model may contain a notion of cost that is used to select control programs

135

8. Conclusion

that offer certain performance guarantees. The last two steps are the “top-down”
parts of the workflow, because they are formulated at an abstract level and lower-
level details are automatically generated from those models.

The feasibility of the approach is demonstrated on both fictional as well as real au-
tomation systems. The real automation systems consist of parts that are also used in
industrial production lines and hence model real production processes. The use cases
that were analyzed in this work show that the time required for the synthesis of control
programs is in the range of seconds and minutes and hence acceptable in the target
domain.

The major contributions of this thesis are the definition of a formal domain specific
modeling language to describe industrial automation lines and the tasks to perform on
them, the ability to synthesize decentralized control programs for distributed execu-
tion on the electronic control units (ECUs) of the plant and a generic platform mapping
approach to simulate and execute the synthesized control programs.

However, the following two limitations have been identified: first, specification of com-
plex tasks requires more in-depth knowledge of the mathematical model behind this
work and adding suitable constraints in the model might lead to unacceptably long
synthesis times. Second, even when using quantitative synthesis, only the path with
the worst-case cost in the play is optimized. Hence, unnecessary side effects may be
present in plays that do not correspond to the worst-case cost.

Notice that the formal description of modular assembly lines is applicable to more than
just control software synthesis. The presented model, or an extended version, could
be used in automatic processes such as performance analyses, safety analyses, report
generation or automatic documentation.

Future Work

The presented approach can be extended in various ways. The following list summa-
rizes directions for future research.

∙ Hierarchical synthesis: Until now, synthesis is performed on a “flat” model, i.e.,
all information about the plant is considered for every run of the synthesis engine.
This makes the approach less scalable, because the computational complexity of
game solving is exponential in the number of state variables.

In order to overcome this limitation, a hierarchical synthesis approach is mean-
ingful: instead of solving the whole problem, (semi-)automatically split the task
into smaller chunks and treat each chunk separately. Previously synthesized re-
sults from smaller chunks may be reused for later synthesis requests. This idea
leads to a compositional synthesis approach.

A similar approach can be used to automatically generate low-level primitive
control functions: consider the actuation “transport of a work piece on a conveyor
belt”. By treating the transport problem as yet another synthesis problem that
involves the actions of switching digital control signals on and off, a low-level
control program implementing the primitive control function could be synthe-

136

8. Conclusion

sized. The triggering of this control program could then be used as a behavioral
interface for a higher-level control program.

Likewise, the capabilities of a processing unit consisting of multiple modules
could be determined once the model of that processing unit is complete and then
suitable control actions synthesized for the unit, which are re-used in a higher-
level synthesis problem as primitive control actions.

∙ Non-cooperative environment: Only sensor inputs have been considered as en-
vironment actions in the examples presented in this thesis. However, the envi-
ronment could also inject faults into a system. Assuming a fault is temporary and
we can recover from it, a suitable strategy can repeat the triggering of a part of
the control program until it completes successfully. In order to embed this fea-
ture into the synthesized control programs, a “repeat until” kind of semantics is
required. This can be realized with so-called goal-or-loop semantics: either the
environment finally cooperates and hence the goal is reached successfully or the
control program loops indefinitely. In case the fault is temporary, successful ex-
ecution can hence be guaranteed. If using quantitative synthesis and the loop
contains sensor triggerings, we need to ensure that their cost is zero; otherwise
the environment immediately has a strategy to exceed the cost bound.

A simple example is a conveyor belt: define an actuation that starts a conveyor
belt in order to transport a work piece. Further define a sensor triggering that
models the fact whether or not the work piece has arrived at the destination. By
executing the sensor triggering in a loop, a wait condition for the arrival of the
work piece at the destination can be achieved. Initial analyses of this approach
have been performed in context of [CGB13].

∙ Pipeline-based processing: In production facilities, a pipeline-based approach
is often used to process multiple work pieces at the same time in different areas
of production. The current approach allows such processing, but requires the
specification of the initial location, production goal and final location separately
for every work piece. In order to better support pipeline-based processing, it
should be possible to synthesize a control program that models the processing
steps applied to a single work piece and then automatically parallelizing this exe-
cution pattern for use with multiple work pieces in different stages of production.
The already implemented parallel task execution is a good base for implementing
such an approach.

∙ Generation of native programmable logic controller (PLC) control programs: In
order to natively execute synthesized control programs on PLCs, a suitable plat-
form mapping layer is required. A promising approach seems to be the genera-
tion of control programs in structured text (ST).

∙ Generation of real-time visualization: The information contained in the model
can be used to generate a graphical user interface (GUI) that visualizes the cur-
rent state of the system, similar to supervisory control and data acquisition (SCADA)
systems. If the model is enhanced with topological information about the exact
relative position of operating positions with respect to each other, a 2D or 3D
visualization may be automatically generated.

137

138

APPENDIX A

Model Transformation: Token-based Ownership of Predicates

As indicated in Section 5.3.3, multiple strategies exist in order to replicate the system
state between electronic control units (ECUs) during decentralized execution. At first
sight, a reasonable granularity for replication seems to be to network each predicate in-
dividually and to generate according transfer actions during game-based solving. The
purpose of this approach is to emulate the partial knowledge present in a distributed
scenario in the problem that is analyzed by the game-based solver. Unfortunately, this
approach does not produce feasible control programs. Nevertheless the approach is
included here to show its advantages and disadvantages. The plant model is adapted
as follows:

1. Replication and ownership of predicates: For every ECU, local copies of the
predicates used on the respective ECU as derived in order to honor the fact that
information about the state of the plant is not globally available in a distributed
environment. This way, the solver will take transfer operations into account when
generating the strategy. In addition, a predicate is added that indicates which
ECU owns the most up-to-date value of the respective predicate is added for ev-
ery original predicate that is read or written on at least two ECUs.

For example, if the predicate height is identified as being read and/or written
by two ECUs e1 and e2, then ECU-local variants named height-e1 and height-e2
are added and the original predicate is removed. In addition, the predicate
height-owner : {e1, e2} → B is added that is true for at most one ECUs1. The
initial state is “all false”, which means all ECUs know the correct value. Like-
wise, if predicate drilled is read and written only by e1, then it is replaced by an
ECU-local variant drilled-e1. No drilled-owner predicate is needed in this case.

2. Addition of ECU objects: In order to represent which ECU currently “owns” a
predicate, a corresponding object 𝑥�̂� is added for every ECU instance �̂� ∈ ̂︀𝒰P

1Notice that this predicate can profit from binary encoding as introduced later in Section 5.5.3.2.

139

A. Model Transformation: Token-based Ownership of Predicates

in the same way than it is done in token-based replication of the full state from
Section 5.3.3.1.

3. Splitting of behavioral interfaces: For every behavioral interface, determine
whether it needs to be executed on different ECUs, and if yes, clone the behav-
ioral interface in the same way than it is done in token-based replication of the
full state from Section 5.3.3.1. Afterwards, the predicates read or written by the
cloned behavioral interfaces are adapted to use the ECU-local copies available on
the respective ECU.

4. Addition of ownership and transfer operations: In order to exchange state in-
formation between ECUs, introduce behavioral interfaces that transfer “owner-
ship” of a predicate between ECUs. When ownership is transferred, the current
predicate value is transferred as well. In general, the availability of such transfer
actions between a pair of ECUs depends on the network topology available. In
this work, a fully connected topology is assumed.

First, a behavioral interface bown-𝑣 for initially assigning the ownership to one of
the ECUs is added for every ownership predicate 𝑣-owner (recall that the initial
value of each ownership predicate is “all false”, hence no specific ECU assign-
ment):

bown-𝑣 := ((a𝑣0 , aecu), 𝒞𝒫bown-𝑣 , ℰbown-𝑣 , ∅, ∅,⊥, 0, 0) (A.1)

𝒞𝒫bown-𝑣 := {¬𝑣-owner 𝑥�̂� | �̂� ∈ ̂︀𝒰P} (A.2)
ℰbown-𝑣 := {𝑣-owner aecu} (A.3)

ℬH := ℬH ∪ {bown-𝑣} (A.4)

If 𝑣 has at most one parameter, the signature of bown-𝑣 is 𝒳 ecu → B (i.e., a𝑣0
is omitted, compare equation (A.1)), otherwise an additional parameter whose
name and type corresponds to the first parameter of 𝑣 is present. In the latter
case, predicate values are owned depending on the value of the first parameter,
further modularizing variable replication. Consider for example the “at” pred-
icate: if the location of 𝑥wp1 is only relevant on ECU e1 and the location is of
𝑥wp2 is only relevant on ECU e2, using an ownership predicate with signature
at-owner : 𝒲 × 𝒳 ecu → B avoids the need to transfer the locations, while using
an ownership predicate of at-owner : 𝒳 ecu → B requires the transfer. The pre-
conditions in equation (A.2) specify that 𝑣-owner is “all false” and the effect in
equation (A.3) designates the ECU specified in aecu as first owner.

Second, a behavioral interface btransfer-𝑣 for transferring the ownership from one
ECU to another is added for every ownership predicate 𝑣-owner:

btransfer-𝑣 := ((a𝑣0 , aecu1, aecu2), 𝒞𝒫btransfer-𝑣
, ℰbtransfer-𝑣 , ∅, ∅, 𝑝transfer-𝑣, 0, 0) (A.5)

𝒞𝒫btransfer-𝑣
:= {𝑣-owner aecu1} (A.6)

ℰbown-𝑣 := {¬𝑣-owner aecu1, 𝑣-owner aecu2} (A.7)
ℬH := ℬH ∪ {btransfer-𝑣} (A.8)

If 𝑣 has at most one parameter, the signature of btransfer-𝑣 is 𝒳ecu × 𝒳ecu → B
(i.e., a𝑣0 is omitted, compare equation (A.5)), otherwise an additional parameter

140

A. Model Transformation: Token-based Ownership of Predicates

whose name and type corresponds to the first parameter of 𝑣 is present. The
primitive control function (PCF) 𝑝transfer-𝑣 implements the actual send and receive
operations between the two ECUs, where the ECU specified by aecu1 is the source
and aecu2 is the destination. Suitable functions are automatically provided via
code generation approach as described in Chapter 6. Preconditions and effects
are self-explanatory.

Notice that the cost for transfer operations is set to zero here in order not to affect
quantitative synthesis. In case transfer operations are expensive, the cost may be
set to a value larger than zero.

5. Adaptation of initial conditions: The initial conditions need to be adapted such
that the initial state formulated over the global predicates is propagated to all
replicated predicates. Hence, the initial state is assumed to be globally known.

For every initial condition of a module 𝒞ℐ𝜙, 𝜙 ∈ ΦH and every initial condition
of the task to execute 𝒞ℐT, clone all conditions that reference replicated predicates
(i.e., predicates that are read or written by more than one ECU) 𝒱 ′ ⊆ 𝒱H for every
ECU that reads or writes them RW(𝒱 ′) and adapt the individual conditions such
that they use the locally available predicates on the respective ECU. Then remove
the respective original initial conditions from the model, because they refer to
predicates that do not exist anymore.

Consider for example the initial task condition height(𝑥wp1, 𝑥small), then if the
hardware model contains two ECUs e1 and e2, the initial task condition is
replaced by a set of two initial task conditions: height-e1(𝑥wp1, 𝑥small) and
height-e2(𝑥wp1, 𝑥small).

6. Adaptation of goal specification: Finally, the goal conditions of the goal speci-
fication 𝑔T need to be adapted such that the fact that the goal state is reached is
correctly decided on all ECUs. The desired behavior is that the predicate values
that are relevant for deciding whether the goal has been reached are replicated to
all ECUs. This is achieved by demanding in the “global” goal condition that each
replicated instance of a predicate that is part of the goal condition needs to have
the same value.

Assume the goal condition is represented in conjunctive normal form. For every
clause in the goal condition, analyze if it contains replicated predicates 𝒱 ′ ⊆ 𝒱H.
If this is the case, clone the clause for every ECU RW(𝒱 ′) that reads or writes any
of the replicated predicates in the clause and adapt the individual clauses such
that they use the locally available predicates on the respective ECU. Then remove
the original clause from the goal condition. For example, if the goal condition
contains the clause

height(𝑥wp1, 𝑥small) ∨ height(𝑥wp1, 𝑥large) (A.9)

and RW(height) = {e1, e2} (i.e., the height of work pieces is read or written on
ECUs e1 and e2), then the clause is replaced by two clauses of the following form:(︀

height-e1(𝑥wp1, 𝑥small) ∨ height-e1(𝑥wp1, 𝑥large)
)︀
∧(︀

height-e2(𝑥wp1, 𝑥small) ∨ height-e2(𝑥wp1, 𝑥large)
)︀

(A.10)

141

A. Model Transformation: Token-based Ownership of Predicates

This approach “forces” the synthesis engine to add respective transfer operations.

This approach is scalable with respect to network bandwidth, but has two significant
drawbacks: first, it leads to a high synthesis time, because the number of variables and
hence the state space becomes very large even for a small number of ECUs. Second,
this approach only networks the predicate values that are either part of the precondi-
tions or (conditional) effects of the actions being executed. However, the guards for
action execution most probably contain other predicates as well, whose values are not
networked. Hence, this approach is unfortunately not feasible without additional post-
processing.

142

Index

ECU instance, 52
ECU instance parameter assignment

function, 52
GAVS+, 88
GAVS, 88
0-vertices, 26
1-vertices, 26

Action, 46
Actuation, 51
Arena, 26
Argument domain, 49
Assembly line, 2
Attractor computation, 28
Automatic, 2
Automatic programming, 24
Automation pyramid, 13
Automation system, 2

Behavioral interface, 49
Behavioral primitive, 34
Binary encoding, 95

Centralized control strategy, 74
Changeover time, 4
Check constraint, 23
Check rule, 77
Conditional effect, 50
Configurable module type parameter,

48
Configurable parameter, 51

Configurable parameter assignment
function, 53

Confluent, 36
Consistency, 79
Control, 13
Control program, 4
Control system, 3
Control unit, 3
Controller, 27
Correct by construction, 3
Cost, 50
Cost bound, 55

Data acquisition, 13
Dead end, 26
Decentralized control program, 29
Decentralized control strategy, 74
Degree of automation, 2
Degree of parallelization, 55, 91
Discretization, 37
Distributed synthesis, 29
Domain knowledge, 32
Domain specific language, 21
Domain specification, 86

Edge relation, 26
Electronic control unit, 3
Environment, 27
Execution mode, 118
Expert, 32

143

Index

Fieldbus, 3
Fluent, 90

Game, 26
Game theory, 25
Goal state specification, 54

Hardware module, 44
Hardware parameter, 110

Industrial automation, 2
Initial module condition, 52
Initial task condition, 54
Input channel, 51
Input signal, 48
Input signal assignment function, 52

Metamodel, 22
Model-based, 20
Model-driven, 20
Model-to-model transformation, 23
Model-to-text transformation, 24
Modular assembly line, 37
Module, 44
Module instance, 52
Module type, 48
Move set, 26

Object, 47
Object type, 47
Operation position, 48
Operation position instance, 52
Operation position mapping function,

52
Optimization, 13
Output channel, 51
Output signal, 48
Output signal assignment function, 53
Overlapping operating position, 53

Parallel composition operator, 55
Parallel execution, 54

Planning, 13
Planning domain definition language,

86
Play, 26
Player, 26
Plug and produce, 5
Precondition, 49
Predicate, 47
Primitive control function, 34
Problem specification, 86
Process model, 56
Program synthesis, 24

Replicated predicate, 141

Sensor response, 79
Sensor result condition, 50
Sensor triggering, 51
Sequential composition operator, 55
Sequential execution, 54
Simulation mode, 118
Smart factory, 16
Smart sensor, 16
Specification, 24
Spontaneous state change, 68
State, 45
State explosion problem, 94
Strategy, 25
Synthesis, 3, 27

Template, 24
Token, 26
Turn-based game, 25
Two-player game, 26

Unconditional effect, 49

Validation, 23

Winner, 26
Winning set, 26
Work piece, 8

144

Bibliography

[3S-14a] 3S-Smart Software Solutions GmbH. CODESYS – industrial IEC 61131-
3 PLC programming, 2014. http://www.codesys.com/ [Online; ac-
cessed 5-July-2014].

[3S-14b] 3S-Smart Software Solutions GmbH. CODESYS Application
Composer, 2014. http://www.codesys.com/products/
codesys-engineering/application-composer.html [Online;
accessed 5-July-2014].

[Abb08] Doug Abbott. Embedded Linux Development Using Eclipse. Elsevier Science,
2008.

[aca11] acatech National Academy of Science and Engineering. Cyber-physical
systems: Driving force for innovation in mobility, health, energy and
production. acatech POSITION, December 2011. http://www.acatech.
de/fileadmin/user_upload/Baumstruktur_nach_Website/
Acatech/root/de/Publikationen/Stellungnahmen/acatech_
POSITION_CPS_Englisch_WEB.pdf [Online; accessed 9-October-2012].

[act12] actifsource GmbH. actifsource – model driven software development
that simply works, 2012. http://www.actifsource.com/ [Online; ac-
cessed 22-February-2013].

[AGH06] Ken Arnold, James Gosling, and David Holmes. The JavaTMProgramming
Language. Addison-Wesley, 4th edition, 2006.

[AMPS98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller
synthesis for timed automata. In Proc. System Structure and Control. Else-
vier, 1998.

[Bak04] Peter Baker. The adoption of innovative warehouse equipment. In Logistics
Research Network 2004 Conference Proceedings, pages 25–35, 2004.

[Bal85] Robert Balzer. A 15 year perspective on automatic programming. IEEE
Transactions on Software Engineering, SE-11(11):1257–1268, November 1985.

145

http://www.codesys.com/
http://www.codesys.com/products/codesys-engineering/application-composer.html
http://www.codesys.com/products/codesys-engineering/application-composer.html
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Stellungnahmen/acatech_POSITION_CPS_Englisch_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Stellungnahmen/acatech_POSITION_CPS_Englisch_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Stellungnahmen/acatech_POSITION_CPS_Englisch_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Stellungnahmen/acatech_POSITION_CPS_Englisch_WEB.pdf
http://www.actifsource.com/

Bibliography

[Bar81] David William Barron. Pascal: The Language and its Implementation. Wiley,
1981.

[BBF+12] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and Jean-
François Raskin. Acacia+, a tool for LTL synthesis. In P. Madhusudan
and Sanjit A. Seshia, editors, Proceedings of the 24th International Conference
on Computer Aided Verification (CAV 2012), volume 7358 of Lecture Notes in
Computer Science, pages 652–657. Springer Berlin Heidelberg, Berkeley, CA,
USA, July 2012.

[BCDG08] Francesco Basile, Pasquale Chiacchio, and Domenico Del Grosso. Mod-
elling automation systems by UML and Petri nets. In 9th International Work-
shop on Discrete Event Systems (WODES 2008), pages 308–313, May 2008.

[BCG+97] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, At-
tila Jurecska, Luciano Lavagno, Claudio Passerone, Alberto Sangiovanni-
Vincentelli, Ellen Sentovich, Kei Suzuki, and Bassam Tabbara. Hardware-
Software Co-design of Embedded Systems. The POLIS Approach. Kluwer Aca-
demic Publishers, 1997.

[BDF+04] David Basin, Yves Deville, Pierre Flener, Andreas Hamfelt, and Jørgen Fis-
cher Nilsson. Synthesis of programs in computational logic. In Program
Development in Computational Logic, pages 30–65. Springer, 2004.

[BGBK08] Simon Barner, Michael Geisinger, Christian Buckl, and Alois Knoll. Ea-
syLab: Model-based development of software for mechatronic systems. In
Proceedings of the 4th IEEE/ASME International Conference on Mechatronic and
Embedded Systems and Applications (MESA 2008), pages 540–545, Beijing,
China, October 2008.

[BGH+10] Simon Barner, Michael Geisinger, Jia Huang, Alois Knoll, Holger
Bönicke, Christoph Ament, Jochen Mades, Reinhard Pittschellis, and Gerd
Bauer. EasyKit - Eine allgemeine Methodik für die Entwicklung von
Steuerungskomponenten. In Jürgen Gausemeier, Franz Ramming, Wil-
helm Schäfer, and Ansgar Trächtler, editors, Entwurf mechatronischer Sys-
teme, volume 272 of HNI-Verlagsschriftenreihe, pages 23–36, Paderborn, Ger-
many, March 2010.

[BH07] Peter Baker and Zaheed Halim. An exploration of warehouse automation
implementations: cost, service and flexibility issues. Supply Chain Manage-
ment: An International Journal, 12(2):129–138, 2007.

[Böh12a] Tino M. Böhler. Industrie 4.0: Automatisierer halten Zukunft in ih-
ren Händen. Produktion – Technik und Wirtschaft für die deutsche Indus-
trie, June 2012. http://www.produktion.de/automatisierung/
industrie-4-0-automatisierer-halten-zukunft/ [Online; ac-
cessed 10-October-2012].

[Böh12b] Tino M. Böhler. Industrie 4.0 – Smarte Produkte und Fabriken revolutio-
nieren die Industrie. Produktion – Technik und Wirtschaft für die deutsche In-
dustrie, May 2012. http://www.produktion.de/automatisierung/
industrie-4-0-smarte-produkte-und-fabriken/ [Online; ac-

146

http://www.produktion.de/automatisierung/industrie-4-0-automatisierer-halten-zukunft/
http://www.produktion.de/automatisierung/industrie-4-0-automatisierer-halten-zukunft/
http://www.produktion.de/automatisierung/industrie-4-0-smarte-produkte-und-fabriken/
http://www.produktion.de/automatisierung/industrie-4-0-smarte-produkte-und-fabriken/

Bibliography

cessed 10-October-2012].

[BL67] J. Richard Büchi and Lawrence H. Landweber. Solving sequential con-
ditions by finite-state strategies. Technical Report 14, Purdue University,
Lafayette, Indiana, USA, September 1967.

[BL10] Christopher Brooks and Edward A. Lee. Ptolemy II – heterogeneous con-
current modeling and design in Java. Poster presented at the 2010 Berkeley
EECS Annual Research Symposium (BEARS), February 2010. http://
chess.eecs.berkeley.edu/pubs/655.html [Online; accessed 11-
February-2013].

[BMW12] BMWi (Bundesministerium für Wirtschaft und Technologie / German
Federal Ministry of Economics and Technology). AUTONOMIK für In-
dustrie 4.0: Produktion, Produkte, Dienste im multidimensionalen In-
ternet der Zukunft, October 2012. http://www.autonomik40.de/
_media/BMWi_Broschuere_Autonomik_WEB.pdf [Online; accessed
13-November-2013].

[BR13] Ezio Bartocci and C. R. Ramakrishnan, editors. Proceedings of the 20th Inter-
national Symposium on Model Checking Software (SPIN 2013), volume 7976
of Lecture Notes in Computer Science, Stony Brook, NY, USA, July 2013.
Springer.

[BSM+04] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Tim-
othy J. Grose. Eclipse Modeling Framework: a developer’s guide. Addison-
Wesley, 2004.

[Buc08] Christian Buckl. Model-Based Development of Fault-Tolerant Real-Time Sys-
tems. Dissertation, Technische Universität München, München, Germany,
2008.

[Bur87] Steve Burbeck. Applications programming in Smalltalk-80: How to use
model-view-controller (MVC), 1987. http://st-www.cs.uiuc.edu/
users/smarch/st-docs/mvc.html [Online; accessed 22-February-
2013].

[CBLK10] Chih-Hong Cheng, Christian Buckl, Michael Luttenberger, and Alois
Knoll. GAVS: Game arena visualization and synthesis. Automated Tech-
nology for Verification and Analysis, pages 347–352, 2010.

[CGB13] Chih-Hong Cheng, Michael Geisinger, and Christian Buckl. Synthesizing
controllers for automation tasks with performance guarantees. In Proceed-
ings of the 20th International SPIN Symposium on Model Checking of Software
(SPIN 2013), volume 7976 of Lecture Notes in Computer Science, pages 154–
159, Stony Brook, NY, USA, July 2013. Springer.

[CGR+12a] Chih-Hong Cheng, Michael Geisinger, Harald Ruess, Christian Buckl, and
Alois Knoll. Game solving for industrial automation and control. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA 2012), May 2012.

[CGR+12b] Chih-Hong Cheng, Michael Geisinger, Harald Ruess, Christian Buckl, and
Alois Knoll. MGSyn: Automatic synthesis for industrial automation. In

147

http://chess.eecs.berkeley.edu/pubs/655.html
http://chess.eecs.berkeley.edu/pubs/655.html
http://www.autonomik40.de/_media/BMWi_Broschuere_Autonomik_WEB.pdf
http://www.autonomik40.de/_media/BMWi_Broschuere_Autonomik_WEB.pdf
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

Bibliography

Proceedings of the 24th International Conference on Computer Aided Verification
(CAV 2012), volume 7358 of Lecture Notes in Computer Science, pages 658–
664, Berkeley, CA, USA, July 2012. Springer.

[Che12] Chih-Hong Cheng. An Implementation for Algorithmic Game Solving and
its Applications in System Synthesis. Dissertation, Technische Universität
München, München, Germany, 2012.

[CJG+11] Chih-Hong Cheng, Barbara Jobstmann, Michael Geisinger, Sarah Diot-
Girard, Christian Buckl, Alois Knoll, and Harald Ruess. Optimizations
for game-based software synthesis. Technical Report TR-2011-12, Verimag
Research Report, August 2011. http://www-verimag.imag.fr/TR/
TR-2011-12.pdf [Online; accessed 14-March-2013].

[CKLB11] Chih-Hong Cheng, Alois Knoll, Michael Luttenberger, and Christian
Buckl. GAVS+: an open platform for the research of algorithmic game
solving. In Proceedings of the 17th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 2011), Lecture
Notes in Computer Science. Springer, April 2011.

[CSV96] Alberto Cavallo, Roberto Setola, and Francesco Vasca. Using MATLAB,
SIMULINK, and Control System Toolbox: a practical approach. The MATLAB
curriculum series. Prentice Hall, 1996.

[CT02] Martin Christopher and Dennis R. Towill. Developing market specific sup-
ply chain strategies. International Journal of Logistics Management, 13(1):1–
14, 2002.

[DF03] Jolyon Drury and Peter Falconer. Building and Planning for Industrial Storage
and Distribution. Architectural Press, Oxford, 2nd edition, 2003.

[DJ91] Kofi Q. Dadzie and Wesley J. Johnston. Innovative automation technology
in corporate warehousing logistics. Journal of Business Logistics, 12(1):63–82,
1991.

[Ecl13] Eclipse Foundation. Eclipse Modeling – Model Development Tools
(MDT), 2013. http://www.eclipse.org/uml2/ [Online; accessed 22-
February-2013].

[Ecl14] Eclipse Foundation, Inc. Xtend – Modernized Java, section “Tem-
plate Expressions”, May 2014. http://eclipse.org/xtend/
documentation.html#templates [Online; accessed 28-June-2014].

[EHN94] Kutluhan Erol, James Hendler, and Dana S Nau. UMCP: A sound and
complete procedure for hierarchical task-network planning. In Proceedings
of the second International Conference on AI Planning Systems, pages 249–254,
1994.

[EJL+03] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef
Ludvig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming
heterogeneity—the Ptolemy approach. Proceedings of the IEEE, 91(2):127–
144, January 2003.

[Ele14] Electroquip. FESTO FEC-FC640-FST 191450 Festo Controller,
2014. http://www.electroquip.co.uk/festo-controller/

148

http://www-verimag.imag.fr/TR/TR-2011-12.pdf
http://www-verimag.imag.fr/TR/TR-2011-12.pdf
http://www.eclipse.org/uml2/
http://eclipse.org/xtend/documentation.html#templates
http://eclipse.org/xtend/documentation.html#templates
http://www.electroquip.co.uk/festo-controller/festo-fec-fc640-fst-191450
http://www.electroquip.co.uk/festo-controller/festo-fec-fc640-fst-191450

Bibliography

festo-fec-fc640-fst-191450 [Online; accessed 5-July-2014].

[Fes12] Festo Didactic. MPS R○ the modular production system - learning
systems, 2012. http://www.festo-didactic.com/int-en/
learning-systems/mps-the-modular-production-system/
[Online; accessed 10-October-2012].

[FFMV08] Luca Ferrarini, Giuseppe Fogliazza, Giulia Mirandola, and Carlo Veber.
Metamodeling techniques applied to the design of reconfigurable control
applications. EURASIP Journal on Embedded Systems, 2008, 2008.

[Fle12] Marcel Flesch. Implementation of a system for sensor data fusion in ther-
mal processes using a data centric middleware. Master’s thesis, Technische
Universität München, München, Germany, August 2012.

[FN72] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence,
2(3):189–208, 1972.

[for13] fortiss GmbH. MGSyn – automatic synthesis for industrial automation,
2013. http://mgsyn.fortiss.org/ [Online; accessed 19-November-
2013].

[FP04] Peter Fischer and Peter Palensky. “The importance of being certified”: The
role of conformance testing and certification of communication systems
in building automation and control devices. In Proceedings of the 7th IEEE
AFRICON Conference in Africa, volume 2, pages 1223–1227, September 2004.

[Fri11] Ronny Fritsche. Reducing set-up times for improved flexibility in high-mix
low-volume electric drives production. In 1st International Electric Drives
Production Conference (EDPC 2011), pages 74–77, September 2011.

[GBWK09] Michael Geisinger, Simon Barner, Martin Wojtczyk, and Alois Knoll. A
software architecture for model-based programming of robot systems. In
Torsten Kröger and Friedrich M. Wahl, editors, Advances in Robotics Re-
search – Theory, Implementation, Application, pages 135–146, Braunschweig,
Germany, 2009. Springer-Verlag Berlin Heidelberg.

[GC13] Michael Geisinger and Chih-Hong Cheng. Programm auf Knopf-
druck? Computer & Automation, pages 32–35, August 2013.
http://www.computer-automation.de/steuerungsebene/
steuern-regeln/artikel/100262/ [Online; accessed 16-January-
2014].

[Ger04] Jane Gerold. The factory of the future. Automation World, July 2004. http:
//www.automationworld.com/operations/factory-future
[Online; accessed 21-September-2012].

[GHK+98] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL – The Plan-
ning Domain Definition Language, Version 1.2, 1998. Available at http:
//www.cs.yale.edu/homes/dvm/software/pddl.tar.gz [Online;
accessed 13-March-2013].

[GL05] Alfonso Gerevini and Derek Long. Plan constraints and preferences in

149

http://www.electroquip.co.uk/festo-controller/festo-fec-fc640-fst-191450
http://www.electroquip.co.uk/festo-controller/festo-fec-fc640-fst-191450
http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/
http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/
http://mgsyn.fortiss.org/
http://www.computer-automation.de/steuerungsebene/steuern-regeln/artikel/100262/
http://www.computer-automation.de/steuerungsebene/steuern-regeln/artikel/100262/
http://www.automationworld.com/operations/factory-future
http://www.automationworld.com/operations/factory-future
http://www.cs.yale.edu/homes/dvm/software/pddl.tar.gz
http://www.cs.yale.edu/homes/dvm/software/pddl.tar.gz

Bibliography

PDDL3. Technical report, Department of Electronics for Automation, Uni-
versity of Brescia, Italy, 2005.

[GL13] Alfonso Gerevini and Derek Long. BNF description of PDDL3.0. Un-
published manuscript from the IPC-5 website, 2005. Available at http://
cs-www.cs.yale.edu/homes/dvm/papers/pddl-bnf.pdf [Online;
accessed 13-March-2013].

[Gro09] Richard C. Gronback. Eclipse Modelig Project: a domain-specific language
(DSL) toolkit. Addison-Wesley, 2009.

[GS04] Brian J. Gough and Richard M. Stallman. An Introduction to GCC: For the
GNU Compilers gcc and g++. Network theory manual. Network Theory,
2004.

[GTW03] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
logics, and infinite games: a guide to current research, volume 2500. Springer,
2003.

[Har12] Matthias Harzheim. Firmware development for a redundant sensor system
for thermal processes. Semesterarbeit, Technische Universität München,
München, Germany, November 2012.

[Her13] Thomas Hergenhahn. LIBNODAVE, a free communication library
for Simatic S7 PLCs, 2013. http://sourceforge.net/projects/
libnodave/ [Online; accessed 12-November-2013].

[HET+06] Jörg Hoffmann, Stefan Edelkamp, Sylvie Thiébaux, Roman Englert, Fred-
erico Liporace, and Sebastian Trüg. Engineering benchmarks for planning:
the domains used in the deterministic part of IPC-4. Journal of Artificial
Intelligence Research, 26(1):453–541, 2006.

[HH12] Jana Hlubeňová and Daniel Hlubeň. Algorithm for selection of simulation
software. Advanced Materials Research, 463–464:1077–1080, February 2012.

[HHK01] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch.
Giotto: A time-triggered language for embedded programming. Proceed-
ings of the First International Workshop on Embedded Software (EMSOFT), Lec-
ture Notes in Computer Science, 2211:166–184, 2001. http://embedded.
eecs.berkeley.edu/giotto/ [Online; accessed 11-February-2013].

[IBM12] IBM Corporation. The Rational Rhapsody family from IBM –
collaborative systems engineering and embedded software develop-
ment, 2012. http://public.dhe.ibm.com/common/ssi/ecm/en/
rab14010usen/RAB14010USEN.PDF [Online; accessed 22-February-
2013].

[IEC03a] International Standard IEC 61131: Programmable Controllers, Part 3: Pro-
gramming Languages, January 2003.

[IEC03b] International Standard IEC 61804-1: Function Blocks (FB) for Process Con-
trol, Part 1: Overview of System Aspects, October 2003.

[IEC03c] International Standard IEC 62264: Enterprise-Control System Integration,
Part 1: Models and Terminology, March 2003.

150

http://cs-www.cs.yale.edu/homes/dvm/papers/pddl-bnf.pdf
http://cs-www.cs.yale.edu/homes/dvm/papers/pddl-bnf.pdf
http://sourceforge.net/projects/libnodave/
http://sourceforge.net/projects/libnodave/
http://embedded.eecs.berkeley.edu/giotto/
http://embedded.eecs.berkeley.edu/giotto/
http://public.dhe.ibm.com/common/ssi/ecm/en/rab14010usen/RAB14010USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/rab14010usen/RAB14010USEN.PDF

Bibliography

[IEC05a] International Standard IEC 19502: Information Technology – Meta Object
Facility (MOF), November 2005.

[IEC05b] Publicly Available Specification IEC PAS 62407: Real-time Ethernet Control
Automation Technology (EtherCATTM), June 2005. [Withdrawn].

[IEC06] International Standard IEC 60050: International Electrotechnical Vo-
cabulary, Part 351: Control Technology, June 2006. http://www.
electropedia.org/ [Online; accessed 16-August-2012].

[IEC07] International Standard IEC 61158: Digital Data Communication for Mea-
surement and Control – Fieldbus for use in Industrial Control Systems,
December 2007.

[IEC10] International Standard IEC 61784: Industrial Communication Networks –
Profiles, Part 1: Fieldbus Profiles, July 2010.

[IEC12] Final Draft International Standard IEC 61499-1: Function Blocks, Part 1:
Architecture, August 2012.

[IET68] IETF RFC 20 (ANSI X 3.4-1968), October 1968. http://tools.ietf.
org/html/rfc20 [Online; accessed 28-February-2013].

[IL01] Frank Iwanitz and Jürgen Lange. OLE for process control: fundamentals, im-
plementation, and application. Hüthig, 2001.

[IMB12] Klaus Irrgang, Uwe Meiselbach, and Gerd Bauer. Sensoren für die
thermische Messfehlerkorrektur. Mikroproduktion, 2012(2):64–67, February
2012. http://www.efm-systems.de/fileadmin/digiraster/
dokumente/MIKROPRODUKTION_2_12_efm-systems_online.pdf
[Online; accessed 21-September-2012].

[IMS11] IMS. Ims research, 2011.

[ISI05] ISIS (Institute for Software Integrated Systems). MetaGME 2000: meta-
modeling environment, January 2005. http://w3.isis.vanderbilt.
edu/projects/gme/meta.html [Online; accessed 28-June-2014].

[Jan07] David Janin. On the (high) undecidability of distributed synthesis prob-
lems. In Jan Leeuwen, Giuseppe F. Italiano, Wiebe Hoek, Christoph
Meinel, Harald Sack, and František Plášil, editors, Proceedings of the 33rd
Conference on Current Trends in Theory and Practice of Computer Science (SOF-
SEM 2007), volume 4362 of Lecture Notes in Computer Science, pages 320–
329. Springer-Verlag, 2007.

[JCC97] Mu Der Jeng, Shih Wei Chou, and Chi Liang Chung. Performance eval-
uation of an IC fabrication system using Petri nets. In IEEE International
Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics
and Simulation, volume 1, pages 269–274, October 1997.

[JGWB07] Barbara Jobstmann, Stefan Galler, Martin Weiglhofer, and Roderick Bloem.
Anzu: a tool for property synthesis. In Werner Damm and Holger Her-
manns, editors, Proceedings of the 19th International Conference on Computer
Aided Verification (CAV 2007), volume 4590 of Lecture Notes in Computer
Science, pages 258–262. Springer Berlin Heidelberg, Berlin, Germany, July

151

http://www.electropedia.org/
http://www.electropedia.org/
http://tools.ietf.org/html/rfc20
http://tools.ietf.org/html/rfc20
http://www.efm-systems.de/fileadmin/digiraster/dokumente/MIKROPRODUKTION_2_12_efm-systems_online.pdf
http://www.efm-systems.de/fileadmin/digiraster/dokumente/MIKROPRODUKTION_2_12_efm-systems_online.pdf
http://w3.isis.vanderbilt.edu/projects/gme/meta.html
http://w3.isis.vanderbilt.edu/projects/gme/meta.html

Bibliography

2007.

[Jon06] Clarence T. Jones. STEP 7 in 7 Steps: A Practical Guide to Implementing S7-
300/S7-400 Programmable Logic Controllers. Brilliant-Training, 2006.

[KD97] Jongwook Kim and Alan A. Desrochers. Modeling and analysis of semi-
conductor manufacturing plants using time Petri net models: COT busi-
ness case study. In IEEE International Conference on Systems, Man, and Cy-
bernetics, 1997. Computational Cybernetics and Simulation, volume 4, pages
3227–3232, October 1997.

[KHJ+99] Yoram Koren, Uwe Heisel, Francesco Jovane, Toshimichi Moriwaki,
G. Pritschow, G. Ulsoy, and H. Van Brussel. Reconfigurable manufacturing
systems. Annals of the CIRP - Manufacturing Technology, 48(2):527–540, 1999.

[KKB13] Nadine Keddis, Gerd Kainz, and Christian Buckl. Towards adaptable man-
ufacturing systems. In Proceedings of the 2013 IEEE International Conference
on Industrial Technology (ICIT 2013), February 2013.

[KKK84] Norihisa Komoda, Kazuo Kera, and Takeaki Kubo. An autonomous,
decentralized control system for factory automation. IEEE Computer,
17(12):73–83, December 1984.

[KL92] Asawaree Kalavade and Edward A. Lee. Hardware / software co-design
using Ptolemy – a case study. In Proceedings of the First International Work-
shop on Hardware/Software Codesign, Estes Park, Colorado, USA, September
1992.

[KLW11] Henning Kagermann, Wolf-Dieter Lukas, and Wolfgang Wahlster. Indus-
trie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revo-
lution. VDI Nachrichten, April 2011. http://www.vdi-nachrichten.
com/artikel/-/52570 [Online; accessed 9-October-2012].

[Kor10] Yoram Koren. The Global Manufacturing Revolution – Product-Process-
Business Integration and Reconfigurable Systems. John Wiley & Sons, June
2010.

[Kov11] Daniel L. Kovacs. Complete BNF description of PDDL 3.1
(completely corrected). http://www.plg.inf.uc3m.es/
ipc2011-deterministic/attachments/Resources/
kovacs-pddl-3.1-2011.pdf [Online; accessed 30-November-2013],
2011.

[KR88] Brian W. Kernighan and Dennis Ritchie. The C Programming Language.
Prentice Hall, 2nd edition, March 1988.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. John Wiley & Sons, March 2008.

[LLJ04] Chang-Pin Lin, Yi-Pin Lin, and Mu Der Jeng. Design of intelligent manu-
facturing systems by using UML and Petri net. In 2004 IEEE International
Conference on Networking, Sensing and Control, volume 1, pages 501–506,
March 2004.

[MCF03] Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Model-driven

152

http://www.vdi-nachrichten.com/artikel/-/52570
http://www.vdi-nachrichten.com/artikel/-/52570
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf

Bibliography

development. IEEE Software, pages 14–18, September 2003.

[Met13] MetaCase. MetaEdit+ Domain-Specific Modeling (DSM) environment,
2013. http://www.metacase.com/products.html [Online; accessed
22-February-2013].

[MJNT00] R. Mason-Jones, B. Naylor, and D.R. Towill. Engineering the leagile supply
chain. International Journal of Agile Management, 2(1):54–61, 2000.

[Mod06] Modbus-IDA. Modbus Application Protocol Specification V1.1b, Decem-
ber 2006. http://www.modbus.org/docs/Modbus_Application_
Protocol_V1_1b.pdf [Online; accessed 4-September-2012].

[MS12] PParthasarathy Madhusudan and Sanjit A. Seshia, editors. Proceedings of
the 24th International Conference on Computer Aided Verification (CAV 2012),
volume 7358 of Lecture Notes in Computer Science, Berkeley, CA, USA, July
2012. Springer.

[MUK00] Mostafa G. Mehrabi, A. Galip Ulsoy, and Yoram Koren. Re-
configurable manufacturing systems: key to future manufac-
turing. Journal of Intelligent Manufacturing, 11(4):403–419, 2000.
http://deepblue.lib.umich.edu/bitstream/handle/2027.
42/46513/10845_2004_Article_268791.pdf [Online; accessed
20-September-2014].

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, April 1989.

[MW03] Swarup Mohalik and Igor Walukiewicz. Distributed games. In Proceedings
of the 23rd International Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’03), volume 2914 of Lecture Notes in
Computer Science, pages 338–351. Springer-Verlag, 2003.

[Nan98] Andreas Nann. Prozeßdatenerfassung und -verarbeitung mit Siemens WinCC.
Dissertation, Fachhochschule für Technik und Wirtschaft, Offenburg, Ger-
many, 1998.

[NB04] Stuart Naish and Peter Baker. Materials handling: fulfilling the promises.
Logistics and Transport Focus, 6(1):18–26, 2004.

[NF70] Nils J. Nilsson and Richard E. Fikes. STRIPS: A new approach to the appli-
cation of theorem proving to problem solving. Technical Report 43, Stan-
ford Research Institute, California, USA, October 1970.

[OLK93] B. Orlik, J. Langfermann, and J. Kasting. Microcontroller-based inver-
tors including a decentralized process control. In Fifth European Conference
on Power Electronics and Applications, volume 6, pages 150–155, September
1993.

[OMG07] OMG (Object Management Group). OMG Data Distribution Service for
Real-time Systems, version 1.2, January 2007. http://www.omg.org/
spec/DDS/1.2/PDF [Online; accessed 5-August-2013].

[OMG11a] OMG (Object Management Group). OMG Meta Object Facility (MOF) Core
Specification, version 2.4.1, August 2011. http://www.omg.org/spec/

153

http://www.metacase.com/products.html
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/46513/10845_2004_Article_268791.pdf
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/46513/10845_2004_Article_268791.pdf
http://www.omg.org/spec/DDS/1.2/PDF
http://www.omg.org/spec/DDS/1.2/PDF
http://www.omg.org/spec/MOF/2.4.1/PDF
http://www.omg.org/spec/MOF/2.4.1/PDF

Bibliography

MOF/2.4.1/PDF [Online; accessed 10-October-2012].

[OMG11b] OMG (Object Management Group). OMG Unified Modeling LanguageTM

(OMG UML), Infrastructure, version 2.4.1, August 2011. http://www.
omg.org/spec/UML/2.4.1/Infrastructure/PDF [Online; accessed
21-September-2012].

[OMG11c] OMG (Object Management Group). OMG Unified Modeling LanguageTM

(OMG UML), Superstructure, version 2.4.1, August 2011. http://www.
omg.org/spec/UML/2.4.1/Superstructure/PDF [Online; accessed
21-September-2012].

[OMG11d] OMG (Object Management Group). UML Profile for MARTE: Model-
ing and Analysis of Real-Time Embedded Systems, version 1.1, June
2011. http://www.omg.org/spec/UML/2.4.1/Superstructure/
PDF [Online; accessed 21-September-2012].

[OMG12a] OMG (Object Management Group). Information Technology - Object Man-
agement Group Object Constraint Language (OCL), version 2.3.1, April
2012. http://www.omg.org/spec/OCL/ISO/19507/PDF [Online; ac-
cessed 14-August-2013].

[OMG12b] OMG (Object Management Group). OMG Systems Modeling Language
(OMG SysMLTM), version 1.3, June 2012. http://www.omg.org/spec/
SysML/1.3/PDF [Online; accessed 10-October-2012].

[Ped89] Edwin P. D. Pednault. Adl: exploring the middle ground between strips
and the situation calculus. In Proceedings of the first international conference
on Principles of knowledge representation and reasoning, pages 324–332, San
Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of Reactive(1) de-
signs. In E. Allen Emerson and Kedar S. Namjoshi, editors, 7th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation,
volume 3855 of Lecture Notes in Computer Science, pages 364–380. Springer
Berlin Heidelberg, 2006.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 1989), pages 179–190, New York, NY, USA,
1989. ACM.

[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to
synthesize. In Proceedings of the 31st Annual Symposium on Foundations of
Computer Science, volume 2, pages 746–757, October 1990.

[Pro13] Promotorengruppe Kommunikation der Forschungsunion Wirtschaft –
Wissenschaft. Umsetzungsempfehlungen für das Zukunftsprojekt In-
dustrie 4.0. Abschlussbericht, acatech – Deutsche Akademie der Tech-
nikwissenschaften e.V., April 2013. http://www.bmbf.de/pubRD/
Umsetzungsempfehlungen_Industrie4_0.pdf [Online; accessed 4-
November-2013].

[PSW00] Raja Parasuraman, Thomas B. Sheridan, and Christopher D. Wickens. A

154

http://www.omg.org/spec/MOF/2.4.1/PDF
http://www.omg.org/spec/MOF/2.4.1/PDF
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/OCL/ISO/19507/PDF
http://www.omg.org/spec/SysML/1.3/PDF
http://www.omg.org/spec/SysML/1.3/PDF
http://www.bmbf.de/pubRD/Umsetzungsempfehlungen_Industrie4_0.pdf
http://www.bmbf.de/pubRD/Umsetzungsempfehlungen_Industrie4_0.pdf

Bibliography

model for types and levels of human interaction with automation. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,
30(3):286–297, May 2000.

[Rab69] Michael O. Rabin. Decidability of second-order theories and automata on
infinite trees. Transactions of the American Mathematical Society, pages 1–35,
1969.

[RIF13] RIF e.V. CIROS-Engineering: CIROS Studio, 2013. http:
//www.ciros-engineering.com/en/products/virtual_
engineering/ciros_studio/ [Online; accessed 27-February-2013].

[Ros92] Roni Rosner. Modular synthesis of reactive systems. PhD thesis, The Weiz-
mann Institute of Science, Rehovot, Israel, April 1992.

[Sch12] Jochen Schlick. Cyber-physical systems in factory automation - towards
the 4th industrial revolution. In 9th IEEE International Workshop on Factory
Communication Systems (WFCS 2012), May 2012.

[Sel11a] Bran Selić. The theory and practice of modeling language de-
sign, 2011. http://ecs.victoria.ac.nz/foswiki/pub/
Events/MODELS2011/Material/MODELS_2011_T3-Selic.
ModelingLanguages.Tutorial.updated.v2.pdf [Online; accessed
10-October-2012].

[Sel11b] Bran Selić. The theory and practice of modeling language design for
model-based software engineering—a personal perspective. In João Fer-
nandes, Ralf Lämmel, Joost Visser, and João Saraiva, editors, Generative
and Transformational Techniques in Software Engineering III, volume 6491 of
Lecture Notes in Computer Science, pages 290–321. Springer, 2011.

[SGB+13] Stephan Sommer, Michael Geisinger, Christian Buckl, Gerd Bauer, and
Alois Knoll. Reconfigurable industrial process monitoring using the
CHROMOSOME middleware. In Fifth International Workshop on Adaptive
and Reconfigurable Embedded Systems (APRES 2013). ACM, April 2013.

[SGT+12] Thierry Le Sergent, Alain Le Guennec, François Terrier, Yann Tanguy,
and Sébastien Gérard. SCADE System, a comprehensive toolset for
smooth transition from Model-Based System Engineering to certified
embedded control and display software, May 2012. http://www.
esterel-technologies.com/technology/WhitePapers/ [Online;
accessed 22-February-2013].

[Sie11] Siemens AG. Standards Compliance according to IEC 61131-3:2003-12 (2nd
Edition), 2011. http://support.automation.siemens.com/AT/
llisapi.dll/csfetch/50204938/IEC_61131_Compliance.pdf
[Online; accessed 6-September-2012].

[Sie13] Siemens AG. Product guide for totally integrated automation,
2013. http://www.industry.siemens.com/topics/global/en/
tia/Documents/tia-product-guide-en.pdf [Online; accessed 24-
June-2014].

[Sie14a] Siemens AG. Compact CPUs – PLCs, 2014. http://w3.

155

http://www.ciros-engineering.com/en/products/virtual_engineering/ciros_studio/
http://www.ciros-engineering.com/en/products/virtual_engineering/ciros_studio/
http://www.ciros-engineering.com/en/products/virtual_engineering/ciros_studio/
http://ecs.victoria.ac.nz/foswiki/pub/Events/MODELS2011/Material/MODELS_2011_T3-Selic.ModelingLanguages.Tutorial.updated.v2.pdf
http://ecs.victoria.ac.nz/foswiki/pub/Events/MODELS2011/Material/MODELS_2011_T3-Selic.ModelingLanguages.Tutorial.updated.v2.pdf
http://ecs.victoria.ac.nz/foswiki/pub/Events/MODELS2011/Material/MODELS_2011_T3-Selic.ModelingLanguages.Tutorial.updated.v2.pdf
http://www.esterel-technologies.com/technology/WhitePapers/
http://www.esterel-technologies.com/technology/WhitePapers/
http://support.automation.siemens.com/AT/llisapi.dll/csfetch/50204938/IEC_61131_Compliance.pdf
http://support.automation.siemens.com/AT/llisapi.dll/csfetch/50204938/IEC_61131_Compliance.pdf
http://www.industry.siemens.com/topics/global/en/tia/Documents/tia-product-guide-en.pdf
http://www.industry.siemens.com/topics/global/en/tia/Documents/tia-product-guide-en.pdf
http://w3.siemens.com/mcms/programmable-logic-controller/en/simatic-s7-controller/s7-300/cpu/compact-cpus/
http://w3.siemens.com/mcms/programmable-logic-controller/en/simatic-s7-controller/s7-300/cpu/compact-cpus/

Bibliography

siemens.com/mcms/programmable-logic-controller/en/
simatic-s7-controller/s7-300/cpu/compact-cpus/ [Online;
accessed 5-July-2014].

[Sie14b] Siemens AG. LOGO! modular basic variants - PLCs, 2014.
w3.siemens.com/mcms/programmable-logic-controller/
en/logic-module-logo/modular-basic-variants/ [Online;
accessed 5-July-2014].

[SK00] Douglas C. Schmidt and Fred Kuhns. An overview of the Real-Time
CORBA specification. IEEE Computer, 33(6):56–63, June 2000.

[SM06] Thomas Schulz and Dimos Mitkoudis. Feinplanung von Fertigungsaufträ-
gen: Optimierung als Kernfunktion von Manufacturing Execution Sys-
tems. PPS Management, 11:52–55, 2006.

[SME09] SMErobotTM consortium. SMErobotTM, 2009. http://www.smerobot.
org/ [Online; accessed 5-August-2013].

[SME12] SMErobotics consortium. SMErobotics, 2012. http://www.
smerobotics.org/ [Online; accessed 5-August-2013].

[SP03] Apostolos Syropoulos and Basil K. Papadopoulos. A survey of com-
puter operating systems for industrial applications. http://obelix.
ee.duth.gr/~apostolo/Articles/rtos.pdf [Online; accessed 21-
September-2012], April 2003.

[Spa13] Sparx Systems Pty Ltd. Enterprise Architect – UML Design Tools
and UML CASE tools for software development, 2013. http://www.
sparxsystems.com/products/ea/ [Online; accessed 22-February-
2013].

[Str13] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 4th
edition, May 2013.

[SV06] Thomas Stahl and Markus Völter. Model-driven software development. John
Wiley & Sons Chichester, 2006.

[SV13] Natasha Sharygina and Helmut Veith, editors. Proceedings of the 25th Inter-
national Conference on Computer Aided Verification (CAV 2013), volume 8044
of Lecture Notes in Computer Science, Saint Petersburg, Russia, July 2013.
Springer.

[The13] The MathWorks, Inc. Simulink – simulation and model-based design,
2013. http://www.mathworks.com/products/simulink/ [Online;
accessed 22-February-2013].

[Tho84] Lyn C. Thomas. Games, theory, and applications. Ellis Horwood/John Wiley,
Chichester, London, 1984.

[Tho05] Jean-Pierre Thomesse. Fieldbus technology in industrial automation. Pro-
ceedings of the IEEE, 93(6):1073–1101, June 2005.

[TK06] Jeffrey Travis and Jim Kring. LabVIEW for Everyone: Graphical Programming
Made Easy and Fun. National Instruments Virtual Instrumentation Series.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 3rd edition, 2006.

156

http://w3.siemens.com/mcms/programmable-logic-controller/en/simatic-s7-controller/s7-300/cpu/compact-cpus/
http://w3.siemens.com/mcms/programmable-logic-controller/en/simatic-s7-controller/s7-300/cpu/compact-cpus/
http://w3.siemens.com/mcms/programmable-logic-controller/en/simatic-s7-controller/s7-300/cpu/compact-cpus/
w3.siemens.com/mcms/programmable-logic-controller/en/logic-module-logo/modular-basic-variants/
w3.siemens.com/mcms/programmable-logic-controller/en/logic-module-logo/modular-basic-variants/
http://www.smerobot.org/
http://www.smerobot.org/
http://www.smerobotics.org/
http://www.smerobotics.org/
http://obelix.ee.duth.gr/~apostolo/Articles/rtos.pdf
http://obelix.ee.duth.gr/~apostolo/Articles/rtos.pdf
http://www.sparxsystems.com/products/ea/
http://www.sparxsystems.com/products/ea/
http://www.mathworks.com/products/simulink/

Bibliography

[Zho98] MengChu Zhou. Modeling, analysis, simulation, scheduling, and con-
trol of semiconductor manufacturing systems: A Petri net approach. IEEE
Transactions on Semiconductor Manufacturing, 11(3):333–357, August 1998.

157

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Acronyms
	List of Symbols
	List of Figures
	1 Introduction
	1.1 Setting and Motivation
	1.2 Goals of this Thesis
	1.3 Main Contributions of this Thesis
	1.4 Structure of this Thesis

	2 Background and Trends
	2.1 Industrial Automation
	2.2 Modeling and Model-driven Development
	2.3 Games and Game-based Synthesis

	3 Overview of the Approach
	3.1 User Roles and Domain Knowledge
	3.2 Derived Workflow
	3.3 Scope of this Work
	3.4 Introduction of the Running Example

	4 System Modeling and Task Description
	4.1 Modeling Overview
	4.2 Formal Description of Modular Assembly Lines
	4.3 Formal Description of Automation Tasks
	4.4 Discussion and Application to Running Example
	4.5 Summary
	4.6 Related Work

	5 Industrial Control Program Generation Workflow
	5.1 Approach
	5.2 Constraint Checking
	5.3 Model-to-model Transformation
	5.4 Model-to-text Transformation
	5.5 Game-based Solving
	5.6 Translation of Solver Output to Control Programs
	5.7 Discussion and Application to Running Example
	5.8 Summary
	5.9 Related Work

	6 Platform Mapping and Execution
	6.1 Platform Mapping Overview
	6.2 Generation of Platform Mapping Code
	6.3 Mapping of Behavioral Primitives
	6.4 Manually Written Platform Library
	6.5 Discussion and Application to Running Example
	6.6 Summary

	7 Realization and Evaluation
	7.1 Model-driven Development Tool MGSyn
	7.2 Simulation of Control Program Execution
	7.3 Evaluation Overview
	7.4 Evaluation of the Running Example
	7.5 Evaluation of Circular Material Flow Example: Focus on Parallel Execution
	7.6 Evaluation of Bidirectional Material Flow Example: Focus on Decentralized Execution
	7.7 Summary

	8 Conclusion
	A Model Transformation: Token-based Ownership of Predicates
	Index
	Bibliography

