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Abstract— This paper deals with recognizing human actions
in depth video data. Current state-of-the-art action recognition
methods use hand-designed features, which are difficult to
produce and time-consuming to extend to new modalities. In
this paper, we propose a novel, 3.5D representation of a depth
video for action recognition. A 3.5D graph of the depth video
consists of a set of nodes that are the joints of the human body.
Each joint is represented by a set of spatio-temporal features,
which are computed by an unsupervised learning approach.
However, if occlusions occur, the 3D positions of the joints are
noisy which increases the intra-class variations in action classes.
To address this problem, we propose the Ensemble Weighted
Multi-Instance Learning approach (EnwMi) for the action
recognition task. It considers the class imbalance and intra-
class variations. We formulate the action recognition task with
depth videos as a weighted multi-instance problem. We further
integrate an ensemble learning method into the weighted multi-
instance learning framework. Our approach is evaluated on
Microsoft Research Action3D dataset, and the results show that
it outperforms state-of-the-art methods.

I. INTRODUCTION

Human action recognition has played an important role in
a number of real-word applications such as video surveil-
lance, health care, and a variety of systems that involve
interactions between persons and computers. Especially in
robotics, the ability of a robot to understand the action
of its human peers is critical for the robot to collaborate
effectively and efficiently with humans in a peer-to-peer
human-robot team. With recent developments to low-cost
sensors, depth cameras have received a great deal of attention
from researchers.

Compared to a visible light camera, depth sensors have
several advantages. For example, depth images provide 3D
structural information of a scene, which can often be more
discriminative than color and texture in many applications
including detection, segmentation and action recognition.
These advantages have facilitated a rather powerful human
motion capturing technique [16] that generates 3D joint
positions of the human skeleton.

In action recognition, which is the topic of this paper, two
significant questions arise when using depth sequences. First,
will RGB-based methods for action recognition perform
well when using depth sensors? There is no rich texture in
depth data, which hinders the extension of hand-designed
features from color-based data to depth data, such as STIP
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Fig. 1. Examples of the skeleton for different action classes. The
discriminative joints discovered by our method are marked as thick and red
lines. (a): Golf Swing, (b): Hand Catch, (c): Jogging, (d): Tennis Swing,
(e): Pickup Throw. (best viewed in color).

[7], and HOG [2]. Furthermore, the depth images are often
contaminated with undefined depth points, which appear
in the sequences as large shadows. Second, will the noisy
human skeleton data perform well in action recognition?
Skeleton data are able to provide additional body part
information to differentiate actions. However, the skeleton
tracking algorithm proposed in [16] produces inaccurate
results or even fails when occlusion occurs.

These challenges motivate us to seek for feature rep-
resentations that are highly discriminative and robust to
occlusions. Our work in this paper proceeds along this
direction. We propose a novel action recognition approach
to address the above two challenges. Specifically, we make
two key contributions:

First, we learn 3.5D graph from depth video data using
unsupervised learning approache. We provide an unsuper-
vised learning method to learn a 3.5D representation of depth
video inspired by [6], [9]. At the heart of our method is
the use of the Independent Subspace Analysis (ISA). The
ISA algorithm is a well-known algorithm in the field of
natural image statics [6]. An advantage of ISA is that it
learns features that are robust to local translation while being
selective to rotation and velocity. A disadvantage of ISA is
that it can be slow to train with high dimensionality data
(e.g. video data). In this paper, we extend the ISA algorithm
for the use of depth video data (see Fig .2). Instead of
training the model with the entire video, we apply the ISA
algorithm to local regions of joints to improve the training
efficiency. Based on the depth video and the estimated 3D
joint positions, we learn spatio-temporal features directly
for each joint. The spatio-temporal features can be treated
as the resulting descriptors of the local spatio-temporal
interest points. These points are densely sampled from a
local region around the joints. Each joint is associated with a
histogram feature. We call this histogram feature joint-based
ISA feature or JISA.
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Fig. 2. An overview of our ISA model.

Second, we provide the ensemble weighted multi-instance
learning approach. By training and combining multiple clas-
sifiers, ensemble methods [22] are state-of-the-art techniques
with strong generalization abilities. Considering tracking
errors of the skeleton data and to better characterize the intra-
class variations, we propose an ensemble weighted multi-
instance learning approach (EnwMi) for action recognition
using depth video. Inspired by [11], this method firstly
samples several subsets from a majority class independently,
then trains multiple basic classifiers using the subsets and
the minority class, and finally combines all classifiers for the
final decision. It can deal with the class imbalance and the
long training time of an SVM simultaneously. We formulate
action recognition task with depth video as a multiple
instance problem. We solve the multi-instance problem by
a multiple kernel learning (MKL) approach. MKL is able to
discover the discriminative JISA features. The basic idea for
employing the MKL approach is that a certain action class
is usually only associated with a subset of kinematic joints
of the articulated human body.

The reminder of this paper is organized as follows: Section
2 reviews related work. Section 3 gives details of learning the
3.5D Graph Representation for depth video data. In Section
4, we present the ensemble weighted multi-instance learn-
ing approach. Section 5 provides the experimental results.
Finally, Section 6 concludes the paper.

II. RELATED WORK

Research in action recognition focused on analyzing
spatio-temporal patterns in traditional 2D videos captured
by a single camera. As RGBD sensors become available,
action recognition researchers attempted to adopt techniques
developed for color sequences to depth sequences. For in-
stance, Li et al. [10] proposed a Bag of 3D points model by
sampling points from the silhouette of the depth images. Lv
and Nevatia [12] employed a hidden markov model (HMM)
to represent the transition probability for pre-defined 3D joint
positions. Similarly, Han et al. [4] used conditional random
filed (CRF) to describe the 3D joint positions. However,
adopting local interest points-based methods is difficult,
because features such as STIP [7] and HOG [2] are not
reliable in depth sequences. Until recently, a few spatial-
temporal cuboid descriptors for depth videos were proposed.
Cheng et al. [1] built a comparative coding descriptor to
describe the depth cuboid by comparing the depth value of

the center point with the nearby 26 points. Zhao et al. [21]
built local depth patterns which describe the local region of
interest points in depth map. Xia et al. [20] proposed the
depth cuboid similarity feature as descriptor for the spatio-
temporal depth cuboid. Oreifej et al. [14] presented a new
descriptor HON4D using a histogram which captures the
distribution of the surface normal orientation in the 4D space
of time, depth, and spatial coordinates.

Besides these algorithms, there has been another category
of methods for action recognition using depth images: algo-
rithms based on high-level features. It is generally agreed that
knowing the 3D joint position of human subject is helpful for
action recognition. Wang et al. [19] combined joint location
features and local occupancy features and employ a Fourier
temporal pyramid to represent the temporal dynamics of the
actions. Another method for modeling actions is dynamic
temporal warping (DTW), Müller et al. [13] matched the 3D
joint positions to the templates, and action recognition can
be done through a nearest-neighbor classification method.
However, the 3D joint positions that are generated via
skeleton tracking from the depth map sequences are noisy.
Moreover, with limited amount of training data, training a
complex model is easy to overfit.

III. LEARNING 3.5D GRAPH REPRESENTATIONS

In this section, we first briefly describe how to implement
the ISA algorithm to depth video data. Next, we discuss
details of the 3.5D graph representations of action images.

A. Independent Subspace Analysis

ISA is an unsupervised learning algorithm that learns
features from unlabeled subvolumes (see Fig. 2). First, we
extract random subvolumes from the local region of 20 joints
of depth video data. We then normalize and whiten the set of
subvolumes. We feed the pre-processed subvolumes to ISA
networks as input units. An ISA network [6] is described
as a two-layer neural network, with square and square-root
nonlinearities in the first and second layers respectively.

We start with any input unit xt ∈ Rn for each random sam-
pled subvolume. We split each subvolume into a sequence
of image patches and flatten them into a vector xt with the
dimension n. The activation of each second layer unit is

pi(x
t;W,V )=

√∑m
k=1 Vik(

∑n
j=1Wkjxtj)

2 (1)

ISA learns parameters W through finding sparse feature
representations in the second layer by solving

min
W

∑T
t=1

∑m
i=1 pi(x

t;W,V )

s.t.WWT = I
(2)

Here, W ∈ Rk×n is the weight connecting the input units
to the first layer units. V ∈ Rm×k is the weight connecting
the first layer units to the second layer units; n, k,m are the
input dimension number of the first layer units and second
layer units respectively. The orthonormal constraint ensures
feature diversity.
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Fig. 3. Visualization of 10 ISA filters learned from the MSRAction3D
dataset. These filters capture a moving edge in time.

The model so far has been unsupervised. The bottom ISA
model learns spatio-temporal features that detect a moving
edge in time as shown in Fig. 3. It shows that the learned
feature (each row in Fig. 3) is able to assign similar features
in a group thereby achieving spatial invariance. The features
have sharper edges like Gabor filters.As is common in neural
networks, we stack another ISA layer with PCA on top of the
bottom ISA. We use PCA to whiten the data and reduce the
dimensions of the input unit. The model is trained greedily
layerwise in the same manner as other algorithms described
in [5], [9].

B. The 3.5D Graph Representation

We borrow the term, 3.5D graph, from stereoscopic vision
[15]. It refers to the outcome of reconstructing 4D informa-
tion from spatio-temporal features and 3D joints positions.
Fig. 4 shows a graphical illustration of our 3.5D represen-
tation of action videos. It combines the 3D configuration of
human skeletons and 3D appearance features of each joint.

A 3.5D graph GX representing a depth video X consists
of V nodes connected by E edges. The nodes correspond to
a set of key points (joints) of the human body, as shown in
Fig. 4. A node v is represented by the 3D position of this
node pv and the histogram features fXv extracted in a local
image region surrounding this node in time. An edge e is a
histogram feature fXe = [fXv , f

X
v′ ], where node v and node

v’ are connected by e.

C. Implementation Details

For a human subject in a depth video X , the skeleton
tracker tracks 20 joint positions[16], which correspond to 20
nodes of a 3.5D graph GX . For each joint i at frame t, its
local region Sit is of size (vx, vy) pixels. Let T denote the
temporal dimension of the depth video X . The depth video X
is represented as the set of joint volumes {JV1, JV2...JV20}.
Each joint volume can be considered as a sequence of local
regions JVi = {Si1, Si2...Sit}. The size of JVi is vx×vy×T .

One of the disadvantages in training the ISA model is
that it could be time-consuming when the dimension of the
input data is large. In this paper, we apply the ISA algorithm
to the local region of joints. As the local region of each
joint is small compared to the whole image, we reduce the
dimensionality and greatly improve efficiency. Additionally,
it is possible to densely sample the local region of the joint
to capture more discriminative information. Moreover, the
features are discriminative enough to characterize variations

Fig. 4. Instead of treating an action class as a space-time pattern entire
depth video (left), we propose to define an action as a collection of local
regions of joints in time (middle). EnwMi is used to learn the 3.5D Graph
of the depth video (right).

in different joints. Based on the above ISA model, we com-
pute the spatio-temporal features directly from JVi for each
joint (see Fig. 4). We treat the spatio-temporal features as
the resulting descriptors of the local spatio-temporal interest
points. Each interest point is represented by a subvolume,
which is of size sx×sy×st. We densely sample the interest
points from JVi. We perform the vector quantization by
clustering the spatio-temporal feature for each joint. Hence
each 3D joint is associated with a histogram feature JISAi,
which corresponds to the feature fXv of a node v in GX .

In order to capture the 3D position to fully model the joint,
it is necessary to integrate the position information of joint i
into the final feature JISAi. For each joint i at frame t, we
extract the pairwise relative position features P ti by taking
the difference between the 3D position pi of joints i and that
of each other joint j: P ti = {pi − pj |i 6= j}.

Inspired by the Spatial Pyramid approach [8], we group
the adjacent joints together as a joint pair to capture the
spatial structure of the action. Therefore, for a human subject,
we have 19 joint pairs. Each joint pair is represented as
a histogram feature JISApij = [JISAi, JISAj ], which
corresponds to the feature fXe of en edge e in graph GX .

IV. ENSEMBLE WEIGHTED MULTI-INSTANCE LEARNING

To better characterize the intra-class variations and be
robust to the errors of the skeleton tracker [16], we pro-
pose an ensemble weighted multi-instance learning algorithm
(EnwMi) for action recognition using depth videos. We first
describe the basic approach. Next, we give the details of the
kernel design.

A. Basic Approach

The properties of training datasets such as size, distribu-
tion and number of attributes significantly contribute to the
generalization error of a learning machine. In most action
recognition tasks, there are serious class imbalances and
not-well-distributed samples.In addition, different subjects
perform actions with considerable variations. These problems
are prone to lead to a partial over-fitting model.

To deal with these problems, under-sampling is an efficient
method. It uses a subset of majority class samples to train
a classifier. Although the training set becomes balanced and
the training process becomes faster, standard under-sampling
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often suffers from the loss of helpful information concealed
in the ignored majority class samples. Inspired by [11], our
EnwMi method considers the distributions of different sam-
ples in the training dataset. Rather than randomly sampling
subsets of the majority class samples, we try to select the
samples which are hardest to be trained, and remove the
samples which already have been learned well. Similar to
other ensemble learning approaches, AdaBoost algorithm [3]
is used in EnwMi to train a number of weighted component
classifiers. For each iteration of the AdaBoost algorithm, a
subset of top-weighted majority class samples are selected as
negative samples. An ensemble of all component classifiers
together creates the final classifier. A detailed presentation
of the EnwMi method is given in Algorithm 1.

Algorithm 1 EnwMi
Input:

For the training set of each action class, select all positive
samples P , and all negative samples N , |P| < |N |, yi ∈
{+1,−1} are their class labels. Define T the number of
iterations to train an AdaBoost ensemble C.

Weights initialization for each sample: riτ = 1/(|P|+|N |),
i = 1, ..., |P|+ |N |, τ = 1, mode = top
while τ ≤ T do

Weights normalization: r̄iτ = riτ/
∑
ir
j
τ , ∀i

if mode == top then
Select top weighted samples: a subset Nτ from N

end if
Training an MKLSVM component classifier, Fτ on P

and Nτ
Compute the performance of Fτ over P and N :

pτ =
∑

i
riτg

i
τ (1− abs(sgn(F iτ )− yi)) (3)

where
giτ = ((1− sgn(F iτ ))/2 + pro(F iτ )sgn(F iτ ))

pro() means the probability output of F iτ
Choose ατ = − 1

2 log( 1−pτ
pτ

)
if ατ > θ then

mode = top
τ = τ + 1
Update the weights:

ri+1
τ = r̄iτe

(−2|giτ |+ατ )(1−abs(sgn(F
i
τ )−y

i)) ∀i (4)

else
mode = random
Select a random subset Nτ from N
continue

end if
end whileOutput:

C =

∑T
τ=1ατpro(Fτ )∑T

τ=1ατ
(5)

B. Kernel Design of Component Classifiers

Our aim is to learn a component classifier where rather
than using a pre-specified kernel, the kernel is learnt to be
a linear combination of given base kernels. Suppose that
the bags of the depth video X are represented as fX =
{f1, f2, ..., ft−1, ft} , where t is the number of the features
for each depth video. The classifier defines a function F(fX )
that is used to rank the depth video X by the likelihood of
containing an action of interest.

The function F is learnt, along with the optimal combina-
tion of histogram features fX , by using the Multiple Kernel
Learning techniques proposed in [17]. The function F(fX )
is the discriminant function of a Support Vector Machine,
and is expressed as

F(fX ) =

M∑
i=1

yiαiK(fx, f i) + b (6)

Here, f i, i = 1, ...,M denotes the feature histograms of
M training depth video data, selected as representative by
the SVM, yi ∈ {+1,−1} are their class labels, and K is a
positive definite kernel, obtained as a linear combination of
base kernels

K(fX , f i) =
∑
j

wjK(fXj , f
i
j) (7)

MKL learns both the coefficient αi and the kernel com-
bination weight wj . For a multi class problem, a different
set of weights {wj} are learnt for each class. We choose
one-against-rest to decompose a multi-class problem.

Because of linearity, Eq .6 can be rewrittten as

F(fX ) =
∑
j

wjF(fXj ) (8)

where

F(fXj ) =

M∑
i=1

yiαiK(fxj , f
i
j) + b (9)

With each kernel corresponding to each feature, there are
20 weights wj to be learned for the linear combination for
IJSA features, and 19 weights wj to be learned for JISAp
features. Weights can therefore highlight more discriminative
joints for an action and we can even ignore joints that are
not discriminative by setting wj to zero.

V. EXPERIMENTS

To evaluate our method, we conducted experiments on
the MSRAction3D dataset [10]. We compared our algorithm
with state-of-the-art methods on action recognition using
depth videos. Experimental results show that our algorithm
gives significantly better recognition accuracy than algo-
rithms based on low-level hand-designed features and high-
level joint-based features. In addition, we investigate the
discriminative joints for each action class.
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TABLE I
THE THREE ACTION SUBSETS USED IN OUR EXPERIMENTS

Cross Subset 1(CS1) Cross Subset 2(CS2) Cross Subset 3(CS3)
Tennis Serve(TSr) High Wave(HiW) High Throw(HT)

Horizontal Wave(HoW) Hand Catch(HC) Forward Kick(FK)
Forward Punch(FP) Draw X(DX) Side Kick(SK)

High Throw(HT) Draw Tick(DT) Jogging(JG)
Hand Cap(HCp) Draw Circle(DC) Tennis Swing(TSw)

Bend(BD) Hands Wave(HW) Tennis Serve(TSr)
Hammer(HM) Forward Kick(FK) Golf Swing(GS)

Pickup Throw(PT) Side Boxing(SB) Pickup Throw(PT)

TABLE II
COMPARISON OF RESULTS ON MSRACTION3D DATASET

Method Accuracy
Action Graph On Bag of 3D Points [10] 0.747

Random Occupancy Pattern [18] 0.865
Mining Actionlet Ensemble [19] 0.882

Histogram of Oriented 4D Normals [14] 0.889
Spatio-Temporal Depth Cuboid Similarity Feature [20] 0.893

EnwMi-s + JISA features 0.895
EnwMi-s + JISAp features 0.912

EnwMi + JISA features 0.903
EnwMi + JISAp features 0.920

A. Experimental Setup

The MSRAction3D dataset [10] is a public dataset that
provides sequences of depth maps and skeletons captured by
a depth camera. In order to facilitate a fair comparison, we
follow the same experimental settings as [10], [14], [20] to
split 20 actions into three subsets as listed in Table I, each
having 8 action classes. In each subset, half ot the subjects
are used for training and the other half for testing.

B. Model Details

We train the ISA model on the MSRAction3D training
sets. The input units to the bottom layer of ISA model are
of size 12×12×10, which are the dimensions of the spatial
and temporal size of the subvolumes. The subvolumes to the
top layer of the ISA model are the same size with the bottom
layer.

We perform vector quantizatoin by K-means on the learned
spatio-temporal features for each joint. The densely sampling
step of the local regions of each joint is 2 pixels. The code-
book size k is 700. The model parameters for different joints
are the same. Therefore, each depth video is represented
by 20 JISA features or 19 JISAp features. We choose χ2

as the histogram kernel for multi class SVM classifier. For
EnwMi, we set the number of subesets |Nτ | = 3|P|, and the
rounds of the AdaBoost T = 20. The threshold for a good
component classifier is set to 1.45. All the parameters across
three subsets are the same. Note that when we set the number
of the samples in subsets |Nτ | = |N | , and the rounds of
the AdaBoost T = 1, EnwMi is cast into an muti-instance
problem. We call this special case EnwMi-s.

C. Experimental Results

A comparison of our method against best published results
for the MSRAction3D dataset is reported in Table II. As can

TABLE III
THE PERFORMANCE OF OUR METHOD ON THREE TEST SETS. CS1, CS2
CS3 ARE THE ABBREVIATIONS OF CROSS SUBSET 1, CROSS SUBSET 2,

CROSS SUBSET3 (SEE TABLE I).

Method CS1 CS2 CS3
EnwMi-s + JISA features 0.870 0.873 0.942
EnwMi-s + JISAp features 0.860 0.932 0.942

EnwMi + JISA features 0.860 0.882 0.967
EnwMi + JISAp features 0.877 0.924 0.958

(a) CS1 (b) CS2 (c) CS3

Fig. 5. The confusion matrices for our method EnwMi + JISAp features
on three subsets of the MSRAction3D dataset. Rows represent the actual
classes, and columns represent predicted classes. All abbreviations of action
classes are written out in Table I. (best viewed in color).

Fig. 6. The accuracies of 20 action classes of MSRAction3D dataset.
We compared EnwMi with EnwMi-s using JISA and JISAp features. All
abbreviations of action classes are written out in Table I. (best viewed in
color).

be seen from the table, our approach outperforms a wide
range of methods. There is an increase in performance be-
tween our method (92.0%) and the closet competitive method
(89.3%). This is a very good performance considering that
the skeleton tracker sometimes fails and the tracked joint
positions are quite noisy.

Compared to EnwMi-s, the improvement of EnwMi is
about 1%, which shows that the ensemble learning approach
is capable of better capturing the intra-class variations and is
more robust to the noises and errors in the depth maps and
joint positions. Additionally, it is interesting to note that in
our method the obtained accuracies using JISAp features is
92.0% (EnwMi) and 91.2% (EnwMi-s), which are better than
using JISA feature 90.3% (EnwMi) and 89.5% (EnwMi-s).
This proves the advantage of the spatial pyramid approach,
though we just group the adjacent joints together as a joint
pair to capture the spatial structure of the skeleton.

The confusion tables for three test sets, Cross Subset 1
(CS1), Cross Subset 2 (CS2), Cross Subset 3 (CS3), are
illustrated in Fig. 5. We report the average accuracy of three
test sets in Table III, and the average accuracy of each action
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class in Fig. 6. While the performance in CS2 and CS3
is promising, the accuracy in CS1 is relatively low. This
is probably because actions in CS1 are done with similar
movements. Although our method obtains an accuracy of
100% in 12 out of 20 actions, the accuracy of the Hammer
in CS1 is only 26.67%. This is probably due to the significant
variations of the action Hammer performed by different
subjects. The performance can be improved by adding more
subjects.

D. Mining discriminative joints

It is generally agreed that although the human body has
a large number of kinematic joints, a certain action usually
only associates with a subset of them. Additionally, feature
extraction in action recognition is usually computationally
expensive. This encourages us to investigate the discrimi-
native joints for different action classes. In EnwMi-s, each
action is represented as a linear combination of joint-based
features (JISA features or JISAp features). We learned their
weight via a multiple kernel learning method to discover the
discriminative joints.

Fig. 1 illustrates the skeleton with the joints weight discov-
ered by our method. The joint pairs with the weight >0 are
marked as thick and red lines. EnwMi-s is able to discover
the discriminative joints and better characterize the intra-
class variations. Fig. 1c shows that Jogging is represented by
the combination of joints left shoulder, center shoulder, right
elbow, spine, center hip and right hip. Normally, Jogging is
related to the foot joints like right/left foot, and right/left
ankle. However, for the MSRAction3D dataset, the tracking
positions of the joints, right/left foot, and right/left ankle, are
full of noise. Therefore, these joints are not discriminative
for action class Jogging, which is consistent with Fig. 1c.
This shows that our method is robust to the tracking errors
of the skeleton data.

VI. CONCLUSION

We presented a novel, simple and easily implementable
ensemble weighted multi-instance learning approach (En-
wMi) method for action recognition from depth video data.
We learn the spatio-temporal features using independent
subspace analysis in an unsupervised way. This architecture
could leverage the plethora of the unlabeled data and adapt
easily to new sensors. Furthermore, the ensemble weighted
multi-instance learning approach is able to deal with the
tracking errors of the skeleton data and better characterize
the intra-class variations. Experimental results show that our
method outperforms all previous approaches on the MSRAc-
tion3D dataset. It also suggests that learning spatio-temporal
features directly from depth video data is an important
research direction, and the ensemble learning approach can
further improve the performance of these features.
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