
Efficient Occupancy Grid Computation on the GPU with Lidar and

Radar for Road Boundary Detection

Florian Homm, Nico Kaempchen, Jeff Ota and Darius Burschka

Abstract— Accurate maps of the static environment are
essential for many advanced driver-assistance systems. In this
paper a new method for the fast computation of occupancy grid
maps with laser range-finders and radar sensors is proposed.
The approach utilizes the Graphics Processing Unit to overcome
the limitations of classical occupancy grid computation in auto-
motive environments. It is possible to generate highly accurate
grid maps in just a few milliseconds without the loss of sensor
precision. Moreover, in the case of a lower resolution radar
sensor it is shown that it is suitable to apply super-resolution
algorithms to achieve the accuracy of a higher resolution laser-
scanner. Finally, a novel histogram based approach for road
boundary detection with lidar and radar sensors is presented.

I. INTRODUCTION

Comprehensive and accurate models of the environment

are essential for advanced driver-assistance systems (ADAS).

With an increasing amount of autonomy in ADAS it is crucial

not only to have detailed information about other road users

(dynamic objects) but also about stationary objects. These are

of high importance to determine the drivable corridor (path

planning and obstacle avoidance) or to estimate the position

with respect to some reference frame (landmark based lo-

calization). Classical tracking methods of dynamic objects

are the first choice if there are a small number of targets of

which the geometry can be specified beforehand. However,

they are less applicable to track arbitrary static objects. The

geometry of static objects in outdoor environments can be

quite complex and hard to describe by geometric primitives

like lines, boxes or circles.

One of the most popular methods to overcome this prob-

lem is the occupancy grid framework [1]. Occupancy grids

are a location based representation of the environment.

They divide the environment into an evenly spaced grid of

cells and estimate the probability of each cell for being

occupied based on the sensor readings. They have been

successfully applied to sensor data fusion [2], path planning

[3], simultaneous localization and mapping (SLAM) [4] and

target tracking [5]. While the dominant sensor for occupancy

grid mapping are laser range-finders, some authors have built

grids with stereo vision [6] and radar sensors [7].

Arguably, occupancy grid maps are one of the most suc-

cessful environment representations today. However, while

F. Homm is with BMW Group, Research and Technology, D-80788
Munich, Germany florian.homm@bmw.de

N. Kaempchen is with BMW Group, Research and Technology, D-80788
Munich, Germany nico.kaempchen@bmw.de

J. Ota is with BMW Group, Research and Technology, Palo Alto, CA
94301, USA jeff.ota@bmw.de

D. Burschka is with Technische Universität München,
Department of Computer Science, D-85748 Garching, Germany
burschka@cs.tum.edu

theoretically elegant, their implementation in applications for

automotive environments suffers from two major problems:

occupancy grids are computational intensive and there is a

trade-off between the size and the resolution of the grid. The

field of view is therefore strongly limited when choosing

a cell-size that is acceptable to represent the resolution of

modern automotive sensor systems. This can cause problems

if performing path planning or collision avoidance at high

velocities. Even if the computations can be carried out in

realtime for a single sensor, the performance rapidly de-

creases when fusing multiple sensors. Furthermore, to fulfill

the realtime requirements it is common practice to use a quite

simplified inverse sensor model that maps the measurements

to the grid. This results in a loss of sensor precision and

causes the so called Moiré effect [8] at far distances. While

the loss of sensor precision limits its application to high

precision ego localization, the Moiré effect badly affects any

kind of path planning algorithm that needs to look far ahead.

In this paper an approach for occupancy grid mapping

on the Graphic Processing Unit (GPU) is introduced. A

detailed description for the fast computation of accurate

occupancy grids with laser range-finders on the GPU using

the CUDA framework is given. It is shown that this approach

is suitable to compute highly accurate grid maps in just

a few milliseconds on standard consumer hardware and a

brief extension to radar sensors is presented. Finally, a novel

histogram based approach for road boundary detection is

introduced.

II. GENERAL PURPOSE PROGRAMMING ON THE GPU

WITH CUDA

In the past few years the commodity Graphic Processing

Unit has emerged as an economical and fast co-processor.

Driven by the consumer market for high-definition 3D graph-

ics, the GPU has evolved into a highly parallel multicore pro-

cessor with tremendous computational power. While today

CUDA-capable GPUs are only available in parallel clusters

for scientific computing or consumer products such as phones

and netbooks, they will become available for automotive

platforms in the future. Their key advantage over specialized

hardware devices such as FPGAs lies in the standard unified

programmable interface and their low production costs.

At the hardware level, a GPU is a collection of multipro-

cessors with multiple processing units in each processor. It

is well-suited to address problems that can be expressed as

data-parallel computations with high arithmetic intensity [9].

However, the GPU has had quite a complex programming

model, which made it difficult to use a GPU for non graphic

operations. To overcome this problem, nVidia introduced

2010 IEEE Intelligent Vehicles Symposium
University of California, San Diego, CA, USA
June 21-24, 2010

ThA1.2

978-1-4244-7868-2/10/$26.00 ©2010 IEEE 1006

the CUDA framework, a general purpose parallel computing

architecture. Since its first release in November 2006 the

CUDA framework has attracted immense attention. Many

algorithms, such as object segmentation [10] and object

tracking [11], [12], have been successfully ported to the

CUDA framework for nVidia GPUs.

In general, CUDA comes with a programming interface to

use the parallel GPU architecture for general purpose com-

putations. At its core are three key abstractions: a hierarchy

of grouped threads, different types of memory transfer and

barrier synchronization functions. CUDA manages a large

number of programming threads and organizes them into

a set of logic blocks. All blocks are clustered to a logical

unit called a grid (Fig. 1). Each block is assigned to one

Shared Memory

Global Memory

Host Memory

Block (0,0)

Grid 0
GPU

CPU

Block (1,0) Block (m,0)

Shared Memory Shared Memory

Thread

(0,0)

Thread

(1,0)
Thread

(0,0)

Thread

(1,0)
Thread

(0,0)

Thread

(1,0)

Fig. 1. CUDA programming model. Logic division into the units: Grid,
Blocks and Threads.

multiprocessor and the threads of a block execute concur-

rently on one multiprocessor in a SIMT (Single Instruction

Multiple Thread) fashion. For a more detailed description,

the interested reader is referred to the CUDA Programming

Manual [9]. The following section focuses only on the

issues which are of high importance for the computation of

occupancy grids on the GPU.

As mentioned before, a multiprocessor executes threads

in a SIMT fashion which is akin to SIMD (Single Instruc-

tion Multiple Data). It schedules and executes threads in

groups of 32 parallel threads called warps. A single warp

executes one common instruction at a time, so maximum

efficiency is achieved when all threads of a warp agree

on their execution path. If they diverge via data-dependent

flow control instructions (for instance ’if’ statements), the

execution paths have to be serialized. In other words, the

best performance is achieved if all threads of a warp execute

the same command. Depending on the number of diverging

threads, this can significantly impact the performance of

computations on the GPU. Furthermore, it is necessary to

minimize the memory transfers between the CPU and the

GPU. Due to the communication bus bottleneck, transfers

are rather slow and can rapidly deteriorate the performance

advantage of parallel computing on the GPU. These issues

are addressed in the next sections, where it will be shown

how to efficiently build Occupancy Grids without violating

these policies.

III. OCCUPANCY GRID MAPPING

In this section, a brief introduction to the problem state-

ment of classical occupancy grid mapping is first given.

Then, the computation of a temporary Polar measurement

grid considering actual sensor readings and how to efficiently

map it into Cartesian space using the CUDA framework

is discussed. Finally, the consecutive temporary grids from

different vehicle poses (positions and orientations) are com-

bined to an occupancy grid.

A. Introduction

Occupancy grids represent the environment by fine-

grained metric grids of cells and estimate the probability

of any cell for being "occupied" depending on the sensor

readings. Unlike target tracking approaches, they do not only

contain information about the presence of objects, but also

about the absence (free-space). Let m be a planar occupancy

grid. A single grid cell is denoted as mx,y and z1, . . . , zt

denotes all of the measurements up to time t along with

the vehicle poses x1, . . . , xt. Each grid cell corresponds to

a binary value which specifies whether a cell is occupied or

not. The notation p(mx,y = 1) is used to denote an occupied

cell. Furthermore, it is assumed that x1, . . . , xt are known

which is called mapping with known poses [1]. The problem

addressed by occupancy grid mapping is to determine the

posterior

p(m|z1, . . . , zt, x1, . . . , xt) (1)

given all measurements and poses. However, grid maps

are defined over high-dimensional space and this posterior

cannot be computed easily. The classical occupancy grid al-

gorithm breaks down the problem into many one-dimensional

estimation problems, which are treated independently of

each other. The problem is reduced to the estimation of the

posterior for each mx,y of the grid:

p(mx,y|z1, . . . , zt, x1, . . . , xt) (2)

The formulation (2) is fundamental for occupancy grid

mapping on the GPU, since it allows us to process the cells

in parallel order. For computational reasons, it is common

practice to represent the probability

p(mx,y|z1, . . . , zt) =
p(mx,y|z1, . . . , zt)

1 − p(mx,y|z1, . . . , zt)
(3)

in the so called odds form. After applying Bayes Theorem

and removing some hard-to-compute terms we finally get:

p(mx,y|z1, . . . , zt)

1 − p(mx,y|z1, . . . , zt)
=

p(mx,y|zt)

1 − p(mx,y|zt)

·
p(mx,y|z1, . . . , zt−1)

1 − p(mx,y|z1, . . . , zt−1)
(4)

The probability of each cell p(mx,y) at time step t is

easily obtained by multiplying p(mx,y|zt), that contains the

probability of being occupied with respect to the actual

measurement update, with the grid-cell p(mx,y |z1, . . . , zt−1)
containing all previous measurements. Assuming a prior

probability for each cell of being occupied p(mx,y = 0.5),
the estimation problem simply becomes to update the prob-

ability p(mt
x,y) of each cell in a temporary grid mt, given

the actual measurement zt.

1007

This update is usually performed by a inverse sensor

model, which maps the measurement vector zt to the grid mt.

To fulfill the realtime requirements, it is common practice

to use a simple ray casting model based on line drawing

to determine the cells that are affected by the measurement

update [1], [13], [14]. Even for laser range-finders with their

relative small angular perceptual field such a model is not

appropriate. It assumes a constant beam width which is set

according to the previously chosen cell-size of the grid. This

is an incorrect assumption, since beams overlap multiple cells

depending on the sensor characteristics and the cell-size of

the grid. In regions close to the sensor origin, the number

of beams that contribute to the probability of a single cell

is quite large. In contrast, far from the origin a single beam

overlaps multiple cells. The latter one is even worse and

causes the aforementioned undesired Moiré effect [8]. Addi-

tionally, it is also important to have an appropriate inverse

sensor model to represent the measurement uncertainty of

zt and the cells that are directly affected by this to avoid

biased grid maps. An accurate model should compute the

probability of each cell depending on the position in the

map, the beam width and the distance to the beam center.

B. Mapping on the GPU

Each sensor that operates by the measurement principle

of time-of-flight, like laser range-finders, records detection

events in a polar coordinate system due to the polar geometry

of wave propagation. In order to overcome the problem

that the number of cells affected by a single beam directly

depends on the measured distance and the specific beam

width, a temporary measurement grid in polar coordinate

space is first defined. This temporary grid at time step t

is referred as m′. Unlike mt in Cartesian space, zt can be

easily mapped to m′ regardless of the sensor intrinsics. The

discrete angle steps of the laser range-finder are assumed

to be known and that adjacent beams do not overlap. Each

beam then only affects a 1-D linear strip (row) in the grid

m′ (Fig. 2). One single linear strip is denoted as m′

k. The

dimension of the grid in the φ direction is given by number

of discrete angle steps, which is equivalent to the size of zt,

and the dimension in r direction by the field of view along

the beams divided by the desired depth sample rate. We will

use zk
t to refer to an individual range measurement (in cells)

of the vector zt.

zt = z1
t , . . . , zK

t (5)

If the sensor returns no target for a discrete angle step, zk
t is

considered to be infinite. A inverse sensor model which only

depends on the measurement vector zt can now be defined.

1) Inverse Sensor Model: The objective of the inverse

sensor model is to describe the formation process by which

measurements are generated in the physical world and how

they affect the grid cells. A laser range-finder actively emits

a signal and records it’s echo. The returned echo depends on

a variety of properties, such as the distance to the target, the

surface material and the angle between the surface normal

and the beam. The measurement error is modeled by a 1-

D narrow Gaussian with mean zk
t and standard deviation

r

φ

zk
t

m′

0

m′

k

m′

K

Fig. 2. Example for a polar grid m′

k
with a single target zk

t in the 2th
row. Lower probabilities are encoded in white, higher probabilities in black.

δ(zk
t). This follows the assumption that zk

t is perturbed by

local noise and is close to the true position zk∗
t [15]. The

function δ describes the deviation in dependence of the range.

It is useful to use a function instead of a ’fixed’ deviation

to account for errors in the vehicle pose xt. Unlike [1]

other errors, those induced by random noise or specular

reflections are not incorporated for two reasons. First, errors

induced by specular reflections rarely happen in outdoor

scenarios. Second, errors such as random noise are filtered

out by the probabilistic fusion process of the occupancy grid

methodology. The probability for each cell m′

k,i for being

occupied is then given by:

pocc(m
′

k,i|z
k
t) =

α(zk
t)

√

2πδ(zk
t)

e

−(m′

k,i
−zk

t)2

2δ2(zk
t
) (6)

The parameter α serves as an attenuation or amplification

factor. It reflects the amount of trust associated with a

certain measurement with respect to the distance measured

and is usually inversely proportional to zk
t . As mentioned

before, occupancy grids not only provide information about

occupied space, but also about free space. Therefore it is

necessary to define the cells that are considered to be free

given the measurement zk
t . Cells that are in front of the

measurement zk
t should have a substantially lower posterior.

These are referred to as freespace hypothesis areas. For the

probability distribution in the freespace area, the definition

from [13] is adopted. They proposed a linear function which

sets the probability with respect to the measured distance.

This follows the assumption that small obstacles that might

have been missed by the sensor are more likely to appear

in far distances. We denote this function as pfree(m
′

k,i|z
k
t).

Cells that are behind the measurement are considered to be

unknown p(mx,y = 0.5). Putting this all together the final

probability for each cell m′

k,i is given by:

p(m′

k,i|z
k
t) =

{

max(pfree, pocc) i < zk
t

max(0.5, pocc) i > zk
t

(7)

The maximum operator is used to combine the probabilities

in the transition region around zk
t . For Bayesian probabilities,

which are non-negative by definition, this operator can be

formulated without any conditional branches (if statements).

max(a, b) =
a + b + |a − b|

2
(8)

As an example, Fig. 2 depicts the probability distribution

for a single target in the 2nd row. Lower probabilities are

1008

encoded in white, higher probabilities in black.

2) GPU Computation of the Polar Measurement Grid:

Given the final probability value for each cell m′

k,i by (7),

it can now be defined how to compute the polar grid m′

on the GPU. With respect to the performance guidelines in

Section II, each m′

k is assigned to a single thread block

k. Since m′

1 . . .m′

N are independent, they can be easily

computed in parallel without having any performance loss

by diverging threads. Moreover, the only information that

has to be transferred from the CPU to the global memory

of the GPU is the measurement vector zt. This reduces the

overhead to a minimum. Fig. 3 gives an example for a polar

grid computed on the GPU with simulated measurements.

r

φ

Fig. 3. Polar grid computed on the GPU with 70 simulated distance
measurements and a depth resolution of 256 cells.

The proposed method can be applied to any kind of laser

range-finders. For instance, modern lidar sensors for automo-

tive environments often have the capability to detect multiple

targets within a single beam. Furthermore, to compensate for

pitch motion some have multiple vertical detection layers

[16]. To account for these characteristics one can easily

extend m′ to m
′i and fuse them according to the Bayesian

filter rule given in (4).

3) Switch from Polar to Cartesian Space: In order to

combine the consecutive maps m′, gathered at different poses

x1, . . . , xt, we need to map them into Cartesian space first.

m′ 7→ mt (9)

This is of course is not trivial and implies problems. The

number of cells in m′ that correspond to a single cell in mt

and vice versa directly depends on the position in the grid

and the sensor intrinsics. Cells in m′ with low r (close to

the polar origin) map to just a few cells in mt. For example,

cells with r = 0 map to a single cell in mt. In case of

small obstacles extreme care has to be taken so that they

are not canceled out by undersampling effects. Far from the

polar origin a single cell of m′ spreads over multiple cells in

mt. In the first case, specific cells of m′ have to be merged

in order to obtain the probabilities for the cells in mt. In

the second case, the cells in m′ have to be interpolated to

determine the correct values for mt.

The authors of [8] were the first to investigate this sub-

ject. They considered the mapping problem as a geometric

transformation problem. Namely the problem of mapping a

geometric mesh in Polar space to its corresponding mesh in

Cartesian Space. They compared different types of mapping

algorithms: the exact algorithm which is an adaption of

the Guibas and Seidel algorithm, the sampling approach

and the texture mapping approach. The most interesting

outcome of this analysis is the fact that the texture mapping

approach in comparison to the exact algorithm, which is

not realtime capable, leads to quite accurate results with an

acceptable amount of errors. The texture mapping approach

is beneficial, since it is one of the basic operations that

GPUs are designed for and accelerated by hardware. For an

introduction to texture mapping the reader is referred to [17]

or any other literature about computer graphics. Simplified,

texture mapping describes the process by which an image

is mapped to a target polygon. The polygon can have any

shape and the texture is rotated, stretched and compressed

so that it fits to it.

Let T be a texture that corresponds to the grid m′. Each

cell m′

k,i then maps to one texture element vi. The target

polygon P is simply given by the sensor intrinsics (percep-

tual field-of-view). Fig. 4 outlines a Polar grid in texture

representation and its Cartesian equivalent as a polygon for

a beam width of 10◦. The fashion in which the resulting

viT P

r

φ

y

x

Fig. 4. Texture T in Polar space and its target polygon P in Cartesian
space. The beam width is considered to be 10◦.

pixels are calculated from the input image pixels is governed

by so called texture filtering. This filtering is exactly what is

required compute the final probabilities in mt. A so called

trilinear filter is used, which is a bilinear filter algorithm

with mip-mapping [17]. In regions close to the Polar origin,

where a single cell in mt corresponds to multiple cells in m′,

it avoids problems caused by undersampling. The trilinear

filter fetches the mip-map at the right resolution and maps

it to the target polygon. Fig. 5 shows the polar grid from

Fig. 3 mapped to Cartesian space using texture mapping

with trilinear filtering. Once the temporary Cartesian grid

mt has been computed, we have to combine it with the the

previous measurements p(mx,y |z1, . . . , zt−1). The definition

from [13] is adopted, where the grid m is defined with

respect to a global coordinate reference frame. This avoids

discretization errors that occur when the grid is rotated with

respect to a relative vehicle coordinate system. To account

for translational ego movement, the grid m is shifted in

a sliding window fashion. As previously mentioned, the

texture mapping methodology simply allows to rotate the

input texture with respect to the actual heading angle θ. To

obtain the final occupancy up to timestep t, each overlapping

cell of the grid mt is fused with m using the binary Bayes

filter from (4). This kind of cell-wise fusion is highly suitable

for parallel processing and can be carried out on the GPU.

Due to the definition in (2) each cell is independent of its

1009

1010

1011

depicted histogram H0 in Fig. 11(a) is denoted as optimal

histogram, if there exists no other parameter set in PR, that

gives a better approximation of the road boundaries in m. In

the given example Hopt = H0 is true, but usually neither the

curvature of the boundary nor the heading to the boundary

is 0. Hence, the histogram H0 would not be the optimum.

Fig. 11(b) and 11(c) outline what happens to the histogram

Hopt if a small error is added to the curvature c.

Fig. 10. Example for an occupancy grid in a freeway scenario. The left
and right road boundaries are clearly visible.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kk

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kk

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kk

(c)

Fig. 11. In (a), the optimal histogram Hopt with cj = 0. In (b), an additive
curvature error of 0.003m. In (c), 0.008m

With an increasing error in the curvature of the circu-

lar path the histogram Hopt degenerates to a flat uniform

distribution. This is because the road boundaries in m now

distribute among multiple bins of Hi instead of falling into

a specific bin kx. Similarly for γ, each deviation of the

optimal heading parameter causes a degeneration of the

histogram Hopt. This fact can be exploited to define a cost

function q(Hi) which rates each histogram according to its

distribution.

q(Hi) =

d
∑

x=−d

k2(x, cj , γk) (13)

The sum over the squares of kx is used to give a higher

weight to histograms which have all probabilities distributed

in a minimum set of bins. Fig. 12 shows the results of the cost

function (13) for different variations of curvature and head-

ing. It is clearly visible that there exists a maximum q(Hopt)

−4

−2

0

2

4 −10

−5

0

5

10

q(Hopt)

q
(H

i
)

γ

c× 10−3

Fig. 12. Results of the cost function q(Hi) for γ = −4◦ . . . 4◦ and
c = −0.0001m . . . 0.0001m

which represents the optimal parameter combination of c

and γ. Thus, the problem to find the heading and curvature

of the road boundaries becomes a parameter optimization

problem. Due to the computational burden it is not advisable

to evaluate the cost function q over all possible combinations

of cj and γk. A modified version of the iterative Nelder-

Mead-Simplex optimization algorithm [22] is used to obtain

the optimal histogram Hopt. At each iteration the algorithm

computes a set of 3-4 histograms in a Simplex order and rates

them according to the cost function (13). After a sufficient

number of iterations the Simplex algorithm converges to

the maximum and remains stable. The Nelder-Mead-Simplex

algorithm is fast, deterministic and robust to local minima.

Once the algorithm has converged to the maximum, a total

number of 5-8 iterations at each timestep is sufficient to keep

track of the curvature and heading of the road boundary. In

order to account for different curvatures and headings of the

left and right boundary the grid m can be separated into two

parts. For each part a histogram optimization can be carried

out to obtain the most likely boundaries for the left and right

side.

Once the curvature and heading of the dominant road

boundary has been found, the distance y and width b can

be extracted from Hopt. To do so, one has to define a

criteria which bin kx belongs to a valid boundary. As in

[22] the signal-to-noise ratio in a predefined vicinity of

kx is used to rate each bin with respect to its adjacent

bins. This is equivalent to an adaptive threshold and can

be used to decide whether kx is a valid road boundary or

not. One of the advantages of the histogram based approach

is that it becomes possible to estimate the exact width b

of the boundary. This is of high importance to distinguish

between road boarders that are suitable for high-precision

ego localization and those that are not. Furthermore, once

the road boundaries have been identified we can interpolate

between kx−1, kx and kx+1 to obtain an accuracy for y

which is higher than the previously chosen cell resolution of

m. Since the accumulated measurements in m are Gaussian,

Hopt is Gaussian too and a performed sub-pixel computa-

tion between adjacent bins (circular paths) can improve the

accuracy by a factor of 2-3.

1012

C. Experimental Results

Fig. 13 shows the histogram-based detection of the left

road boundary in a road construction area. The used oc-

cupancy grid has a size of 512 × 512 with a front view

of 468 and back view of 48 cells. The cell resolution

was set to 0.25 m. Fig. 14 outlines the results for the

(a) (b)

Fig. 13. Histogram-based detection of the left road boundary with a
laserscanner in (a). In (b), the same scenario with a radar sensor.

histogram based extraction of the offset y in comparison to

raw measurements of a reference laserscanner with a distance

accuracy of ±5 cm. Even in the case of the lower resolution

radar sensor, where the road boundary spreads over a width

of approximately 0.75 − 1.25 m, the achieved accuracy is

comparable to the accuracy of the raw measurements.

0 5 10 15 20 25 30 35 40

1.3

1.4

1.5

1.6

1.7

1.8

y
[m

]

t[s]

Laserscanner

Radar

Reference

Fig. 14. Achieved accuracy of the proposed algorithm for the calculated
offset to the left road boundary in the road construction scenario from Fig.
13 in comparison to raw measurements of a laserscanner as reference.

V. CONCLUSION

A method for the fast computation of occupancy grid

maps on the GPU was introduced. It has been shown that

the GPU based algorithm can generate grid maps in large

outdoor environments in just a few milliseconds without

using any specialized hardware devices such as FPGA. Ad-

ditionally, a novel approach for the detection of continuous

road boundaries was developed. In the case of a laser-scanner

it was shown that in comparison to raw measurements, the

proposed occupancy grid comes without any loss in sensor

precision. Furthermore, it has been proven that in the case

of a lower resolution radar sensor the approach is suitable to

apply super-resolution algorithms to achieve the accuracy of

a higher resolution laser-scanner.

REFERENCES

[1] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. MIT Press, 2005.

[2] P. Stepan, M. Kulich, and L. Preucil. Robust data fusion with
occupancy grid. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 35(1):106–115, 2005.

[3] Michael Himmelsbach, Felix von Hundelshausen, and Hans-Joachim
Wünsche. LIDAR-Based Perception for Offroad Navigation. In
Proceedings of FAS 2008, Fahrerassistenzsysteme Workshop 2008,
Walting, Germany, April 2008. C. Stiller and M. Maurer.

[4] G. Grisettiyz, C. Stachniss, and W. Burgard. Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling. In Proc. IEEE International Conference on
Robotics and Automation ICRA 2005, pages 2432–2437, 18–22 April
2005.

[5] C. Chen, C. Tay, C. Laugier, and K. Mekhnacha. Dynamic envi-
ronment modeling with gridmap: A multiple-object tracking applica-
tion. In Proc. 9th International Conference on Control, Automation,
Robotics and Vision ICARCV ’06, pages 1–6, 5–8 Dec. 2006.

[6] Uwe Franke Hernan Badino and Rudolf Mester. Free space computa-
tion using stochastic occupancy grids and dynamic programming. In
Dynamic Vision Workshop for ICCV, 2007.

[7] S. Lüke M. Darms, M. Komar. Gridbasierte strassenrandschätzung für
ein spurhaltesystem. In Proceedings of FAS 2009, Fahrerassistenzsys-
teme Workshop 2009, 2009.

[8] M. Yguel, O. Aycard, and C. Laugier. Efficient gpu-based construc-
tion of occupancy girds using several laser range-finders. In Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 105–110, Oct. 2006.

[9] NVIDIA Corporation. CUDA Programing Guide 2.2,
http://www.nvidia.com, 2009.

[10] V. Vineet and P.J. Narayanan. Cuda cuts: Fast graph cuts on the gpu.
In Proc. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops CVPR Workshops 2008, pages 1–8,
23–28 June 2008.

[11] Y. Mizukami and K. Tadamura. Optical flow computation on compute
unified device architecture. In Proc. 14th International Conference on
Image Analysis and Processing ICIAP 2007, pages 179–184, 2007.

[12] Jing Huang, Sean P. Ponce, Seung In Park, Yong Cao, and Francis
Quek. Gpu-accelerated computation for robust motion tracking using
the cuda framework. In Proc. 5th International Conference on Visual
Information Engineering VIE 2008, pages 437–442, July 29 2008–
Aug. 1 2008.

[13] T. Weiss, B. Schiele, and K. Dietmayer. Robust driving path detection
in urban and highway scenarios using a laser scanner and online
occupancy grids. In Proc. IEEE Intelligent Vehicles Symposium, pages
184–189, 2007.

[14] Trung-Dung Vu, O. Aycard, and N. Appenrodt. Online localization
and mapping with moving object tracking in dynamic outdoor environ-
ments. In Proc. IEEE Intelligent Vehicles Symposium, pages 190–195,
13–15 June 2007.

[15] Kurt Konolige. Improved occupancy grids for map building. Auton.
Robots, 4(4):351–367, 1997.

[16] Dietmayer K. Fürstenberg, K. Fahrzeugumfelderfassung mit mehrzeili-
gen laserscannern. In Journal Technisches Messen 71, 2004.

[17] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time
Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[18] Chris Urmson. Tartan racing: A multi-modal approach to the darpa
urban challenge. Technical report, Carnegie Mellon University, 2007.

[19] R. Risack, P. Klausmann, W. Krüger, and W. Enkelmann. Robust lane
recognition embedded in a real-time driver assistance system. In in
Proc. IEEE IV, pages 35–40, 1998.

[20] A. Reyher. Lidarbasierte Fahrstreifenzuordnung von Objekten für
eine Abstandsregelung im Stop&Go-Verkehr. PhD thesis, Technischen
Universität Darmstadt, 2006.

[21] Kaempchen N. Homm F. Waldmann P. Ardel M. Umfelderfassung für
den nothalteassistenten - ein system zum automatischen anhalten bei
plötzlich reduzierter fahrfähigkeit des fahrers. In 11. Braunschweiger
Symposium, AAET 2010, 2010.

[22] Homm F. Duda A. Kämpchen N. Waldmann P. Ardelt M. Lidar based
lane detection with occupancy grids for lane keeping and lane change
assist systems. In 4. Tagung Sicherheit durch Fahrerassistenz, 2010.

1013

