
Heuristic Search in Belief Space for Motion Planning under
Uncertainties

David Lenz1 and Markus Rickert1 and Alois Knoll2

Abstract— In order to fully exploit the capabilities of a
robotic systems, it is necessary to consider the limitations and
errors of actuators and sensors already during the motion
planning phase. In this paper, a framework for path planning
is introduced, that uses heuristic search to build up a search
graph in belief space, an extension to the deterministic state
space considering the uncertainty associated with this space. As
sources of uncertainty actuator errors and map uncertainties
are considered. We apply this framework to various scenarios
for a non-holonomic vehicle and compare the resulting paths to
heuristic state space planners and LQG-MP[1] with the help of
simulations. As a result, paths generated with this framework
could either not be found with worst-case assumptions or have
a higher probability of being successfully executed compared
to planners with more relaxed constraints.

I. INTRODUCTION

Since the DARPA Grand Challenge in 2005, automated
driving has gained more and more focus in academia and
with car manufacturers all over the world. All of the research
vehicles have in common, that they use very sophisticated
sensors like for example the Velodyne Lidar sensor in order
to create a very good environment representation around the
vehicle. As autonomous driving functions like automated
parking, traffic-jam assistants or highway driving are on the
verge of becoming available for customers, this approach is
not feasible anymore. To keep the costs low and feasible
for a product, a cheap and limited sensor set is installed.
The mostly noisy signals of the sensors are then usually
combined within a probabilistic data fusion framework to get
one consistent environment representation and state estimate
of the car. The result is a best guess on what the environment
might look like and can—depending on which sensors see
which obstacle—lead to areas which are not well-known but
have a large uncertainty. Furthermore, a car especially with a
combustion engine is very hard to model and to control such
that it behaves exactly the way it was planned beforehand.
Fig. 1 shows an example of an obstacle that is known only
with noise and also the possible error distribution due to
actuators along the reference.

On the other hand, there are motion planning algorithms
that need to plan a feasible and safe motion that the vehicle
can actually execute. In current systems this is mostly
achieved by making conservative worst-case assumptions
and adding these to the safety margins used in planning.
This limits the true capabilities of a robotic system as most

1David Lenz and Markus Rickert are with fortiss GmbH, affiliated
institute of Technische Universität München, Munich, Germany

2Alois Knoll is with Robotics and Embedded Systems, Technische
Universität München, Munich, Germany

Fig. 1. Reference path with underlying controller errors (green) and one
concrete simulation run trajectory (red-dashed). The obstacle has only been
observed briefly and is thus not known very well.

of the time a better performance than worst case can be
achieved. Thus, in this paper, a probabilistic model of the
sensing and control capabilities of a car is used to leverage
all of its capabilities. The proposed framework is not limited
to autonomous cars but can be applied to arbitrary robotic
systems that can be (locally) linearized.

II. RELATED WORK

In the past, mostly motion planning under deterministic
conditions was considered, but in recent years uncertainties
and probabilistic modeling of these have gained a lot of
interest. There are four main sources for uncertainties in the
planning and in the execution steps, namely:
• Uncertainty in the map due to sensor noise
• Process noise that prevents a perfect execution of mo-

tion
• Localization uncertainty due to partial observability
• Unknown future motion of dynamic obstacles

Other sources like modeling errors also exist but can be
accounted for in one of these error sources.

On the one hand, there are planners that incorporate map
uncertainty but treat the robot model as deterministic. For
example, Burns and Brock [2] use a utility-guided roadmap
planner that minimizes the uncertainty that is encountered
along a path and allows utility-guided exploration. Guibas
et al. [3] on the other hand consider uncertain corners in
a polygonal map and use the success probability in a cost
function for a roadmap planner.

For motion execution errors, [4] shows a variant of RRT,
that uses particles for each tree expansion to represent
and calculate the underlying motion uncertainty. Similarly,
Alterovitz et al. [5] build a probabilistic roadmap where
the edges are associated with a success probability. This is
determined by multiple simulations of the execution of the
edge with Markov motion uncertainty. Mellinger and Kumar

[6] use measured error data of a controller in order to obtain a
distribution along a path to estimate the collision probability
along edges of a search based planner.

In order to additionally consider partial observability Platt
Jr. et al. [7] formulates the problem of Belief Space Planning
and apply LQR and nonlinear optimization. Berg et al. [1] on
the other hand uses standard RRT to plan multiple times and
rank the resulting paths for success probabilities determined
with LQG-MP. The work of Bry et al. [8] expands the RRT*
algorithm to plan in belief space incorporating Gaussing
noise in state measurements and process disturbances. This
work is most closely related to the work presented in this
paper, but the authors did not consider uncertainty in the
map used for planning. Similarly, Vitus and Tomlin [9] show
an optimization based framework for linear Guassian system
with chance constraints. Berg et al. [10] and Patil et al. [11]
use a sequential quadratic programming (SQP) optimization
to plan in belief space, but without regarding obstacles at
all. Kurniawati et al. [12] use a point-based POMDP with
Guided Cluster Sampling to address the problem of high
dimensional planning with motion, sensing and environment
uncertainty.

Dynamic obstacles are taken into account in [13] in a RRT
planner and are modeled according to a pre-learned Gaussian
process. Also Du Toit and Burdick [14] focus on dynamic,
uncertain behavior of obstacles with a Partially Closed-loop
Receding Horizon Control algorithm, that accounts for future
information gathering.

In this paper, we focus on the first three parts of uncer-
tainty namely motion, observation and map uncertainties and
integrate them into a heuristic search framework in belief
space. This allows a guided search of an optimal path within
discretization for systems with nonlinear dynamics without
the need of a local planning function as many RRT(*) or
PRM based planner have. Finally we show with simulation
for a Dubins car model that the resulting paths are either
safer in execution or better utilize the physical limits of the
robot than comparable deterministic planning algorithms. We
further show that finding an optimal path is more efficient
(in terms of number of edge expansions) due to the heuristic
than the LQG-MP [1] approach.

III. PROBLEM FORMULATION

In this section we first define the stochastic motion model,
a controller model and the method for uncertainty propa-
gation. Then, the environment model used in this paper is
shown. Last, the method for probabilistic collision checking
is introduced.

A. Stochastic Motion Model

The stochastic dynamic time-discrete model of a robotic
system can be expressed as

xn+1 = f(xn,un,ηn), ηn ∼ N(0,Mn)

yn = g(xn,νn), νn ∼ N(0,N n)
(1)

where xn ∈ X denotes the state, un ∈ U the control input
and ηn are the error characteristics of the motion model

respectively. Further, yn denotes the state measurement and
νn is the error characteristic of the observation model.

The (possibly nonlinear) model described in (1) can be
linearized around a nominal trajectory (x∗n,u

∗
n,η

∗
n = 0) to:

x̃n+1 = Anx̃n +Bnũn + ηn

ỹn = Cnx̃n + νn
(2)

with An = ∂f
∂xn
|(x∗

n,u
∗
n)

, Bn = ∂f
∂un
|(x∗

n,u
∗
n)

, Cn = ∂g
∂xn
|x∗

n

and the state difference x̃n = xn−x∗n. Note that in the rest of
the paper, the differences x̃, ũ, ỹ and the true values x,u,y
are used interchangeably, as they can easily be converted
with the known reference.

As the state cannot be measured exactly, we will introduce
the state estimate with mean x̂ and covariance of Σ. It is
calculated with a Kalman-filter based on the measurement
that are expected to be made. The mean x̂ itself will usually
not lie on the reference and is further Gaussian distributed
with covariance of Λ.

Definition 3.1: A belief state bn describes the probability
distribution of possible states. The probability distribution
function Pb(bn = xn) returns the probability that a belief
state bn takes the value of the state xn.

In this paper, a belief state bn is encoded as a multi-variate
Gaussian with mean xn, the covariance of the state estimate
Σn and the covariance of the mean of the state estimate Λn.

B. Controller Model

Only integrating (2) with a nominal input u∗n will lead to
over-conservative estimates of the belief state. The reason is,
that at each stage, a controller can in fact adjust the input
to reduce the error around the nominal trajectory. Thus we
choose

un := −Knx̂n (3)

with an arbitrary stabilizing linear state-feedback control
matrix Kn.

C. Uncertainty Propagation

Following [8], we treat the observation that will be made
as a random variable and keep track of the distribution of
means of the Kalman Filter. This means that at time n
we expect to take a measurement with covariance of N n.
Because of that, the state estimate x̂n will usually not lie
on the reference trajectory but as mentioned before will be
distributed with covariance Λ.

First, we predict the covariance around x̂n with a Kalman
filter prediction step as

Σ̄n+1 = AnΣnA
ᵀ
n + Mn. (4)

and with the update step, we get the final covariance

Sn = CnΣ̄nC
ᵀ
n + N n

Ln = Σ̄nC
ᵀ
nS
−1
n

Σn = Σ̄n −LnCnΣ̄n.

(5)

The covariance of the state estimate can be calculated with
the recursive formula:

Λn+1 = (An −BnKn)Λn(An −BnKn)ᵀ +LnCnΣ̄n

(6)
The final resulting distribution at time n for the state from

the reference and its estimate is(
xn
x̂n

)
∼ N

((
x∗n
x∗n

)
,

(
Λn + Σn Λn

Λn Λn

))
. (7)

The covariance Λn+Σn is the uncertainty that is of interest
from a planning perspective and will be further used for
collision probability calculations.

For a more detailed derivation of the formulas, the reader
is referred to [8].

D. Environment Model

O3

6Σ3

O4

6σ4

6σ2

O2

6σ1

O1

Fig. 2. Example environmental model used in this paper consisting of
line segments and circular obstacles. For each object Oi its associated 6σi
covariance interval is shown. The obstacle will be within this interval with
a probability of 99.7%

The environment that we regard in this paper consists
of a set of N static obstacles {O1,O2, . . . ,ON} that have
an associated uncertainty of position and/or dimension. An
example including the confidence intervals of the obstacles
can be seen in Fig. 2. Here, circular obstacles and line
segments are regarded with Gaussian uncertainty in their
position as indicated in the figure.

In contrast to classic planning algorithms we cannot divide
the state space X into valid configurations x ∈ X free and
invalid or colliding configurations x ∈ X c. But we can only
express the probability of the membership to one of the sets
as Pfree(x ∈ X free) and Pc(x ∈ X c). In order to calculate
these expressions, the probability that a configuration x
collides with an obstacle Oi will be denoted as

Pc,Oi(x) (8)

Applying this for each obstacle separately and assuming
stochastic independence of all obstacles, we can now cal-
culate the overall collision probability of a configuration as

Pc(x) = 1−
N∏
i=1

(1− Pc,Oi
(x)) (9)

E. Probabilistic Collision Checking

As we have seen in the previous section, the function
described in (9) gives a collision probability for a given
deterministic state, i.e., for a concrete realizations of the
random variable. But we are interested in the probability
that the state distribution of a belief state collides. In order
to calculate this collision probability of a belief state the
following joint distribution has to be calculated:

Pc(b) =

∫
x∈X

Pc(x) · P (b = x)dx (10)

This equation is usually not solvable analytically and must
be approximated. This can be done for example through
conservative approximations as in [8] or through Monte-
Carlo sampling [15]. As none of these papers regard the
robot distribution and the obstacle distribution simultane-
ously, we decided to apply sampling. As for stable results
many samples are needed this is the most computational
demanding step and needs to be addressed for use in
an online planning system. This might be possible with
a combination of truncated Gaussians [16] and collision
probability approximations presented in [17]. Note that it is
not possible to first shift the obstacle uncertainty into robot
position uncertainty in order to simply analytically compute
the probability. The reason is, that the resulting distribution
will in general not be Gaussian and even might not have an
analytical solution.

IV. HEURISTIC SEARCH

We propose an algorithm based on the heuristic search
A* that we expand to handle belief states and success
probabilities. Because of the underlying A* algorithm, the
planner will find an optimal solution within the discretization
of the input space.

A. Search Algorithm

Algorithm 1: Heuristic search in belief space

1 V ← {V0}, E ← {},OPENLIST← {V0};
2 while !OPENLIST.isEmpty() do
3 Vi ← OPENLIST.popFront();
4 if Vi ∈ X goal then
5 return success

6 forall the u ∈ U do
7 Bnew ← integrateModel(bi,u);
8 ps,new ← calculateSuccessProbability(Bnew);
9 if ps,new > ps,min then

10 gnew ← calculateCost(Bnew, Vi);
11 hnew ← heuristic(bnew);
12 (V, E)← append(V, E , Vnew, Enew);
13 OPENLIST.append(Vnew);

14 OPENLIST.remove(Vi);

15 return failure;

bj,1 bj,2 bj,3
bj,4

(gj , psucc,j)u∗
j

xn

Σn
Λn

xn+1

Σn+1
Λn+1

Fig. 3. Part of a search graph during expansion. It shows an expansion
from vertex n to vertex n+1 along edge j. At the vertices, the belief state
bn is drawn as its mean xn and the covariances Σn and Λn

The pseudo-code of the complete algorithm is shown in
Algorithm 1. Vertices in the search tree consist of

Vn = {xn,Σn,Λn︸ ︷︷ ︸
bn

, gn, hn, ps,n} (11)

where gn denotes the cost from start to vertex n, hn the
estimated cost-to-go (heuristic) and ps,n the probability to
successfully reach vertex Vn without collision. Edges on the
other hand are defined as

Ej = {Bj ,u∗j , gj , ps,j} (12)

with Bj being a list of belief states, u∗j the used control input,
gj the cost and ps,j the success probability along edge Ej .
A small subset of the search graph with all the used indices
can be seen in Fig. 3.
For each new iteration expansion we take the (yet unvisited)

graph vertex i with

min
i

(gi + hi). (13)

The current sets of vertices and edges are denoted as V and
E respectively.

B. Model integration

In order to make a node expansion (edge j) from a given
belief state bj,0 = bn to bj,L = bnew with a fixed input u
for some expansion time t = L∆t we subsequently apply
(1) for the state propagation and (4, 5, 6) for the covariance
propagation for always ∆t. As a result we get a list of belief
states.

Bj = {bj,0, bj,1, · · · , bj,L} (14)

In order to calculate the success probability ps,j of such an
edge, we need to calculate

ps,j = Ps(Bj) =

L∏
l=0

(1− Pc(bj,l)) (15)

again assuming independence of the collision probabilities
Pc(b). Clearly this time, the assumption is not justified,
because if one belief state bj,l is colliding then with a very
high probability the subsequent bj,l+1 will have a similar
probability of collision. As this is an over-approximation of
the collision probability this is not a big issue at the moment,

but a better approximation can be achieved with truncated
Gaussians as in Patil et al. [16].

C. Cost function

The cost function calculateCost() can, in general, be any
arbitrary deterministic cost function gd that is used in con-
ventional motion planners, like for example path length. This
would imply that the collision risk of executing a path will
only sort out paths that exceed a given threshold of risk. Or
put differently, the optimization of the overall cost function
will find the path with the lowest cost under the chance
constraint that the success probability has to be greater than
a threshold.

min
path

gd, subject to ps ≥ ps,min

In order to include the success probability into the cost
function and thus have a way to optimize it, we define a
new cost

g := gd + λ(1− ps) (16)

with a balancing parameter λ.

D. Heuristic

As with A* planning, the heuristic has to be admissible,
that means that it has to always underestimate the true cost-
to-go. As seen in section IV-C, all modifications to the
deterministic cost function only adds costs, such that g ≥ gd.
Thus all heuristics that are admissible for a deterministic
planner will be also admissible here.

V. EXPERIMENTS

In order to evaluate the usefulness of our algorithm, we
implemented the algorithm of last section in Matlab. We use
a circular1 robot with a radius of r = 1 m behaving according
to Dubins car model with the state and input vectors

x = (x, y, θ)
T
,u = (v, δ)

T
,η = (ηv, ηδ)

T (17)

where x, y are the Cartesian coordinates, θ the orientation
of the vehicle, v the commanded velocity and δ denotes the
steering curvature. The equation of the dynamics is defined
as:

xn+1 = xn + ∆t

 (v + ηv) cos(θ)
(v + ηv) sin(θ)

δ + ηδ

 (18)

with ∆t being the integration time step size. The covariance
Mn of η can be time varying or state dependent. Following
similar argumentation as in Thrun et al. [18] we assume that
the error is only dependent on the currently desired command
u as

Mn = diag(αv · v2n, αδ · δ2n + αδ,v · v2n) (19)

with error parameters αv = 0.5, αδ = 1 and αδ,v = 0.001.
This error definition implies, that higher control inputs can
be carried out by the vehicle with less accuracy. As the
controller we take a linear feedback control law with an

1In order to consider a more realistic vehicle it is possible to approximate
its shape with multiple circles

arbitrary stable time-varying feedback matrix, such that the
error will always be calculated in track-coordinates and will
be invariant to rotation.

un =

[
1 0 0
0 1 2

]
· diag(cos θ∗n, sin θ

∗
n, 1) · (xn − x∗n)

(20)
As the observation model, we use yn = xn + νn with a

noise matrix of Mn = diag(0.05, 0.05, 0.02).
Finally, for the heuristic search we take the deterministic

costs gd to be the path length and thus, as an admissible
heuristic we take the minimal length solution for Dubins
car in free space based on [19]2. The input space used for
planning is U ∈

{
(1, 0)T , (1, 0.3)T , (1,−0.3)T

}
, the chance

constraint bound is set to be ps,min = 0.8.

A. Cost-Risk Tradeoff

We want to analyze the influence of the parameter λ of
(16) on the resulting paths from the planner and how we can
tradeoff cost and risk. Therefore we created an environment
with different uncertain passages that lead to the goal from
the start on the left. In Fig. 4 we can see planned paths for

0 2 4 6 8 10 12 14 16

0

5

10

σ1

σ2

σ3

x[m]

y
[m

]

λ=0
λ=100
λ=1000

Fig. 4. Analysis of the cost-risk tradeoff parameter λ. The environment
consists of three passages with different uncertainties in the width. The
covariance for each passage is indicated as σ1 = 0.2, σ2 = 0.1 and σ3 = 0.

different values for λ within this environment. As expected,
depending on the value of λ, the path takes either the more
dangerous shorter path or the longer safer through respective
passage. Furthermore, we note that for both paths where λ >
0 the paths are not the minimum length paths. This has to
do with the observation (and design of the error covariance)
that the controller can achieve a lower covariance on straight
paths than on curves. Thus, the planner takes a wider curve
and drives straight in order to minimize the covariance within
the passage. As a practical interpretation for λ, we are willing
to make a detour of 0.1λ meters for a 10% increase in success
probability. In the following section, let λ = 100 as a good
tradeoff between cost and risk.

2Implementation from: https://github.com/AndrewWalker/Dubins-Curves

B. Comparison of Algorithms

For this experiment, we consider different planning sys-
tems:
• BS-A*: The Belief-Space Heuristic Search presented in

this paper
• ML-A*: An A*-Planner where all obstacles and the

robot are assumed to be at the maximum likelihood
position. This is the mean for Gaussian distributions
and thus we discard the information we have about the
covariance.

• WCO-A*: All obstacles will be set at the worst case and
only the robot motion is probabilistic.

• WC-A*: An A* search where the safety distance is
conservative such that the 3σ interval of the worst case
deviation from the path will not lead to a collision. The
worst case deviation from the path leads to a safety
distance of for scenarios I-III d = 0.1. As scenario IV
can have unbounded uncertainty because the system is
not observable.

• LQG-MP: From [1] but for collision probability deter-
mination we take also the map uncertainty into account
and solve the scenario 100 times with a RRT and select
the path with the least costs g.

We test all planners on the four environments depicted in
Fig. 5. We compare two different metrics: The path length
gd of the found path (if any) and the success probability ps of
the given path. In order to calculate ps for all paths the same
way, we sample the environment, starting conditions and the
errors along the path. From there on we can deterministically
calculate if the instance of the simulation will collide or not.
We repeat the sampling for each path for M = 1000 times
and count the fraction of runs containing a collision. The
results for all scenarios can be found in Table I.

Method I II III IV
gd ps[%] gd ps[%] gd ps[%] gd ps[%]

BS-A* 15 96.4 27 98.5 15 94.0 25.5 96.3
ML-A* 14 72.4 24 21.9 15 60.7 25 36.1
WC-A* - - 27 100 - - - -

WCO-A* 15 96.5 27 100 - - - -
LQG-MP 15 99.9 27 98.2 15 93.1 25.5 95.8

TABLE I
SUMMARY OF PATH LENGTH AND ESTIMATED SUCCESS PROBABILITY

1) Scenario I: In this scenario, the task of the robot is
to park in a constrained space. The goal position can not be
fully seen from the starting pose and thus the uncertainties
as shown in Fig. 5(a) arise. As the goal is close to a
blurry obstacle, the worst case assumption of obstacles and
robot position will not find any path in this scenario. For
BS-A*, WCO-A* and LQG-MP, all paths look similar and
have same length (compare Table I) and a high chance of
succeeding. ML-A* on the other hand finds a shorter but
unsafer path. With planning in belief space two properties
can be seen: Firstly, the path is smoother and especially the
final part that approaches the unknown obstacle is straight.
Secondly, the path starts off by going straight in order to

10 12 14 16 18 20 22 24 26

0

5

10

x[m]

y
[m

]

(a) Scenario I

−5 0 5 10 15
5

10

15

x[m]

y
[m

]

(b) Scenario II

−4 −2 0 2 4 6 8 10
0

5

10

x[m]

y
[m

]

(c) Scenario III

−5 0 5 10 15 20

0

5

10

15

20

x[m]

y[
m

]

(d) Scenario IV

Fig. 5. Sample environments to compare the resulting paths for Belief-Space A*(), Worst-Case-Obstacles A*(), Worst-Case A*(), Maximum-
Likelihood A*() and LQG-MP (). In each figure, the starting position is denoted as a red circle and the goal position as a green circle. (a) Driving into
a small passage which cannot be observed from the starting position. WC-A* was not able to plan a path.(b) Navigation through a set of circular obstacles.
All planners except ML-A* find similar paths. The path for WC-A* lies under the other two paths. (c) Robot is starting very close to obstacles, only 10
cm in each direction is free space. As already the starting position will collide for the WC-A* no path is shown. (d) Robot is starting in room and can
choose between to pathways. Blue ellipses show the covariance Σ+Λ along the path found with BS-A*, black dashed show samples from simulations.
As only y coordinate can be measured, uncertainty in x increases and only right path is safe.

better avoid the obstacle in the middle. Both points are a
result of the maximization of the success probability, which
is also reflected in ps determined by simulations.

2) Scenario II: Here, a set of circular obstacles is con-
sidered. All planners except ML-A* find similar (or even
identical) paths, only LQG-MP did not find the optimum
after the 100 planning iterations. This is also reflected in the
success probability. The probability for success of the path
created with ML-A* is with 36.6% not tolerable for a real
world system or will lead to constant replanning.

3) Scenario III: The robot starts close to two walls with
only 10 cm distance. As everything near the robot is known
at this instant perfectly, we are able to plan out of this narrow
space. With a worst case position error assumption, this is not
possible. Again, the path from BS-A* is much more likely to
be successfully executed without replanning. It is noteworthy
that taking the map at its worst case position and considering
the stochastic motion of the robot with WCO-A* it is not
possible to successfully plan this scenario. The reason is,
that the first encountered obstacle at its 3σ position prevents
finding a path that satisfies the chance constraint ps,min. Thus

even though in many cases WCO-A* finds the same path
as BS-A* where no or nearly no closeness to obstacles is
necessary like in scenario I and II, it is too conservative if
some probability of failure has to be taken into account in
order to plan.

4) Scenario IV: This scenario is taken from [1] and uses
a different observation model than the previous scenarios.
Here, we assume only sensing of the y coordinate of the
robot, thus yn = (0, 1, 0) · xn + ηn. With this sensing
limitation, the only safe path from the starting position is
taking the right corridor as the uncertainty in x will grow
with time. Similar to the last scenario WC-A* and WCO-
A* are not able to find a path. Actually, WC-A* is not
applicable as the uncertainty is not bounded because of the
observation model and thus there is no such thing as a worst
case uncertainty.

5) Complexity: In order to compare the complexity of
the presented algorithms, we measure the size of the search
graph at the end of planning. As edge expansions are the
most expensive operations, we chose the size of edge set
||E|| as a measure. Table II shows the result for all presented

Method I ||E|| II ||E|| III||E|| IV||E||
BS-A* 362 200 74 257
ML-A* 55 217 75 452
WC-A* - 162 - -

WCO-A* 289 169 - -
LQG-MP (best) 387 108 33 179
LQG-MP (total) 28763 10008 4497 27188

TABLE II
NUMBER OF EDGES IN THE SEARCH GRAPH AFTER PLANNING FINISHED

scenarios and planner. For the LQG-MP algorithm we split
up in the search graph for the best (out of 100) and for all
planning runs in total. Only BS-A* and LQG-MP produce
similar paths but in order to achieve the same result the RRT
with LQG-MP has to run multiple times. Thus we have
a magnitude higher number of edge expansions. Here, the
heuristic that guides the search allows a more efficient way to
build up the search graph. In contrast to ML-A*, BS-A* has
a factor of up to 6 more expansions, but finds a much safer
path. Of course, the cost of one expansion is higher in this
case, as the collision check has to determine the probability
instead of a binary decision.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown how the notion of belief space
can be integrated into a heuristic search framework in order
to successfully plan in an environment with uncertainty in
perception and actuation. With this framework it is theoreti-
cal possible to integrate all sources of uncertainty mentioned
in the introduction, but right now three of them, namely
uncertainty in motion, localization and in perception of static
obstacles are considered. With this planning algorithm it
is possible to plan paths that are more likely to succeed
in execution without over-conservative limitations of the
vehicles capabilities through worst-case error estimations.
Additionally, we obtain paths that

1) can be tracked well by the controller, in this case
straight paths

2) stay away from obstacles that are not well known
3) are able to navigate in narrow environments with good

knowledge, close to the physical dimensions of the
robot

4) consider the localization capabilities
Normally, in motion planning one or multiple of these
properties are often achieved by tuning cost functions for
example by punishing closeness to obstacles or excessive
control inputs. With planning in belief space these desir-
able behaviors are implicitly created by optimizing success
probabilities and exploitation of additional information about
errors and uncertainties.

Right now, the implementation is only prototypical and
the runtimes are not usable for realtime motion planning
yet, mainly due to the inefficient calculation of collision
probabilities. In future work, a study of methods for collision
probability calculations has to be done towards online ap-
plication of the framework. Also, dynamic obstacles will be

integrated and evaluated in the framework and more thorough
comparison to existing planners like [8] will be done. In
order to evaluate the practical relevance, experiments with
a real autonomous vehicle are planned to determine error
characteristics of an implemented tracking controller and
observation model. A further interesting field of future work
is how to design the heuristic function to include the current
(and expected) uncertainty to the goal, for example with

REFERENCES

[1] J. Van Den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” The International Journal of Robotics, vol. 30, no. 7,
pp. 895—-913, 2011.

[2] B. Burns and O. Brock, “Sampling-based motion planning with
sensing uncertainty,” in IEEE International Conference on Robotics
and Automation. IEEE, 2007, pp. 3313–3318.

[3] L. Guibas, D. Hsu, H. Kurniawati, and E. Rehman, “Bounded un-
certainty roadmaps for path planning,” Algorithmic Foundation of
Robotics, vol. VIII, pp. 199–215, 2009.

[4] N. A. Melchior and R. Simmons, “Particle RRT for Path Planning
with Uncertainty,” in IEEE International Conference on Robotics and
Automation. IEEE, Apr. 2007, pp. 1617–1624.

[5] R. Alterovitz, T. Siméon, and K. Goldberg, “The Stochastic Motion
Roadmap: A Sampling Framework for Planning with Markov Motion
Uncertainty.” Robotics: Science and Systems, pp. 246–253, 2007.

[6] D. Mellinger and V. Kumar, “Control and planning for vehicles
with uncertainty in dynamics,” in IEEE International Conference on
Robotics and Automation, 2010.

[7] R. Platt Jr., R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief
space planning assuming maximum likelihood observations,” in
Proceedings of the Robotics: Science and Systems Conference, 6th,
2010.

[8] A. Bry and N. Roy, “Rapidly-exploring Random Belief Trees for
motion planning under uncertainty,” in IEEE International Conference
on Robotics and Automation. IEEE, 2011, pp. 723–730.

[9] M. Vitus and C. Tomlin, “Closed-loop belief space planning for
linear, Gaussian systems,” in IEEE International Conference on
Robotics and Automation, 2011.

[10] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using iterative local optimization in belief space,” The
International Journal of Robotics, 2012.

[11] S. Patil, Y. Duan, J. Schulman, K. Goldberg, and P. Abbeel, “Gaus-
sian belief space planning with discontinuities in sensing domains,”
International Symposium on Robotics, 2013.

[12] H. Kurniawati, T. Bandyopadhyay, and N. Patrikalakis, “Global
motion planning under uncertain motion, sensing, and environment
map,” Autonomous Robots, 2012.

[13] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic
navigation in dynamic environment using Rapidly-exploring Random
Trees and Gaussian processes,” in IEEE International Conference on
Intelligent Robots and Systems. IEEE, Sep. 2008, pp. 1056–1062.

[14] N. E. Du Toit and J. W. Burdick, “Robot Motion Planning in
Dynamic, Uncertain Environments,” IEEE Transactions on Robotics,
vol. 28, no. 1, pp. 101–115, Feb. 2012.

[15] A. Lambert, D. Gruyer, and G. Pierre, “A fast Monte Carlo algorithm
for collision probability estimation,” in International Conference on
Control, Automation, Robotics and Vision, 2008, pp. 406—-411.

[16] S. Patil, J. van den Berg, and R. Alterovitz, “Estimating probability
of collision for safe motion planning under Gaussian motion and
sensing uncertainty,” in IEEE International Conference on Robotics
and Automation. IEEE, 2012, pp. 3238–3244.

[17] N. E. Du Toit and J. W. Burdick, “Probabilistic collision checking
with chance constraints,” Robotics, IEEE Transactions on, 2011.

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[19] A. M. Shkel and V. Lumelsky, “Classification of the Dubins set,”
Robotics and Autonomous Systems, vol. 34, no. 4, pp. 179–202, 2001.

