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Abstract. The work at hand addresses the question: What kind of navigation
behavior do humans expect from a robot in a path crossing scenario? To this end,
we developed the ”Inverse Oz of Wizard” study design where participants steered
a robot in a scenario in which an instructed person is crossing the robot’s path. We
investigated two aspects of robot behavior: (1) what are the expected actions? and
(2) can we determine the expected action by considering the spatial relationship?
The overall navigation strategy, that was performed the most, was driving straight
towards the goal and either stop when the person and the robot came close or drive
on towards the goal and pass the path of the person. Furthermore, we found that
the spatial relationship is significantly correlated with the performed action and
we can precisely predict the expected action by using a Support Vector Machine.
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1 Introduction
Robots will increasingly become part of the habitats and work spaces of humans. Wher-
ever they are located, in the factories as co-workers, in nursing homes or hospitals as
care assistants, as guides in a supermarket, or as household-robots, one crucial behavior,
which they have all in common, is navigation. A robot has to navigate through spaces
where humans live and as Althaus et al. [1] already stated ”The quality of the move-
ments influences strongly the perceived intelligence of the robotic system.”. The way a
robot moves affects not only the perceived intelligence, also the perceived safety, com-
fort and legibility and other factors regarding social acceptance [7, 17]. Therefore, one
goal in human-robot interaction is to develop methods in order to make robot behavior
and in particular navigation socially acceptable [16, 8, 22].

In the literature several social navigation methods have been proposed. One com-
mon approach is to model social conventions (e. g. proxemics [10], keeping to the right
side in a corridor,...) and norms by using cost functions or potential fields [14, 25, 21].
For example Kirby et al. proposed a navigation method which models social conven-
tions and the constraint to pass a person on the right as well as task conventions like
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time and path length constraints. They use a classical A* path planner equipped with
cost functions modeling social and task conventions. Also Tranberg et al. [25] use a
proxemics model. Contrary to Kirby et al. they use a potential field instead of cost
functions. Another cost function navigation method is proposed by Sisbot et al. [21].
They model not only spacial rules but also other social norms based on their findings in
former studies like safety rules, preferred approach directions or visibility constraints.

Another approach is to follow the assumption that robot behavior is socially accept-
able if the robot shows similar behavior to humans [26, 15]. One of the first methods is
proposed by Yoda et al. [26], based on the findings of a human-human experiment they
developed an algorithm imitating human passing behavior. Also Kruse et al. [15] de-
veloped a Human-Aware Navigation by modeling the findings of a human-human path
crossing experiment [3] into a cost function model. However, physical capabilities of
robots differ very much from humans’ (in particular those of wheeled robots). There-
fore, imitating human behavior becomes difficult. Furthermore we showed in former ex-
periments [17] that the legibility and perceived safety of the Human-Aware Navigation
method [15] is rather low. In addition, it is not clearly known if humans expect robots to
move in a different manner to humans. Is there something like a robot-like behavior that
humans expect from robots? A large body of research is dedicated to investigate sev-
eral aspects of robot navigation [4, 20, 12, 7]. For example Butler et al [4] analyzed the
influence of different factors like speed, distance and design on robot motion patterns
(frontal approach, passing by, non-interactive navigation). They evaluated how the nav-
igation is perceived by humans regarding the level of comfort. Pacchierotti et al. [20]
also tested the conditions speed, and distances in a passing by situation. Proxemics [10]
are also widely studied in human-robot interaction [24, 19]. In a controlled experiment
Dautenhahn et al. [7] identified preferable robot approaching motions by testing dif-
ferent strategies. The aforementioned research presents controlled experiments testing
how motion is perceived regarding different conditions like speed, distance and orien-
tation. However, what is only rarely investigated is what humans expect from a robot,
especially when the robot has different capabilities than humans. One study towards
expected robot motion patterns is presented by Huettenrauch et al. [12]. In order to
identify spatial behavior patterns they investigated the spatial behavior (distances ac-
cording to Hall [10] and orientation according to Kendon [13]) of a human towards a
robot during a ”Home Tour” study.

In order to find out what kind of behavior humans expect from a robot, and in
particular a robot with non-humanlike physical capabilities we let naive participants
steer the robot in a path crossing task. The study design of the work at hand is a new kind
of the classical ”Wizard of Oz” [9], which we call ”Inverse Oz of Wizard” following the
categorization proposed by Steinfeld et al. [23]. According to the ”Oz of Wizard” design
described by Steinfeld et al. [23], where the human is simulated, the robot behavior is
real, and the robot behavior is evaluated using robot centered metrics we designed our
”Inverse Oz of Wizard”. We ”simulate” the human by instructing a confederate with
very strict behavioral rules. The robot behavior is controlled by the participant in order
to capture the participants’ expectations and the resulting robot behavior is evaluated,
by analyzing the captured motions.

In order to perform a structured analysis of the observed robot behavior and par-
ticularly with regard to the development of a navigation method we have to formalize
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the term ”robot behavior”. Usually behavior is defined as the range of actions done
by organisms, or artificial entities, which is the response of the organism, or artificial
entity to various stimuli. Or as Arkin shortly states in his book, ”behavior is a reaction
to a stimulus” [2]. Based on this common definition and according to Arkin’s behavior-
based robotics theory we formalize robot behavior as an action a performed by a robot,
which is caused by a stimulus s , i.e. it exist a function f so that f(s) 7→ a. In our
navigation scenario possible actions can be driving, stopping or driving a curve and the
spatial relationship is a stimulus.

Research Questions We want to identify expected robot navigation behavior in a
human-robot path crossing scenario. Therefore, we want to answer three questions with
the study at hand. First we want to identify the preferred actions a, second we want to
identify the stimulus s. We expect that the stimulus for an action in a human-robot path
crossing situation lies in the spatial relationship of human and robot, third we hypoth-
esize that it is possible to predict the expected action, based on the spatial relationship.
i.e. a function f exist so that f(s) 7→ a.

2 Method

In order to answer the aforementioned questions we implemented a within-subject study
using our ”Inverse Oz of Wizard” study design.

2.1 Participants
We recruited 46 participants with an average age of 28 years - thereof 26 women and
20 men. 89% of the participants had rarely or no contact to robots and 11% had regular
contact to robots.

2.2 Technical Setup
Robot The platform used in this study was the BIRON (BIelefeld Robotic Compan-
iON) robot (see Fig. 1(a)). BIRON has an overall size of approximately 0.5m (w) x
0.6m (d) x 1.3m (h). Besides two wheels, BIRON has two rear casters for balance and
is constructed with a differential drive (2 degrees of freedom: translation and rotation).



Robot Remote-Control We used a wireless keyboard to steer the robot. The com-
mands of how to steer the robot were marked on the keyboard with arrows. Five keys
corresponded to the five ways of moving the robot: straight forward, rotate around its
own axis in a clockwise direction, in an anti-clockwise direction, drive and turn left or
right in an arc. The robot only moved by holding down the particular key and the robot
stopped by releasing the key. These motions map the actual movement abilities of the
robot BIRON. Thus, the actions we investigate in this scenario are drive, stop, curve,
and rotate. There was no possibility to accelerate the robot as it was driving at its full
speed of 0.7m/s.

Motion Capturing System To capture the movements of the robot and the interacting
person we used a VICON motion capturing system (www.vicon.com). We recorded
additional video data with an HD camera.

2.3 Study Design
Cover Story In order to make the scenario realistic all participants were told the same
cover story about a grocery store that uses a robot (BIRON) to refill the shelves with
goods from the storing place. The participants were asked to navigate the robot from the
storing place to a shelf (see Fig. 1(c)) by steering the robot with the wireless keyboard.
Furthermore, they were told that the robot might encounter customers in the store.

Setup According to the grocery store cover story we built up a store scenario with
four shelves and a storing place (see Fig. 1(b),1(c)) in a laboratory which measures
approximately 133m2. Three shelves were placed at the wall on the right side of the
storing place with a distance of 2.7 m between them (see Fig. 1(c)). One shelf was
placed 7.3 m opposite to the storing place (see Fig. 1(c)). The robot, steered by the
participant, had the task to bring items from the storing place to the opposite shelve
(see Fig. 1(c)). One experimenter took the role of a customer. The customer had the
task to walk from a fixed point (see Fig. 1(c)) randomly to one of the three shelves
at the wall and put an item into his/her basket. In addition to the three randomized
aims the customer walked randomly in three different walking velocities slow (0.6 to
0.8m/s), normal (1.2 to 1.5m/s), and fast (1.9 to 2.1m/s). The customer had to walk
straight and maintain the velocity even if the robot would crash into them. To avoid eye
contact with the participant the customers wore sunglasses. Due to the arrangement of
the shelves the robot and the customer coincidentally met each other in 45◦ and 90◦

angles (see Fig. 1(c)). Thus, the setup was designed to create completely random and
unforeseeable crossing events.

Procedure First the participants were welcomed and the cover story (see Section 2.3)
was explained. In order to familiarize the participants with the setup and with steering
the robot BIRON the participants received an introduction to the robot BIRON and an
extensive practice of how to steer the robot. Only after the participants managed to drive
around obstacles and felt capable of steering the robot, the study began. The participants
were told to carry 15 items (only one item at a time) from the storing place to the
opposite shelf (see Fig. 1(c)) and then go back to the storing place. Therefore the robot
moves 30 times (two times per item) straight through the room. The customer crosses
the robots path randomly as described in Section 2.3. The movements of the robot and



the customer were captured by a motion capture system and a video camera (see Section
2.2). Once the participant completed the task he/she were debriefed about the purposes
of the study and discussed the study with the experimenters. Demographical data were
recorded within the debriefing.

3 Results
We carried out the data analysis in two steps. First we identified robot actions in the
video data by observing its motions (drive, stop, curve, rotate). After that we analyzed
the spatial relationships of robot and customer using the motion capturing data in order
to identify the stimulus for a specific action. We only consider crossing situations for
our analysis. A crossing situation is defined as a situation where 1) the paths of both,
BIRON and the customer, will cross and 2) both are located before reaching the crossing
point (see Figure 2(b)).

3.1 Video Data
By analyzing the video data we identified four different navigation patterns performed
by the robot in crossing situations (see also [18]):

1. stopping before the crossing point (76.7%)
2. driving straightforward and passing behind or in front of the customer (18%)
3. driving a curve (3.7%)
4. collision with the customer (1.6%) (only shown by two participants)

The action rotate was never performed in a crossing situation and driving a curve was
mostly performed by a participant in his/her first trials. The overall navigation strategy,
which we can conclude from our observation, was driving straight towards the goal
(shelve or storage place) and either stop when both, the customer and the robot, came
close to the crossing point, or otherwise drive on towards the goal and pass the path of
the customer without colliding. This strategy was performed by almost all (44 of 46)
participants. We assume that the participants anticipate if a collision will happen or not
and either stop or drive on. To conclude, from our video analysis we can derive that the
actions drive and stop are the preferable actions and we can assume that the stimulus
lies in the spatial relationship.

3.2 Motion Data
Spatial Feature Calculation The raw data from the motion capturing system contains
the position of robot r and customer c (see Fig. 2(a)) captured with a frame rate of
150Hz. In order to describe the spatial relationship between robot and customer we
calculated the following spatial features using Matlab (see also Figure 2(b)):

– QTCc according to Hanheide et al. [11] to determine a crossing situation
– distance between customer and robot d
– distance between customer and the crossing point dc
– distance between robot and the crossing point dr
– angle robot-customer α
– velocity customer v
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Calculating QTCc Features: QTCc is a compact representation of spatial relations
between two moving objects. It represents the relative motion, with respect to the ref-
erence line RL that connects them, as shown in Fig. 2(c) We calculated the QTCc

according to Hanheide et al. [11] as follows:

(1) movement of the robot r with respect to the customer c:
- 1 : r is moving towards c
+1 : r is moving away from c

(2) movement of c with respect to r
same as (1), but with r and c swapped

(3) movement of r with respect to RL:
-1: r is moving to the left-hand side of RL
0 : r is moving along RL or not moving at all
+1 : r is moving to the right-hand side of RL

(4) movement of c with respect to RL
same as (3), but with r substituted by c

Therefore, a crossing situation is given when: (1)= -1, (2)= -1, (3) = -1·(4) or (3)=(4)=0.
Calculating Spatial Features: For the purpose of reducing the amount of data we cal-
culated one feature vector for every 15 frames. Thus, we get 15 feature vectors for one
second of recorded data. Additionally, to the aforementioned spatial features we deter-
mined the action a (drive, stop, curve, rotate) the robot is performing (see Fig. 2(a)).
Thus, we transformed position data points into action related spatial feature vectors
containing the action a, distance between customer and robot d, distance between cus-
tomer and the crossing point dc, distance between robot and the crossing point dr, angle
robot-customer α, velocity customer v, and the QTCc values.

(a, d, dc, dr, α, v,QTCc)

In order to concentrate only on the main strategy we excluded all feature vectors with
curve and rotate actions. We identified the crossing situations by using the QTCc [11]
information and excluded all non-crossing situations. We also excluded all feature vec-
tors where the robot is outside of the customer’s social space (d > 3.6m) [10]. Note
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that we have far more than one feature vector per crossing situation, because different
to the video analysis, where we were only counting the reaction for a crossing situation,
we now consider every data point of a crossing situation. Furthermore, due to the fact
that the robot drives before it stops we have more feature vectors for the action drive
than for the action stop.
Statistical Data Analysis The aim of the statistical data analysis, which was performed
with SPSS, was to find support for our hypothesis: ”can we predict the action based on
the spatial features”.

First of all we show the distributions for the distance values (d, dc, dr) in Fig. 3.2.
The histograms in Figure 3.2 show, that there is a trend for greater distances for the drive
action and that most of the participants stop the robot within a distance of approximately
0.7 m to the crossing point whereby the customer has a distance of approximately 0.67
m to the crossing point.

By performing inferential statistic tests, we found support for our hypothesis that the
spatial features are correlated with the action. Due to the dichotomous action variable
we calculated the point-biserial correlation coefficients. The action of the robot was
significantly related to the distance between customer and robot d, rpb = .149, p < .01,
to the distance between customer and the crossing point dc, rpb = .200, p < .01, to
the distance between robot and the crossing point dr, rpb = .063, p < .01, to the angle
robot- customer α, rpb = .027, p < .01, and to the customer’s velocity v, rpb = .054,
p < .01.

As a next step to support our hypothesis that we can predict the action based on the
spatial features, we performed a logistic regression on the normalized spatial feature
values. Results are shown in Table 1. Only the angle has no significant influence on



the classification model (B = .06, p = .396). All other variables have a significant
influence and the model is able to predict 86.7 % of the actions correctly. Additionally

Table 1. Results of the logistic regression, performed with SPSS

Value B (SE) Lower Odds Ratioa Upper

distance d -1.023∗∗ (.086) .304 .359 .425
velocity v -.515∗∗ (.037) .556 .598 .643
angle α .060 (.71) .924 1.062 1.221
distance robot dr .648∗∗ (.081) 1.630 1.912 2.243
distance customer dc -.255∗∗ (.071) .674 .775 .892
constant -2.131 (.059) .119
∗∗ p < 0.001, a95% CI for Odds Ratio

Model Statistics

R2 = .15 (Cox & Snell), .25 (Nagelkerke)
χ2(8) = 106.097, p < 0.001 (Hosmer & Lemeshow)

accuracy 86.7% (goodness-of-fit)

to the logistic regression we trained a Support Vector Machine SVM with a RBF Kernel
[6] in order to show that we can precisely predict the expected action based on the
spatial features. The results of a ten-fold-cross-validation, performed with LibSVM [5]
are shown in Table 2. The very good prediction results also support our hypothesis.

Table 2. Results of the ten-fold-cross-validation of the SVM model performed with LibSVM [5]

accuracy 99.9527% f-score 0.999764
precision 100% recall 99.9527%

4 Discussion
The study at hand was conducted to identify expected robot navigation behavior. In the
video analysis we found a prominent robot behavior. Driving straight towards the goal
and, when a crossing situation occurs, either stop and wait until the customer passes the
robot’s path or drive on and pass the path of the person before or behind the person.
Thus, the expected actions a are drive towards the goal and stop. We hypothesized
that the stimulus lies in the spatial relationship. Therefore, we used the motion cap-
turing data to identify the stimulus s and calculated several spatial features. We used
the QTCc [11] representation to identify a crossing situation and extended these purely
relative representations with distance measures, the crossing angle, and velocity infor-
mation. We found support for our hypothesis that the spatial relationship is significantly
correlated with the action. Furthermore we could show that it is possible to predict the
expected action based on our spatial features whereby we found that the distance mea-
sures are the most influential values. Additionally, we could show that it is possible to
precisely predict the action, by using a Support Vector Machine.

The overall navigation strategy, that we found in our data, is similar to the behavior
Basili et al. [3] found in their human-human path crossing experiment. In both studies



the participants were going (driving the robot) straight towards the goal and show a
collision avoiding strategy by manipulating the speed. In our case by stopping and in
their case by decreasing the speed.

However, the findings of the study at hand are significant, but the correlation values
are rather low. The reason can be failures in the used equipment, which causes much
noise in our data. Sometimes a stop was caused by loosing the connection to the robot
or we lost a marker due to occultation. Furthermore, in the study at hand the participants
only had a third person view from a fixed point in the room. This fact makes it difficult
for the participants to exactly estimate distances, which can also be the reason for the
rather low correlation values. Another limitation of the study is the small set of crossing
angles and the missing of a frontal approach. Furthermore, the actions are limited. Due
to safety reasons we does not provide the option to manipulate the robots’ speed.

The aforementioned limitations can be the basis for further investigations of robot
navigation behavior. For example, by implementing more controlled experiments, based
on our findings, one can avoid the noise and find more precise thresholds for the distance
values. Also a first person view by using a camera on the robot can yield more precise
results. Furthermore, it could be useful to evaluate the identified robot navigation pat-
terns and test how they are perceived by a human in order to verify our hypothesis that
we can find out human expectations about robot behavior by using our ”Inverse Oz of
Wizard” study design. This can be done by doing it the other way around in a experi-
ment where the behavior of the robot is scripted and the participants are asked to rate
the behavior.

5 Conclusion
To sum up, we conducted a study to identify robot behavior patterns in a human robot
path crossing scenario. The overall navigation strategy we can conclude from the data
is to drive straight towards the goal and only react (stop) to a crossing human when the
stimulus based on the spatial relationship predicts to stop, otherwise drive on towards
the goal. The expected action can be predicted by using a standard machine learning
method like an SVM trained on our dataset. Based on these findings and by using our
SVM model, we can develop a social navigation method, that meets human expectations
about robot navigation behavior.
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