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Abstract—With the rapid development of information and 
communication technology and widely spreading of internet, 
digital landscape becomes a high topic recently. This paper 
presents a landscape modeling- and visualizationssystem. The 
first part of this paper focuses on the real time 3D-model-
lingsprocess out of large point-clouds. Diverse experiments have 
been done on the reconstruction of various famous regions of 
Bavaria with tourist features. And the second part concentrates 
on the interactive online visualizationssystem for massive meshes. 
To enable an efficient interactive online visualization of these 
large meshes, we convert them firstly with a multi-resolution 
hierarchy, and then display them progressively. As a pre-
processing for the inter-active rendering, we generate a 
hierarchical tree of bounding spheres from triangle meshes and 
write it to disk. It will be used for view frustum culling, backface 
culling and level-of-detail control. We use a recursive algorithm 
for display. And the traverse-depth in the tree is decided by the 
projected size of the current node on the screen. By an interactive 
rendering, once the user stops moving the mouse, the scene will 
be redrawn with successively smaller thresholds until a size of 
one pixel is reached. 
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I.  INTRODUCTION 
To generate digital Landscape, man uses airplane, airship, 

even satellite to gain the colored aerial views outdoors. Of 
course, the obtained data amounts are very large. Therefore, 
how to handle these data, to simplify them, to transform them 
to 3D models fast and automatically for further applications, 
e.g. CAD modeling or interactive online visualization etc., 
becomes a challenging task. 

The first part of this paper presents a fully automatic 3D-
modeling process of the huge 2.5D landscape point-clouds 
generated with a High Resolution Stereo Camera (HRSC) [1] 
assembled on a flying airplane (See Fig. 1). This camera has 
been developed by the DLR Institute of Planetary Research for 
the exploration of the Mars surface. The airborne version 
HRSC-AX is currently used for capturing earth’s landscape 
and cities from flight altitudes between 1500m to 5000 m [2]. 
The input data of our modeling process are resulted from the 
stereo-matching [3].  

To handling these large datasets we designed a real-time 
automatic modeling process, which is performed in six steps: 
tilling with overlap, mesh generation, mesh simplifying, mesh 
cut, mesh merger and texture mapping.  

 

Figure 1.  HRSC on Airplan. 

And the second part of this paper presents an interactive 
online visualisationssystem for massive colored meshes. 
Firstly, we generate a hierarchical tree of bounding spheres 
from triangle meshes and write it to disk. And then it will be 
read progressively. During the display, view frustum culling, 
backface culling and level-of-detail control will be done. 

This paper is organized as follows. In section 2, previous 
work is briefly summarized. Then, section 3 describes the 
workflow of automatic modeling and section 4 illustrates the 
details for visualization, e.g. the utilized data structure, 
rendering algorithms, etc. And the experimental results are 
shown in the two sections. Finally, the related acknowled-
gement is announced in the end section.     

II. RELATED WORK 
For the modeling and visualization of landscape data, LOD 

(Level of Detail) [4] is used as a traditional way. Recently, 
more and more efforts have been taken to find and reconstruct 
the man-made structures and natural structures automatically. 
For example, buildings, highways, trees etc. [5, 6, 7, 8, 9, 10].      

The visualizationstechniques for very large dataset can be 
classified into two categories: the first approach focuses on the 
optimizing the placement of the individual edges and vertices 
[11]. Though it can result in a gut rendering quality, it requires 
more runtime and memory. So it is not suitable for very large 
dataset. The typical work in this field is the combination of 
traditional mesh simplification and progressive display. And 
the second approach treats the individual points as relatively 
unimportant and consumes less effort per primitive. It results in 
a high rendering speed and less memory requirements, but 
leads to a relative lower quality. Typical systems are Yemez 
and Schmitt’s rendering system based on octree particles [12], 
Rusinkiewicz’s splat system based on a balanced hierarchical 

1-4244-1212-9/07/$25.00 ©2007 IEEE. 1820



tree [13]. The improvement of the point-based rendering 
quality has been taken by EWA splatting [14] and object-space 
point blending [15]. Recently, some researches combined both 
of them in LOD-based rendering approach [16, 17].        

III. MODELING 
The input of our system is the 2.5 D colored point-clouds 

resulted from the photogrammetric preprocessing. Because one 
of such aerial views is normally several gigabytes, it overrides 
the capabilities of fast all 3D modeling- and visualizationstools. 
So we run an automatic modeling process on these data to 
reduce the data amount firstly. Here we take a “divide-and-
conquer” strategy: piecewise reading and modeling, then 
making the border of the adjacent parts seamless.  So our 
approach of fully automatic 3D-modelling consists of the 
following six steps. 

A. Tiling with overlap 
In this stage, the whole area will be divided in tiles with a 

proper size. To avoid great distort out of merging of meshes, 
we set an overlap between neighbored tiles. 

 

Figure 2.  Tiling with overlap. 

For a fast reading of input data in arbitrary areas with any 
resolution, the input data were saved as double-Tiff-format: 
one Tiff-file contains the height-information of every pixel, and 
the other holds the RGB colored information. 

B.  Mesh generation 
As the heights of pixels are saved as matrix-format in tiff-

file, by connecting the shorter diagonal of every rectangle grid, 
we get a regular grid mesh.  

C. Mesh simplifying 
A modified Quadric Error Metrics algorithm [18] was 

applied in this stage. Geometric characters become more 

Fig. 3 shows a little area with several houses. The original 
grid mesh is generated from HRSC 2.5D data with resolutio

outstanding, for example, edge becomes sharper. And the data 
amount can be reduced over 99% without distinguish distort. 

n 
of 20 cm. It has 359,552 triangles. After simplification, only 
0.5% triangles (1,795) are remained. However, the geometric 
characters become more outstanding, and the appearance of the 
textured 3D model is improved considerably. 

  

  
a) before b) after 

Figure 3.  esh Simplifying. 

D. Mesh cut 
In this step, the bounding box of each tile will be generated 

e tile size and position. Exactly along the middle 

After neatly cutting of the simplified meshes, we apply the 
o ctions” to merge the adjacent meshes seam-

M

according to th
axis of the overlapping area, every mesh will be cut neatly. 
That means, the projection of all resulted boundary edges from 
one cut action should lie in one straight line. 

E. Mesh merge 

foll wing “stitch-a
less. 

overlap 

(a)                            (b)                        (c)

 

Figure 4.  Merger of adjacent meshes. 

             stitch-to-point                      stitch-to-edge
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F. Texture mapping 
The RGB information of each tile was saved as compressed 

image format. And the mapping from texture to 3D mesh is 
achieved by projection the 3D meshes to the texture coordinate 
system. 

The above six steps are integrated in one process, which 
can be completed in 20 ~ 30 minutes for one area with 283 
million points (See Tab. 1). The resulted 3D landscape is saved 
as a group of simplified meshes with corresponding texture. 

TABLE I.  PROCESS TIME OF DIVERSE REGIONS 
 

Region Area Size  
n x  m (pixels2)

Resolution 
(m) 

Output 
(Triangles) 

Runtime 
(min) 

Kehlheim 24480 x 11570 0.20 3,623,330 26,5 

Andechs 6000 x 6000 0.15 463,333 3,6 

Wiekirche 6000 x 6000 0.20 465,557 3,7 

 

IV. VISUALIZATION 
To enable an efficient interactive online visualization of 

these large meshes, we convert them firstly with a multi-
resolution hierarchy, write them to disk and display them 
progressively.  

A. Datastructure 
We use a balanced hierarchical tree of bounding spheres as 

our basis structure to hold and display the mesh (See Fig. 5). 
There three types of tree-nodes: a root, many inner nodes und 
leaves. Each leaf contains a pointer to his underling 3D-object 
(this can be a point, a triangle or a group of triangles, etc.) 
generated from the original mesh. It also contains the center 
and radius of the bounding sphere of the 3D-object, a normal, 
width of the normal cone and optionally a color. A none-leaf 
node (inner node or root) contains the number of his child-
nodes, the center and radius of the bounding sphere enclosing 
his child-nodes, a normal, width of the normal cone and 
optionally a color. A none-leaf node has maximal four 
children. Its properties, such as normal and color, are set as the 
average properties of his children.    

 

Figure 5.  A balanced hierarchical tree of bounding spheres. 

And the save order of the nodes in disk is along the rot 
dotted arrows.  

B. Preprocessing 
In this process, we build the balanced tree from triangles 

meshes. Firstly, we init the leaves by computing the bounding 
sphere of the chosen 3D-object from mesh. And then, we build 
up the tree by using a recursive algorithm from bottom to top. 

 To get a balanced tree, we split the set of nodes along the 
longest axis of its bounding box at the node with the middle 
range in the node-set by every recursive call, until the size of 
the node-set is smaller than five, then we construct a parent 
node out auf this node-set. 

After the tree is built, we write it out in a compressed 
format auf the disk along the order denoted by the rot arrows in 
Fig. 5. For the size of every node is pre-defined according to 
the compression method, we can directly access the sub-trees 
of one node.   

C. Rendering 
We use the following algorithms for an efficient read and 

display of the hierarchical tree. 

 

 

 

 

 

 

 

 

 

 

 

 

int Draw(tree-node* n ) 
{ 
      if (!n or n not visible) 
 Return 0; 
      if (projection size of n on screen under a threshold) 
     { 
 Draw a splat; 
 Return 1; 
      } 
      if (n is leaf node) 
      { 
 Draw the 3D-object linked to n; 
 Return 1;   
      } 
       Return Draw(n->child[0])+Draw(n->child[1])+ 
                   Draw(n->child[2])+Draw(n->child[3]);      
} 

Figure 6.  Pseudo-code of the rendering algorithm.. 

The above code shows the principle of level-of-detail 
control. And to decide the visibility of a node, we use view 
frustum culling and backface culling.  

leaves 

inner nodes 

root 

1) View frustum culling 
View frustum culling is performed by testing the bounding 
sphere of the node against the view frustum. If the sphere lies 
outside the frustum, the node is not visible (See Fig. 7). 

 

w
α 

  α >w 

screen 

Figure 7.  View frustum culling. 
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