
Real Time Landscape Modelling and Visualization

Rui Liu, Darius Burschka, Gerd Hirzinger
Institute of Robotics and Mechatronics,

German Aerospace Center (DLR)
Muenchner Str. 20, 82234 Wessling, Germany

Rui.Liu@dlr.de

Abstract—With the rapid development of information and
communication technology and widely spreading of internet,
digital landscape becomes a high topic recently. This paper
presents a landscape modeling- and visualizationssystem. The
first part of this paper focuses on the real time 3D-model-
lingsprocess out of large point-clouds. Diverse experiments have
been done on the reconstruction of various famous regions of
Bavaria with tourist features. And the second part concentrates
on the interactive online visualizationssystem for massive meshes.
To enable an efficient interactive online visualization of these
large meshes, we convert them firstly with a multi-resolution
hierarchy, and then display them progressively. As a pre-
processing for the inter-active rendering, we generate a
hierarchical tree of bounding spheres from triangle meshes and
write it to disk. It will be used for view frustum culling, backface
culling and level-of-detail control. We use a recursive algorithm
for display. And the traverse-depth in the tree is decided by the
projected size of the current node on the screen. By an interactive
rendering, once the user stops moving the mouse, the scene will
be redrawn with successively smaller thresholds until a size of
one pixel is reached.

HRSC

Flight Track

Keywords-environmental modelling; data mining, achieving
and retrieval

I. INTRODUCTION
To generate digital Landscape, man uses airplane, airship,

even satellite to gain the colored aerial views outdoors. Of
course, the obtained data amounts are very large. Therefore,
how to handle these data, to simplify them, to transform them
to 3D models fast and automatically for further applications,
e.g. CAD modeling or interactive online visualization etc.,
becomes a challenging task.

The first part of this paper presents a fully automatic 3D-
modeling process of the huge 2.5D landscape point-clouds
generated with a High Resolution Stereo Camera (HRSC) [1]
assembled on a flying airplane (See Fig. 1). This camera has
been developed by the DLR Institute of Planetary Research for
the exploration of the Mars surface. The airborne version
HRSC-AX is currently used for capturing earth’s landscape
and cities from flight altitudes between 1500m to 5000 m [2].
The input data of our modeling process are resulted from the
stereo-matching [3].

To handling these large datasets we designed a real-time
automatic modeling process, which is performed in six steps:
tilling with overlap, mesh generation, mesh simplifying, mesh
cut, mesh merger and texture mapping.

Figure 1. HRSC on Airplan.

And the second part of this paper presents an interactive
online visualisationssystem for massive colored meshes.
Firstly, we generate a hierarchical tree of bounding spheres
from triangle meshes and write it to disk. And then it will be
read progressively. During the display, view frustum culling,
backface culling and level-of-detail control will be done.

This paper is organized as follows. In section 2, previous
work is briefly summarized. Then, section 3 describes the
workflow of automatic modeling and section 4 illustrates the
details for visualization, e.g. the utilized data structure,
rendering algorithms, etc. And the experimental results are
shown in the two sections. Finally, the related acknowled-
gement is announced in the end section.

II. RELATED WORK
For the modeling and visualization of landscape data, LOD

(Level of Detail) [4] is used as a traditional way. Recently,
more and more efforts have been taken to find and reconstruct
the man-made structures and natural structures automatically.
For example, buildings, highways, trees etc. [5, 6, 7, 8, 9, 10].

The visualizationstechniques for very large dataset can be
classified into two categories: the first approach focuses on the
optimizing the placement of the individual edges and vertices
[11]. Though it can result in a gut rendering quality, it requires
more runtime and memory. So it is not suitable for very large
dataset. The typical work in this field is the combination of
traditional mesh simplification and progressive display. And
the second approach treats the individual points as relatively
unimportant and consumes less effort per primitive. It results in
a high rendering speed and less memory requirements, but
leads to a relative lower quality. Typical systems are Yemez
and Schmitt’s rendering system based on octree particles [12],
Rusinkiewicz’s splat system based on a balanced hierarchical

1-4244-1212-9/07/$25.00 ©2007 IEEE. 1820

tree [13]. The improvement of the point-based rendering
quality has been taken by EWA splatting [14] and object-space
point blending [15]. Recently, some researches combined both
of them in LOD-based rendering approach [16, 17].

III. MODELING
The input of our system is the 2.5 D colored point-clouds

resulted from the photogrammetric preprocessing. Because one
of such aerial views is normally several gigabytes, it overrides
the capabilities of fast all 3D modeling- and visualizationstools.
So we run an automatic modeling process on these data to
reduce the data amount firstly. Here we take a “divide-and-
conquer” strategy: piecewise reading and modeling, then
making the border of the adjacent parts seamless. So our
approach of fully automatic 3D-modelling consists of the
following six steps.

A. Tiling with overlap
In this stage, the whole area will be divided in tiles with a

proper size. To avoid great distort out of merging of meshes,
we set an overlap between neighbored tiles.

Figure 2. Tiling with overlap.

For a fast reading of input data in arbitrary areas with any
resolution, the input data were saved as double-Tiff-format:
one Tiff-file contains the height-information of every pixel, and
the other holds the RGB colored information.

B. Mesh generation
As the heights of pixels are saved as matrix-format in tiff-

file, by connecting the shorter diagonal of every rectangle grid,
we get a regular grid mesh.

C. Mesh simplifying
A modified Quadric Error Metrics algorithm [18] was

applied in this stage. Geometric characters become more

Fig. 3 shows a little area with several houses. The original
grid mesh is generated from HRSC 2.5D data with resolutio

outstanding, for example, edge becomes sharper. And the data
amount can be reduced over 99% without distinguish distort.

n
of 20 cm. It has 359,552 triangles. After simplification, only
0.5% triangles (1,795) are remained. However, the geometric
characters become more outstanding, and the appearance of the
textured 3D model is improved considerably.

a) before b) after

Figure 3. esh Simplifying.

D. Mesh cut
In this step, the bounding box of each tile will be generated

e tile size and position. Exactly along the middle

After neatly cutting of the simplified meshes, we apply the
o ctions” to merge the adjacent meshes seam-

M

according to th
axis of the overlapping area, every mesh will be cut neatly.
That means, the projection of all resulted boundary edges from
one cut action should lie in one straight line.

E. Mesh merge

foll wing “stitch-a
less.

overlap

(a) (b) (c)

Figure 4. Merger of adjacent meshes.

 stitch-to-point stitch-to-edge

1-4244-1212-9/07/$25.00 ©2007 IEEE. 1821

F. Texture mapping
The RGB information of each tile was saved as compressed

image format. And the mapping from texture to 3D mesh is
achieved by projection the 3D meshes to the texture coordinate
system.

The above six steps are integrated in one process, which
can be completed in 20 ~ 30 minutes for one area with 283
million points (See Tab. 1). The resulted 3D landscape is saved
as a group of simplified meshes with corresponding texture.

TABLE I. PROCESS TIME OF DIVERSE REGIONS

Region Area Size
n x m (pixels2)

Resolution
(m)

Output
(Triangles)

Runtime
(min)

Kehlheim 24480 x 11570 0.20 3,623,330 26,5

Andechs 6000 x 6000 0.15 463,333 3,6

Wiekirche 6000 x 6000 0.20 465,557 3,7

IV. VISUALIZATION
To enable an efficient interactive online visualization of

these large meshes, we convert them firstly with a multi-
resolution hierarchy, write them to disk and display them
progressively.

A. Datastructure
We use a balanced hierarchical tree of bounding spheres as

our basis structure to hold and display the mesh (See Fig. 5).
There three types of tree-nodes: a root, many inner nodes und
leaves. Each leaf contains a pointer to his underling 3D-object
(this can be a point, a triangle or a group of triangles, etc.)
generated from the original mesh. It also contains the center
and radius of the bounding sphere of the 3D-object, a normal,
width of the normal cone and optionally a color. A none-leaf
node (inner node or root) contains the number of his child-
nodes, the center and radius of the bounding sphere enclosing
his child-nodes, a normal, width of the normal cone and
optionally a color. A none-leaf node has maximal four
children. Its properties, such as normal and color, are set as the
average properties of his children.

Figure 5. A balanced hierarchical tree of bounding spheres.

And the save order of the nodes in disk is along the rot
dotted arrows.

B. Preprocessing
In this process, we build the balanced tree from triangles

meshes. Firstly, we init the leaves by computing the bounding
sphere of the chosen 3D-object from mesh. And then, we build
up the tree by using a recursive algorithm from bottom to top.

 To get a balanced tree, we split the set of nodes along the
longest axis of its bounding box at the node with the middle
range in the node-set by every recursive call, until the size of
the node-set is smaller than five, then we construct a parent
node out auf this node-set.

After the tree is built, we write it out in a compressed
format auf the disk along the order denoted by the rot arrows in
Fig. 5. For the size of every node is pre-defined according to
the compression method, we can directly access the sub-trees
of one node.

C. Rendering
We use the following algorithms for an efficient read and

display of the hierarchical tree.

int Draw(tree-node* n)
{
 if (!n or n not visible)
 Return 0;
 if (projection size of n on screen under a threshold)
 {
 Draw a splat;
 Return 1;
 }
 if (n is leaf node)
 {
 Draw the 3D-object linked to n;
 Return 1;
 }
 Return Draw(n->child[0])+Draw(n->child[1])+
 Draw(n->child[2])+Draw(n->child[3]);
}

Figure 6. Pseudo-code of the rendering algorithm..

The above code shows the principle of level-of-detail
control. And to decide the visibility of a node, we use view
frustum culling and backface culling.

leaves

inner nodes

root

1) View frustum culling
View frustum culling is performed by testing the bounding
sphere of the node against the view frustum. If the sphere lies
outside the frustum, the node is not visible (See Fig. 7).

w
α

 α >w

screen

Figure 7. View frustum culling.

1-4244-1212-9/07/$25.00 ©2007 IEEE. 1822

ACKNOWLEDGMENT 2) Backface culling
Backface culling means, if the normal cone of the node is
completely facing away from the viewer, the node is not visible
(See Fig. 8).

Thanks to Mr. Johann Heindl and Dr. Heiko Hirschmüler,
they give us useful advices and sufficient input data to test our
modeling process. Further thanks to Mr. Wadim Tolstoi for his
excellent support for our work.

 β+θ <90 o

screen

 β
 θ

 n
REFERENCES

[1] F. Wewel, F. Scholten, and K. Gwinner, “High resolution stereo camera
(HRSC)-multispectral 3D-data acquisition and photogrammetric data
processing,” Canadian J. Remote Sensing, 26:466–474, 2000.

[2] G. Hirzinger et al., “Photo-Realistic 3D-Modelling - From Robotics
Perception Towards Cultural Heritage,” International Workshop on Re-
cording, Modelling and Visualization of Cultural Heritage, Ascona,
Switzerland, 2005.

[3] H. Hirschmüller, F. Scholten, G. Hirzinger, “Stereo Vision Based Re-
construction of Huge Urban Areas from an Airborne Pushbroom Camera
(HRSC)”, in Lecture Notes in Computer Science: Pattern Recognition,
Proceedings of the 27th DAGM Symposium, Volume 3663, pp. 58-66,
Vienna, Austria, 2005.

Figure 8. Backface culling

An example of our visualization is shown below (See Fig. 9).
The number of the drawn objects and rendering time are listed. [4] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R.

Huebner, “Level of Detail for 3D Graphics,” Morgen Kaufmann Pub-
lisher, 2003.

Start of loading [5] S. Lefevre, J. Weber and D. Sheeren, “Automatic Building Extraction in
VHR Images using Advanced Morphological Operators,” in Proc. of
Urban Remote Sensing Joint Event, Paris, 2007.

Zooming

375,597

0.039 s

1,209,808

0.276 s

[6] C. Iovan, D. Boldo and M. Cord, “Automatic Extraction of Urban
Vegetation Structures form HR Imagery and Digital Elevation Model,”
in Proc. of Urban Remote Sensing Joint Event, Paris, 2007.

[7] G. Sithole, G. Vosselman, “Automatic structure detection in a point-
cloud of urban landscape”, Proceedings of the 2nd GRSS/ISPRS Joint
Workshop on Remote Sensing and Data Fusion over Urban Areas
(URBAN2003), pp. 67-71, Berlin, Germany, 2003.

[8] M. Niederöst. “Detection and reconstruction of buildings for a 3-D
landscape model of Switzerland,” Proceedings of UM3/2000 Workshop,
Tokyo 2000.

[9] I. Laptev, H. Mayer, T. Lindeberg, W. Eckstein, C. Steger and A.
Baumgartner. “Automatic extraction of roads from aerial images based
on scale space and snakes,” Machine Vision and Applications (2000) 12:
23–31

 [10] M. Gerke, B.M. Straub and A. Koch. “Automatic Detection of Buildings
and Trees from Aerial Imagery Using Different Levels of Abstraction,”
Publikationen der Deutschen Gesellschaft für Photogrammetrie und
Fernerkundung, Band 10, Eckhardt Seyfert (Hrsg.), pp.273-280, 2001.

Zooming and rotating

[11] H. Huppe, “Smooth. View-Dependant. Level-of-Detail Control and its
Application to. Terrain Rendering, ” IEEE Visualization ’98

[12] Y. Yemez and F. Schmitt, “ Progressive Multilevel Meshes from Octree
Particles, ” in Proc. of 3D Digital Imaging and Modeling, 1999.

[13] S. Rusinkiewicz and M. Levoy, “Qsplat: A multiresolution point
rendering system for large meshes, ” In Proc. of SIGGRAPH, pp. 343–
352, ACM SIGGRAPH, 2000.

[14] L. Ren, H. Pfister, and M. Zwicker, “Object space EWA surface
splatting: A hardware accelerated approach to high quality point
rendering, ” Computer Graphics Forum, 2002, 21(3): 461～ 470.

[15] R. Pajarola, M. Sainz, and P. Guidotti, “Object-space blending and
splatting of points,” Technical Report UCI-ICS-03-01, The School of
Information and Computer Science, University of California Irvine,
2003.

[16] T. K. Dey and J. Hudson, “PMR: Point to mesh rendeering, a feature-
based approach,” in Proc. of IEEE Visualization, pp.155–162, 2002.

[17] L. Coconu and H.-C. Hege, “Hardware-oriented point-based rendering
of complex scenes,” in Proc. of Eurographics Workshop on Rendering,
pp. 43–52, 2002.

1,582,751 0.368 s

Figure 9. Visualisation of Kehlheim: 11.33 km2
, 283 million points as input

for our modelling- and visualisationssystem
[18] M. Garland, P.S. Heckbert. “Surface Simplification using Quadric Error

Metrics,” Proc. of the ACM SIGGRAPH' 97, pp. 209-216, Los Angeles,
California, 1997

1-4244-1212-9/07/$25.00 ©2007 IEEE. 1823

