
JavaScript Distributed Agent Based Discrete Event
Simulation

Daniel Zehe∗, Heiko Aydt∗, Michael Lees†and Alois Knoll‡
∗TUM CREATE, 1 CREATE WAY, Singapore

Email: {Daniel.Zehe,Heiko.Aydt}@tum-create.edu.sg
†Nanyang Technological University, School of Computer Engineering, Singapore

Email: mhlees@ntu.edu.sg
‡Technische Universität München (TUM), Institute for Informatics, Robotics and Embedded Systems, Germany

Email: knoll@in.tum.de

Abstract—This paper shall give an insight into a novel idea
of distributed agent based discrete event simulation. Instead
of distributing work packages over different nodes of an high
performance cluster, the simulation workload is distributed all
over the Internet and the calculation is done in the JavaScript
rendering engine on off-the-shelf computers, smart phones and
other Internet connected devices capable of rendering websites
and executing JavaScripts. An introduction into the general idea
and the application possibilities for agent based simulation is
given as well as a prototype application using this method is
analytically and experimentally evaluated.

I. INTRODUCTION

The computing power for all kind of calculations increases
steadily and a threshold is eventually reached. Right now the
computing power on a single processor can not be increased
anymore without intense heat dissipation. Therefore, manu-
facturers of processors tend towards multi- and many-core
systems to keep up with the computational demands of com-
puting tasks. This represents a form of distributed computation
in a small scale of multiple cores within one processor die
or multiple dies on one locally close motherboard. There are
approaches towards even more locality distributed computing
nodes like X as a Service (XaaS) [1]. Cloud computing
initiative by several entities1 have been really successful and
are now accepted by industry and academia.

What would the computing power of the entire Internet and
all its connected devices capable of rendering web pages be
remains an open and non-trivial question. In order to assess the
computation power, workstation or laptop computers, smart-
phones and tablets or other connected devices have to be
accounted for. With roughly 2.41 billion Internet users around
the world the global computing capacity which relies entirely
on the capability of the web browsers rendering engine, can
be estimated at around 723 PetaFLOPS. When assuming
that each user has 300 MegaFLOPS of computing capability.
Table I shows the Internet usage data [2] with the capability
assumption made for the different continents2.

This computing power is not fully used when browsing
the web, because after the actual website is loaded and the
graphics and texts are rendered the main workload for the
processor is done. Depending on the type of website, there

1e.g. Amazon EC2 , Google AppEngine, Microsoft Azure
2different stages of technological development are not accounted for

TABLE I. INTERNET STATISTIC FROM JUNE 2012 [2]

continent # of Internet user population
Africa 167,335,676 1,073,380,925
Asia 1,076,681,059 3,922,066,987
Europe 518,512,109 820,918,446
Middle East 90,000,455 223,608,203
North America 273,785,413 348,280,154
Latin America 254,915,74 593,688,638
Oceania 24,287,919 35,903,569
All 2,405,518,376 7,017,846,922

might be some JavaScript calculation or asynchronous data
loading and sending using XMLHTTPRequests3 (commonly
know as AJAX). This leaves room for the calculation of other
(possibly simulation) problems.

Simulation efforts in any field have one fundamental prob-
lem. When you increase either the number of simulation steps,
hence making the simulation more granular by computing
more logical time steps in a time stepped discrete event
simulation, the computational power in terms of hardware
resources necessary needs to be increased by the same amount.
Also, with agent based simulation when increasing the number
of agents per environment the scale of the simulation increases
as well. This means not only the data for all agents increases
but because the state of one agent depends on the state of other
agents the number of calculation increases as well. A single
off-the-shelf workstation computers can not support a feasibly
timed simulation like that. High performance computing (HPC)
is a valid option towards speeding up simulation.

A genuine problem all computational intensive tasks are
facing is the performance for price ratio. The computing power
of the Internet is virtually free and not yet regulated by any
authority. Of course there are regulations and laws that prohibit
harmful execution of code or stealing information of a remote
computer but since most web-based code is executed in a lim-
ited functionality sandbox the amount of private or confidential
information accessible without the users knowledge is limited,
given that the security management of the execution engine is
well developed but this shall not be the topic of this paper.
Aside from those regulative and governmental restrictions, if
it is possible get instructions and payload data on a computer
on the Internet why not use this computational power for agent
based simulation problems? Sending an agents’ state together

3http://www.w3.org/TR/XMLHttpRequest/



with the necessary environment information to a computing
entity (web site user), together with the instructions on what
to do with the payload data will (eventually) return the right
results for one time step of a simulation.

The first part of this paper contains background information
on distributed discrete event simulation and a literature review
of other peoples work necessary to understand the following
techniques and assumptions made in the rest of this paper.
Continuing with a general system design and a prototype im-
plementation of a simple agent based simulation. Afterwards,
an analytical and experimental analysis of the capabilities
and boundaries of such system is made, before discussing
challenges and concluding with a outlook towards the future
of this technique.

II. RELATED WORK

A. Distributed Agent Based Modeling

Agent-based modeling and simulation has grown in the
last couple of years and matured into its own discipline
for conducting research and some even say its a third way
of reasoning besides inductive and deductive reasoning [3].
The opportunity of having complex systems described by the
actions of autonomously acting objects called agents is exciting
and a fair amount of research went into the different fields of
application and the underlaying foundation [4]. From a mod-
eling perspective an agent has to be (a) uniquely identifiable
among other agents of the same kind that (b) (re)acts on its
environment, (c) makes decision (only) on the perception of
the environment accessible to it and is able to (d) change
its rules and consequently its behavior on its own when the
environmental conditions call for it [3]. All these functions
have to be available for an agent in order to achieve its goals
determined by the purpose of a given simulation. Agent based
modeling and simulation is widely used in traffic simula-
tions [5], behavioral sciences [6], biology [7] and research
areas dealing with complex adaptive systems [8].

One of the earliest agent based models can be found by
looking at Reynolds research on the distributed behavioral
model of herds, flocks and schools from 1987 [9] explaining
that three simple rules can be used to describe the flocking
behavior of birds in a simulation.

Parallelization and subsequently distribution over a dif-
ferently located network of computation nodes is a logical
consequence for such autonomously acting agents. The state
of agents and the environment is usually transfered using a
message passing interface (MPI) when distributing within a
locally closed environment. In order to parallelize the simu-
lation workload efficiently a partitioning strategy has either
be chosen statically based on locality principals or changed
dynamically when the situation of the simulation calls for a
more efficient execution mode of the workload.

Not only the partitioning of the workload poses a problem
for large scale agent based models but also the distribution
of the workload. There has to be a framework of describing
the agents and the environment in addition to distribute the
workload feasibly. Such system should be as generic as possi-
ble and provide the possibilities to be used in many fields of
research and industry.

There are tools and frameworks in the academic roam
such as the HLA AGENT described by Lees et al. [10] or
the DGensim distributed timeshared simulator for multi-agent
systems proposed by Anderson [11]. The system by Anderson
uses a centralized environment manager and remote (comput-
ing) nodes in order to distribute a certain number of agents to
a physically different computation machine. This kind of sim-
ulation system usually uses the High Level Architecture (HLA)
introduced by the department of defense of the USA [12]
for transporting information between nodes. HLA can also be
used to consolidate multiple agent-based simulations into one
global simulation environment and have implicit distribution
of workload as proposed by Scerri et al. [13]. Their approach
also relies on a centralized environment service and remote
working units.

In order to exchange information necessary for the correct
execution of the simulation step different interest management
schemes have been devised over the years [14]. The problem
that the communication overhead to all computing nodes can
be substantial has been addressed. Filtering techniques based
on multicast subnet addressing or HLA filtering is effective
but no additional communication while executing a simulation
step would be even better but bares it own complications. But
even only communicating at one point can be complicated due
to synchronization methodology used and the management
overhead of deadlock resolution or reissuing of falsely
calculated simulation steps [15]. Each node has to assume that
the environment information provided by the server is correct
and sufficient to rightfully calculate the given time step.
Methods like optimistic and conservative synchronization[16]
can be used to widen the number of simulation steps that can
be calculated before a resynchronization with the server is
necessary. This also generates a management overhead at the
server side which can lead to a price increase for operating
such system.

B. Distributed JavaScript Computing

Web services and web based technologies have very much
grown over the last couple of years and the capability of
a web browsers’ rendering engines and JavaScript engines
have evolved very fast. The performance measured on the
SunSpider JavaScript Benchmark4 increased across browsers
by one order of magnitude [17] during the last decade. In
addition to the bare performance increase, the technologies
surrounding Internet computation and web design has changed
as well. Beginning from HMTL 4 to HTML 5 many features
were included and this makes all applications which are essen-
tially websites look and behave almost the same on different
operating system and browser platforms. These features like
the XMLHTTPRequest used for Asynchronous JavaScript and
XML (AJAX) requests and very recently the introduction of
WebWorkers, a way to thread a JavaScript decoupled from the
rendering of the actual web content, opens ways of using the
capabilities of web browsers for more than just rendering of
web pages.

The behavior of Internet users has also changed over
the last two decades. Starting from the early nineties with

4http://www.webkit.org/perf/sunspider-0.9/sunspider-driver.html



Fig. 1. Probability of leaving a website depending on the time already
spent [1]

dial up connections and per minute charging up to unlimited
fiber-to-the-home connections available today the browsing
behavior has changed dramatically. Where people tried to get
information from websites as fast as possible just a couple
of years back, the rich and engaging websites and social
interaction possibilities encourages users to stay longer on a
certain website. Lui et al. conducted a study how the content
and the structure of a website encourage users to stay longer
and how the possibility of leaving a website changes over
time [1]. This information is useful in order to determine the
possible target audience and website types for systems such as
the one described in this paper.

The graph in Figure 1 shows the probability of users
leaving a site depending on the time already spent. The black
line which is just a rough estimate on where to engage with
the described system. Left of the line the actual page content
might not be fully loaded or the user already left and for longer
calculation one must be sure that the user does not leave the
website while the calculation is still in progress. Therefore, the
simulation calculation should start after that imaginary line to
the right.

Attempts to use the computing power of distributed
JavaScript applications have been introduced before. There
are systems testing and breaking MD5 salted cryptographic
hashes5 and also a MapReduce application called MapRejuice6

but both systems are no longer developed or maintained.

III. SYSTEM DESIGN

How should a simulation system using web pages as a the
executing entity for a time stepped discrete event simulation
look like will be introduced in this section. The technical
parameters, ideas and implementation challenges that make
such a system an efficient way to compute agents behavior and
interactions with the environment will be discussed. Starting
from a general overview of the system design and extending
this with a prototype implementation of the Boids flocking
behavior simulation discussed by Reynolds [9].

5http://www.andlabs.org/tools/ravan/ravan.html
6http://maprejuice.com

Web Server Web Browser
GET Facebook.com

Fetch Web-

Content

Fetch 

Simulation 

Content

+ RESPONSE

Facebook.com

POST Simulation 

Results

1

2

3 4

5

6

Fig. 2. The six stages of interaction and result calculation

A. General System Design

The general idea is to have a two part system composed
of a normal web server and a number of computing nodes
in form of web browsers. This server delivers web pages to
Internet users accessing a specific domain but also holds the
information and source code for a holistic or partial simulation
problem.

Containing the environment information consisting of (a)
the setting and size of the environment and (b)global parame-
ters necessary to ensure correct calculations the server becomes
not more than a global environment hub. The actual agents
(agent state) and runtime information about the simulation
problem are delivered in addition to the actual content of
the web page requested by the user. This payload data is
required by the clients to calculate the succeeding time step.
The payload data consists of the agent state that is to be
changed and its environment (other agents of the same or
different kind or static obstacles).

The actual computation is then done in the JavaScript
engine of the browser accessing the web page. This is a
difference from an object oriented approach where the data and
operations on the data are seen as one unit. With the introduc-
tion of new technologies related to the HTML5 specification
this can even be done in threads (WebWorkers) apart from the
actual rendering of the front-end website [18]. The background
calculation puts no distraction or latency on the user of a web
page and runs almost transparent (unnoticed) of the user.

Figure 2 shows the general overview of the interaction
between a web browser and the web server. The interaction
can be broken into the following six steps.

1) Send a GET request towards a specific domain on
the Internet (e.g. Facebook.com) either as initial
request or a an interaction with the site. This will
be subsequently called Page Interaction (PI).

2) The web server handles the request as a normal
request but in addition to fetching the necessary
HTML, CSS, and JavaScript files, it also fetches a
JavaScript file with the simulation instructions as well



as the payload data.
3) Before returning the web page payload back to the

users browser it is combined with the simulation
instructions and payload.

4) The response is sent to the web browser
5) The web-browser renders the web page as usual

and additionally calculates the simulation result in
a separate (worker)thread.

6) After finishing the calculations, the result is sent back
using POST messages to the server and incorporated
into the global simulation environment.

After all agents necessary for one time step are processed and
sent back to the server, the global environment is updated. This
means all agents can be distributed to clients for an upcoming
time step. Because web browsers of different clients can not
communicate with each other as it is done in other distributed
computing environments via MPI messages or HLA, the
whole work package has to be self contained. Therefore, all
necessary information has to be included in order to compute
the next step correctly without having dependencies to other
agents at the same time step. The difference between this
approach of distributing the workload to clients (web pages)
in comparison to a dedicated application approach is that no
additional software needs to be installed and still providing the
computational availability of an huge install base like BOINC
or Folding@Home. The system behaves almost the same in
respect to asynchronous execution of jobs after they have been
dispatched by the server. No connections have to be held open
and no HTTP-Sessions can expire, only a re-dispatch by the
server can be initiated when there is no response after a certain
interval.

There is also the inherent problem of the same origin policy
enforced by many browsers. This hinders websites and also
scripts to load and send data to any other location than on
the same domain as the original website [19]. However, since
advertisement networks have the same problem delivering their
advertisements to the website this problem can be solved
through configuring the web server correctly or using HTML
components especially designed for such applications (e.g.
<embed>).

B. Boids Prototype Implementation

The Boids flocking simulation introduced by Reynolds is a
simplistic behavioral animation with reasonable implementa-
tion challenges. It describes in a dynamic way how a number
of birds behave when flying in open space. The agents in this
simulation are called Boids. They only adhere to three basic
rules and still behave dynamically and at random.

1) Collision Avoidance – avoidance of colliding with
other flockmates or environment objects in the sur-
rounding area

2) Velocity Matching – attempting to match the velocity
of other flockmates

3) Flock Centering – attempting to stay close to all other
flockmates

There are some additional rules like the tendency towards a
specific point, the fleeing from a given pray or to achieve a
greater objective, these can be implemented but the basic rules

already cover the general behavior of birds forming a flock
in open space. As each boids’ next position only depends its
own current position, its current velocity and the properties
of its surrounding boids in a specified area there is ideally no
communication necessary and in this system not even possible.

We made some assumptions about the general framework
of the simulation and this is important for a good and practical
implementation of the system. Each boid is surrounded by
a limited area it has observatory knowledge about called
perception range sp. Based on this knowledge the decision
for movement is made. Meaning, that only a portion of the
whole environment has to be sent as payload to the client.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+ +

+

sp

Fig. 3. Environment partitioned using perception range (sp) information

Figure 3 illustrates how the whole environment is situated
with arbitrarily distributed boids. Disregarding the dotted lines
the partitioning pattern distributes the entire environment, for
each agent that to a respective client for computation even
though only a portion (in perception rage sp) is used for the
calculation of the succeeding position.

Regarding Figure 3 with the dotted line, a partitioning
scheme based on the perception range sp of each boid is used.
The size of one quadrant is exactly one perception distance
in either dimension. In our implementation the perception is
equal in all direction but other shapes or ratios are possible.
Therefore, only the surrounding boids that could be reached
have to be transfered over the network. The state of the whole
environment depends only on the state of all boids. This way
only the properties of the boids have to be transfered to a
client.

In our implementation an extended markup language
(XML) based exchange format for transferring the state con-
sisting of location and velocity for two dimensions is used.
The location does not consist of two parameter but rather of
four. The first two are the x and y numbering of the quadrant



the boid is located in the global environment and the second
one is the relative location within this quadrant. This allows
for a easy transformation from a global location known only to
the server to a local environment build by the executing client.
Also, for the environment information for each quadrant the
location relative to the center quadrant (dark grey in Figure
3) is transferred. This is necessary to reconstruct the local
environment on the client side.

The actual calculations of all agents within one quadrant
are done on one client. This reduces the number of environ-
ment transfers because for each boid within one quadrant to
one transmission.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+ +
+

+

+

+

+

+

+

+ +

+

Fig. 4. Global environment layout with globe like mapping

On the HTTP environment server side the boids are held in
a two dimensional data structure with a list holding all boids
for each quadrant. The two dimensions are the x and y values
for the quadrants. This data structure allows that on dispatching
a new quadrant for execution not all boids have to be iterated
through but rather just take all boids within one quadrant with
a constant access times. Because the data structure is accessed
through the quadrant information all returning boids from the
clients can easily be assigned to their respective location.

The environment is also set up in a way that boids on
the edges of the actual environment can also perceive other
boids on the opposite edge. This way the environment seems
endless like mapped on to a globe (see Figure 4). Because the
server sends the environment information out with the relative
location to the center quadrant the client does not know where
on the global environment the payload boids are situated, just
on a local environment. This makes it really easy to map the
global environment on the server to the local environment at
each client.

The synchronization on the environment server is done
after every time step. Therefore, the server holds a shadow data

structure of all finished quadrants and replaces the one used
for dispatching after all quadrants are computed. This makes
it also easy to re-dispatch a quadrant if there is no response
within a certain interval after dispatch. Such a scenario can
occur when a user closes the webpage the calculation is
running on before the calculation is complete, the Internet
connection is poor or the server is reachable for whatever
arbitrary reason. The re-dispatch technique can also be used to
verify results in case inconsistencies are recognized. Since we
only implemented one layer of shadow data structure the con-
sistency check has to be done before every synchronization.

IV. EVALUATION

The experimental evaluation of the Boid implementation
will give some performance measures regarding latencies and
networking overhead and will provide insights and possibilities
for optimization.

A. Analytical Evaluation

The analytical evaluation will focus on the obvious prob-
lems of critical path for the fastest time one simulation step
can be executed. Other calculations such as partitioning opti-
mizations and limitations towards the currently used methods
are shown. The performance in respect to how long it takes
to calculate one simulation step for the entire environment is
strongly dependent on factors like the individual performance
of each client, the network connection, the occupancy of the
server, lastly all those go into the calculation of the critical
path. Assuming the connected clients perform all with the same
maximum computing power the actual execution time of the
simulation step at 100% parallelization is fixed. A bottleneck
for the critical path is created through the fact that not all
clients have the same network conditions. The slowest network
connection therefore determines the critical path. As it can
be seen in Figure 5 the critical path is not necessarily be
determined by the last client executing a simulation calculation
but rather by the last result that returns back to the server
(tn−1). Because there can not be any calculation for the
succeeding time step before all quadrants have been processed
(without specific domain knowledge) the minimal execution
time is then given by the maximal time (tmin = max(ti)) of
a round trip plus the actual execution time at the client i.

If we change the assumption even more and take the degree
of parallelization and the different computing capabilities into
account the critical path is even longer and more nondetermin-
istic. The actual execution time tall of one time step is between
the above given estimate and the worse possible solution tmax

where each client only requests a working package after the
proceeding one is done or even worse when there is no package
requested for some time x at all.

tmin < tall < tmax (1)

tmax =

n∑
i=1

ti + x (2)

Heuristics and statistical evaluation of a real running system
could serve as a benchmark for the occupancy and performance
of such a distributed system.



Server

client n

client n-1

client 2

client 1

t
0

t
1

t
2

t
n

t
n-1

Fig. 5. Critical path for 100 per cent parallelized calculation

Partitioning of the workload to a multitude of clients is
a tough decision and static partitioning might not be the
best option. In our example implementation we decided to
partition the working on the quadrants as described above.
While probably being the best choice when the environment
is uniformly filled with agents, as soon as some quadrants
gets congested and many agents occupy one partition the load
is not distributed anymore. But for a agent based simulation,
almost all agents have a physical dimension thus limiting the
number of agents per partition to a maximum and at least some
parallelization is possible. In the worst case all calculation are
done on one client what has in best case the same performance
than the serving machine itself.

The transfer of workload and environment information
from the server to the client can be done in various ways.
Since agents can be considered as objects in the programming
sense, an object exchange format like XML or JavaScript
Object Notation (JSON) can be used. The advantages such
formats is they are easily human readable and supported by
many platforms and operating systems. This also inherits a
problem of transferring more data for each agent and its
environment. For each variable the opening and closing tag has
to be accounted for and in order to separate multiple agents,
corresponding opening and closing tags have to be used as
well. The additional meta-information might even be larger
than the actual payload the XML-tag holds.

If the used data structure for an agent is known, a byte
based data transfer might be the best option of reducing
the overhead of structuring the transmitted data but reduces
readability and flexibility. Figure 6 shows all three alternatives.
The payload for the most human readable version (Figure
6(a) is the sum of the characters for the object name No

twice plus the characters for the variable name Nv twice plus
the brackets and slashes (5 for each N )and the number of
actual variables V . This makes Nall additional characters to
the payload information.

Nall = 2No + 2Nv + 5(#V + 1) (3)

For the option shown in Figure 6(b) the assumption that
there are no more variables than possible characters minus
one in the text encoding used. For a UTF8 (1 Byte per

!"#$%&'

(((!)"*+,'

!"#$%&

(((!-)"*+,'

(((!.

(((((((((.'

(((!)"*+/'

$"#$%&

"""!-)"*+/'

!-"#$%&'

!"'

(((!0'

!"#$%&

"""!-0'

(((!.

(((((.'

(((!1'

$"#$%&

"""!-1'

!-"'

!"#$%&

'

'

'

$"#$%&

(a) (b) (c)

Fig. 6. Comparison of payload sizes for state transfer

character) encoding this would leave room for 254 different
variables and one for the separation of the agents. This would
result in Nall characters in addition to the payload information.

Nall = 7(#V + 1) (4)

The third transport form shown in Figure 6c is not humanly
readable at all. Nevertheless this transport form has an ad-
vantage that only in the payload information is transmitted.
Changes in data type that result in more or less bytes to be
interpreted on the receiver end would also result in a mal-
function of the calculation.

The networking overhead regarding the amount of data that
has to be transfered has one additional component that needs to
be considered – the number of total communications between
the server and the clients. This depends highly on the chosen
partitioning strategy. If the partitioning strategy is spatial
partitioning then the communication count is the total number
of partitions (n) possible less the spaces not occupied (k) by
at least one agent. Because the payload and instructions are
transmitted when a website is requested no extra connections
have to be made. Therefore, we call the number of outgoing
connections n − k and the number of incoming connections
to the server m. The incoming connections can be modeled in
the way that each agent in one partition returns their results
separately or all are returned at one. Because the ”return at
once” strategy could result in additional overhead the first
option is chosen and m = total number of agents. This leaves
us with the number of connections c = (n− k) +m because
for each time step all occupied partition have to me send out
and all agents have to send their respective results back to the
server.

B. Experimental Evaluation

For the boids example implementation discussed in section
III-B we designed an experiment measuring the execution time
a client needs to calculate one simulation step for all boids
within one quadrant. Therefore, the actual complexity can vary
depending on the number of boids per quadrant.

The calculation consists of calculating the next position
of a boid regarding the above (Section III-B) described rules.
As the simulation evolves the boids move closer together
and the formerly uniformly distributed set of boids flocks



0 5 10 15 20 25 30
0

200

400

600

800

1000

Number of boids per quadrant

E
x
e
c
u
ti
o
n
 t
im

e
 o

f 
o
n
e
 q

u
a
d
ra

n
t 
in

 (
m

s
)

 

 

mean

σ
+

σ
−

Fig. 7. Development of boids per quadrant the the respective execution time
for the calculation of the quadrant

Initialisation 

Phase

Flocking 

Phase

Flocked 

Phase

Fig. 8. Amount of times n boids had to be calculated by a total of 9000
calculations

together only covering a portion of quadrants. Figure 7 shows
the development for an evolving simulation regarding the
execution time in dependency to the number of boids per
quadrant. It can be seen that there is an initial overhead for
building the local environment (roughly 100ms) but after this
is accounted for the increase in execution time by increasing
the number of boids per quadrant is linear. The margin of
error between the mean values displayed in the red line and its
minimum and maximum values is bigger in the lower numbers
because the amount of times this calculation occurred during
all calculations is higher. Whereas the peak values are lower
in the often calculated quadrant configurations the standard
deviation is small.

This is shown in Figure 8. There, it can be seen that
it is very common that only a few boids are within one
quadrant. Because in the beginning of the simulation all boids
are uniformly distributed over the given space each quadrant
only contains small number of boids to process. When the
simulation runs until a steady state has been reached and
flocks have formed, there should also a sweet spot visible.
A bathtub like curve with a high number of sparse quadrants
(initialization phase) and a more or less constant number of
transitional amounts (flocking phase) and a high amount of
maximum possible boids per quadrant (flocked phase). This
estimate is shown by the dotted curve in Figure 8 as well as
the compartmentalization into the three described phases of
flocking development.

15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
0

0.5

1

1.5

2

2.5
x 10

4

Number of quadrants per simulation step

T
im

e
 f

o
r 

o
n

e
 s

te
p

 i
n

 (
m

s
)

 

 

Fig. 9. Execution time for one simulation step depending on the total number
of quadrants

In a second experiment we want to analyze the execution
time for one simulation step and evaluate the influence of
the increased networking and server side integration overhead.
Figure 9 shows the total time tall necessary to execute one
simulation step. The values are measured on the server and
consist of the sequential execution time tex for all boids
(100) and the transfer time tt from and to the server and the
integration time tint into the global environment.

tall = tex + tt + tint (5)

This illustrates that the overall execution time is very much
dependent on the environment configuration of the time step.
Because a lower number of quadrants would result in fewer
actual transfers but the amount of data stays the same. There is
a slight decrease in overall execution time when having more
quadrants to distribute because the networking overhead is not
as big in comparison to the payload data that is sent. Also
the number of different variations possible when having 100
quadrants is smaller. This results also from the fact that on
the flocked state of the simulation boids the computed quad-
rants are close together and sent more often as environment
information of other quadrants than for calculation as when the
quadrants are more sparse. The sometimes significant deviation
from the mean values are due to the fact that the distribution
within the given grid is not always the same therefore more
or less boids belonging to the environment data had to be
transmitted.
An example can be see in Figure 10 where the same amount
(11) of quadrants are occupied by all boids (75). When consid-
ering the total number of boids that have to be transmitted as
environment E for on time step to all computing units as the
sum of all environment boids for each quadrant Ei then you
end up needing less for a more sparse (unflocked) environment.
In Figure 10(a) where the boids are more flocked the number
of transmitted boids for this simulation step is 397 in addition
to the 75 payload boids in the center quadrant. The number of
environment boids in Figure 10(b) is only 165.

V. DISCUSSION

In this section we want to discuss the evaluation results
and possible drawbacks, advantages or obstacle in deploying
such system.



E=397 boids

3 10 10 3

3 10 10 3

10 10

3

E=165 boids

7 7 10 7

7 7 7 7

8 8

(a) (b)

n=75 boids

Fig. 10. Different sizes in environment data that has to be sent independent
of the occupied quadrants

The results from the example implementation show that
this system using the Boids example is easily scalable due to
the linear execution time when more agents are present at one
quadrant and have subsequently to be computed at one client.
One advantage is that the barrier to entry to get a critical mass
of computation nodes for this system is very low. The user does
not need to know anything about the system. Big websites like
facebook or google might already be doing calculations in the
background without the consent of their users. Where other
systems like BOINC [11] and Folding@Home [20] need user
to install and maintain a piece of software on their machine
this could run virtually on everything equipped with a modern
web browser. From a workstation or Laptop computer to a
smart phone or Internet equipped smart TVs.

Of course due to network latency and the scripting lan-
guage JacaScript the performance is not comparable with real
time HPC system but the pricing difference Free vs. not-Free
might be an option. Also, if the distribution and partitioning
is solved the number of possible clients and for that care
computing nodes is greater than any super computer. The
actual problem size sometimes does not require a for thousand
of computing nodes and such system would offer a greater
computing power then the problem can be broken down into
or the distribution overhead would be to big.

An obstacle for such systems is to reach a critical mass.
This can be achieved in at least by two ways. Involving the
high throughput website administrators and their company to
allow their users to be used as a computing node could be one
solution. A additional solution would involve advertisement
networks which are mostly stretched over a variety of websites
and offer even a greater user base. This leads to the problem
of compensating either the users or the website owners. There
could be a model where the website owner gets paid for
including the code in the website. But this is not the call to
be made by the administrators because they are mostly using
resources (Hardware and electrical power) of users. Therefore,
the better system would be to pay the user who is willing to
allow such computation to be done on their computer. This
has the same problem as others like BOINC or Folding@Home
have – commitment by the user. The option would be to still go
to the website owners and have it as a second revenue model
apart from advertisement. Offering user either to choose to
contribute their computing power for a good simulation cause

and having no advertisement or seeing advertisement.

The idea to have this kind of distributed simulation using
JavaScript on client computers is an idea worth pursuing
further because the agents are very easily assignable to clients
and their state transferable to one client is quite easy if
the information exchange between agents can be abstracted
between steps. Besides the easiness of transferring agents
from the centralized dispatching server to a web-page using
serialization technologies like XML or JSON the amount of
data as described in Section IV-A, the amount of data for
large models with a lot of state information is significant.
There should also be a model description language describing
the models and sub-models to be present on each client and
centralized dispatching server for the efficient updating the
environment after each step. Also there are challenges and op-
timization possibilities related to geographical distribution and
multilayer partitioning using cloud services as an intermediate
layer between the actual simulation server and the end user
clients. For load balancing or network traffic optimization this
is inalienable. A cloud based multilayer approach with sub-
environments might also be necessary for getting the load off
the main environment server for scalability reasons but also
introduces an additional layer of synchronization overhead.

VI. CONCLUSION AND FUTURE WORK

Future research and engineering work topics should be
concerned with extending the system design to be more
simulation domain specific and allow a broader simulational
functions. Also the monetization and acceptance study towards
the willingness of internet users, who are the ones dedicating
their computers for the cause on the one hand and on the other
hand website providers with a wide enough reach to attract
such users. The Usage of ever emerging web technologies
such as WebSockets and also WebRTC for additional commu-
nication between the server and the client for additional work
packages or the use of vector based processing architectures
like WebCL7 or to some extend WebGL8 could also be helpful
to speed up complex simulational calculations.

ACKNOWLEDGMENTS

This work was financially supported by the Singapore
National Research Foundation under its Campus for Research
Excellence And Technological Enterprise (CREATE) program.

REFERENCES

[1] C. Liu, R. W. White, and S. Dumais, “Understanding web browsing
behaviors through weibull analysis of dwell time,” in Proceedings
of the 33rd international ACM SIGIR conference on Research and
development in information retrieval, Geneva, Switzerland, 2010, pp.
379–386.

[2] M. M. Group. (2013, jan) World internet users statistics
usage and world population stats. [Online]. Available:
http://http://www.internetworldstats.com

[3] C. M. Macal and M. J. North, “Tutorial on agent-based modeling and
simulation,” in Proceedings of the 37th conference on Winter simulation,
Orlando, Florida, 2005, pp. 2–15.

[4] E. Bonabeau, “Agent-based modeling: Methods and techniques for
simulating human systems,” Proceedings of the National Academy of
Sciences, 2002.

7http://www.khronos.org/webcl
8http://www.khronos.org/webgl



[5] V. Ljubovic, “Traffic simulation using agent-based models,” in Informa-
tion, Communication and Automation Technologies, 2009. ICAT 2009.
XXII International Symposium on, 2009, pp. 1–6.

[6] D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features
of escape panic,” Nature, vol. 407, no. 6803, pp. 487–490, 2000.

[7] R. A. Hammond, “Peer reviewed: complex systems modeling for
obesity research,” Preventing chronic disease, vol. 6, no. 3, 2009.

[8] S. C. Bankes and S. C. Scientist, “Tools and techniques for developing
policies for complex and uncertain systems,” in Proceedings of the
National Academy of Sciences, Colloquium, 2002, pp. 7263–7266.

[9] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, New York, NY, USA, 1987, pp.
25–34.

[10] M. Lees, B. Logan, and G. Theodoropoulos, “Distributed simulation
of agent-based systems with hla,” ACM Trans. Model. Comput. Simul.,
vol. 17, no. 3, 2007.

[11] D. P. Anderson, “Boinc: A system for public-resource computing and
storage,” in Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, Washington, DC, USA, 2004, pp. 4–10.

[12] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly, “The department
of defense high level architecture,” in Proceedings of the 29th confer-
ence on Winter simulation, Washington, DC, USA, 1997, pp. 142–149.

[13] D. Scerri, A. Drogoul, S. Hickmott, and L. Padgham, “An architecture
for modular distributed simulation with agent-based models,” in Pro-
ceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1 - Volume 1.

[14] L. Wang, S. Turner, and F. Wang, “Interest management in agent-
based distributed simulations,” in Distributed Simulation and Real-
Time Applications, 2003. Proceedings. Seventh IEEE International
Symposium on, 2003, pp. 20–27.

[15] R. M. Fujimoto, Parallel and Distribution Simulation Systems, 1st ed.
John Wiley & Sons, Inc., 1999.

[16] X. Wang, S. Turner, M. Low, and B. P. Gan, “Optimistic synchroniza-
tion in hla based distributed simulation,” in Parallel and Distributed
Simulation, 2004. PADS 2004. 18th Workshop on, 2004, pp. 123–130.

[17] F. Smedberg, “Performance analysis of javascript,” Master’s thesis,
Linkping University, Department of Computer and Information Science,
2010.

[18] I. Green, Web Workers: Multithreaded Programs in JavaScript.
O’Reilly Media, 2012.

[19] M. Shema, Hacking Web Apps: Detecting and Preventing Web Appli-
cation Security Problems. Elsevier Science, 2012.

[20] S. M. Larson, C. D. Snow, M. Shirts, V. S. P, and V. S. Pande,
“Folding@home and genome@home: Using distributed computing to
tackle previously intractable problems in computational biology,” 2009.


