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Abstract—Reconfigurable architectures have found use in a
wide range of application domains, but mostly as static ac-
celerators for computationally intensive functions. Commodity
computing adoption has not taken off due primarily to design
complexity challenges. Yet reconfigurable architectures offer sig-
nificant advantages in terms of sharing hardware between distinct
isolated tasks, under tight time constraints. Trends towards
amalgamation of computing resources in the automotive and
aviation domains have so far been limited to non-critical systems,
because processor approaches suffer from a lack of predictability
and isolation. Hybrid reconfigurable platforms may provide a
promising solution to this, by allowing physically isolated access to
hardware resources, and support for computationally demanding
applications, but with improved programmability and manage-
ment. We propose virtualized execution and management of soft-
ware and hardware tasks using a microkernel-based hypervisor
running on a commercial hybrid computing platform (the Xilinx
Zynq). We demonstrate a framework based on the CODEZERO
hypervisor, which has been modified to leverage the capabilities
of the FPGA fabric. It supports discrete hardware accelerators,
dynamically reconfigurable regions, and regions of virtual fabric,
allowing for application isolation and simpler use of hardware
resources. A case study demonstrating multiple independent (and
isolated) software and hardware tasks is presented.

Keywords—Reconfigurable systems, hypervisor, virtualization,
field programmable gate arrays.

I. INTRODUCTION

Reconfigurable computing has the potential to provide a
computing performance and power advantage compared to pro-
cessor based systems [1]. However, while reconfigurable plat-
forms have established themselves in specific application areas,
such as the DSP and communications domains, widespread
usage has been limited by poor design productivity [2]. To
unleash the power of reconfigurable computing and allow
spatially programmable architectures to play a full-featured
role alongside general purpose processors, it is necessary to
exploit the key advantages of reconfigurable hardware while
abstracting implementation details to facilitate scaling. In order
to solve these problems, we propose a computing model that
abstracts hardware details such as spatial placement, hardware
structure and device capacity using existing virtualization
techniques.

Virtualization of computing components (e.g. hardware
platforms, operating systems (OS), storage and network de-
vices, etc.) in conventional processor based computing systems
is well established, particularly in workstation and server

environments. This is because virtualization enables a diver-
sity of service capabilities across different OSs on a unified
physical platform. One of the best examples of virtualization
is cloud computing. These concepts are also being extended to
embedded systems equipped with increasingly complex low-
power microprocessors. For example, embedded virtualization
is already used in smartphones and is being used to consolidate
multiple processors and controllers in vehicles [3].

Traditional virtualization techniques for both mainstream
computing and embedded systems generally only consider
conventional computing resources, and do not apply to hybrid
computing resources. While hardware-assisted virtualization is
commonplace [4], virtualization of hardware-based computing,
such as FPGA fabric, is not. Their reconfiguration capability
means FPGAs can be considered as a shared compute resource
(similar to a CPU) allowing multiple hardware-based tasks
to complete in a time-multiplexed manner. At this level, the
FPGA should not just be considered a coprocessor designed
for static behaviour, but rather, it should adapt to changing
processing requirements. FPGA virtualization can also im-
prove designer productivity by abstracting FPGA resources and
reducing the gap between high level synthesis tools and fine-
grained FPGA architecture [5]. Virtualizing a HW-SW hybrid
computing system can compensate for some of the drawbacks
of hardware platforms while improving overall performance.

In this paper, we examine FPGA virtualization on a hybrid
computing platform (the Xilinx Zynq 7000), by integrating
virtualization of the FPGA fabric into a traditional hypervisor
(CODEZERO from B Labs). We present a prototype virtual-
ization architecture with support for HW-SW task management
with the following features:

• A virtualised hybrid architecture based on an inter-
mediate fabric (IF) built on top of the Xilinx Zynq
platform.

• A hypervisor, based on the CODEZERO hypervisor,
which provides secure hardware and software contain-
ers ensuring full hardware isolation between tasks.

• Efficient HW-SW communication mechanisms inte-
grated into the hypervisor API.

• A hypervisor based context switch and scheduling
mechanism for both hardware and software tasks.

The remainder of the paper is organized as follows: Sec-
tion II examines current state of the art in virtualization of
reconfigurable systems. Section III introduces the hypervisor
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framework, development flow, and its components. In section
IV we present and describe the virtualized execution and
scheduling of hardware tasks on the proposed platform, HW-
SW communication and the context-switch mechanisms. In
Section V, we present a case study which demonstrates the
basic capabilities of this approach. We conclude in Section VI
and discuss some of our future work.

II. RELATED WORK

The concept of hardware virtualization has existed since
the early 1990s, when several reconfigurable architectures were
proposed in [6], [7]. These architectures allowed for isolation
(often referred to as virtualization) in the execution of tasks on
a reconfigurable fabric. Currently, there is significant ongoing
research in the area of hardware virtualization. To facilitate the
virtualized execution of SW and HW tasks on reconfigurable
platforms, a number of important research questions relating
to the hardware aspects of virtualization must be addressed.
These include:

• Rapid high-level synthesis and implementation of ap-
plications into hardware

• Rapid partial reconfiguration of the hardware fabric to
support application multiplexing

• Maximising data transfer between memory/processor
and the reconfigurable fabric

• Efficient OS/hypervisor support to provide task isola-
tion, scheduling, replacement strategies, etc.

Initial implementations of dynamic reconfiguration [6], [7]
required the reconfiguration of the complete hardware fabric.
This resulted in significant configuration overhead, which
severely limited their usefulness. Xilinx introduced the concept
of dynamic partial reconfiguration (DPR) which reduced the
configuration time by allowing a smaller region of the fabric to
be dynamically reconfigured at runtime. DPR significantly im-
proved reconfiguration performance [8], however the efficiency
of the traditional design approach for DPR is heavily impacted
by how a design is partitioned and floorplanned [9], [10], tasks
that require FPGA expertise. Furthermore, the commonly used
configuration mechanism is highly sub-optimal in terms of
throughput [11]. In a virtualized environment, DPR would be
performed under the control of the hypervisor (or OS), and
would require maximum configuration throughput using the
Internal Configuration Access Port (ICAP).

High-level synthesis [12] has been proposed as a technique
for addressing the limited design productivity and manpower
capabilities associated with hardware design. However, the
long compilation times associated with synthesis and hardware
mapping (including place and route) have somewhat limited
these techniques to static reconfigurable systems. To address
this shortcoming, significant research effort has been expended
in improving the translation and mapping of applications
to hardware. Warp [13] focused on fast place and route
algorithms, and was used to dynamically transform executing
binary kernels into customized FPGA circuits, resulting in
significant speedup compared to the same kernels executing
on a microprocessor. To better support rapid compilation
to hardware, coarse grained architectures [14] and overlay
networks [15] have been proposed. Other work has sought
to maximise the use of FPGAs’ heterogenous resources, such

as iDEA, a procesor built on FPGA DSP blocks [16]. More
recently, virtual intermediate fabrics (IFs) [5], [17] have been
proposed to support rapid compilation to physical hardware.
Alternatively, the use of hard macros [18] has been proposed.

Another major concern, in both static and dynamic re-
configurable systems, is data transfer bandwidth. To address
possible bottleneck problems, particularly in providing high
bandwidth transfers between the CPU and the reconfigurable
fabric, it has been proposed to more tightly integrate the
processor and the reconfigurable fabric. A number of tightly
coupled architectures have resulted [19], [20], including vendor
specific systems with integrated hard processors. A data-
transport mechanism using a shared and scalable memory
architecture for FPGA based computing devices was proposed
in [21]. It assumes that the FPGA is connected directly to L2
cache or memory interconnect via memory interfaces at the
boundaries of the reconfigurable fabric.

Hypervisor or OS support is crucial to supporting hardware
virtualisation. A number of researchers have focused on pro-
viding OS support for reconfigurable hardware so as to provide
a simple programming model to the user and effective run-time
scheduling of hardware and software tasks [22], [23], [24],
[25]. A technique to virtualize reconfigurable co-processors in
high performance reconfigurable computing (HPRC) systems
was presented in [26]. ReconOS [27] is based on an existing
embedded OS (eCos) and provides an execution environment
by extending a multi-threaded programming model from soft-
ware to reconfigurable hardware. Several Linux extensions
have also been proposed to support reconfigurable hardware
[28], [29]. RAMPSoCVM [30] provides runtime support and
hardware virtualization for an SoC through APIs added to Em-
bedded Linux to provide a standard message passing interface.

To enable virtualized execution of tasks, a hybrid proces-
sor consisting of an embedded CPU and a coarse grained
reconfigurable array with support for hardware virtualization,
called Zippy [31] was proposed. TARTAN [32] also uses a
rapidly reconfigurable, coarse-grained architecture which al-
lows virtualization based on three aspects: runtime placement,
prefetching and location resolution methods for inter-block
communication. The SCORE programming model [33] was
proposed to solve problems such as software survival, scala-
bility and virtualized execution using fine-grained processing
elements. However, SCORE faced major challenges due to
long reconfiguration and compilation times in practice. Various
preemption schemes for reconfigurable devices were compared
in [34], while mechanisms for context-saving and restoring
were discussed in [35] and [36].

While there has been a significant amount of work in pro-
viding OS support for hardware virtualization, this approach
is less likely to be appropriate for future high performance
embedded systems. For example, a modern vehicle requires
a significant amount of computation, ranging from safety
critical systems, through non-critical control in the passenger
compartment, to entertainment applications. The current trend
is towards amalgamation of computing resources to reduce
cost pressures [37]. While it is unlikely that individual safety
critical systems, such as ABS braking, would be integrated
into a single powerful multicore processor, future safety critical
systems with hard real-time deadlines, such as drive-by-wire
or autonomous driving systems, are possible candidates for
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amalgamation, possibly also with hardware acceleration. This
combination of hard real-time, soft real-time and non real-
time applications all competing for compute capacity on a
hybrid multicore/reconfigurable platform cannot be supported
by a conventional OS. In this situation, the microkernel based
hypervisor is likely to be a much better candidate for em-
bedded hardware virtualization because of the small size of
the trust computing base, its software reliability, data security,
flexibility, fault isolation and real-time capabilities [38], [39].
The importance of a microkernel is that it provides a minimal
set of primitives to implement an OS. For example, the L4
microkernel [40] provides three key primitives to implement
policies: address space, threads and inter process communi-
cation. Some examples of an L4 microkernel include Pike-
OS [41], OKL4 [39] and CODEZERO [42]. However, most
of the existing microkernel based hypervisors focus only on
virtualization of conventional computing systems and do not
consider reconfigurable hardware.

III. PLATFORM FRAMEWORK

While the integration of relatively powerful multi-core pro-
cessors with FPGA fabric has opened up many opportunities
in the embedded systems domain, designer productivity is
likely to remain an issue into the near future. To start to
address this problem, we have developed a general framework
for a microkernel based hypervisor to virtualize the Xilinx
Zynq 7000 hybrid computing platform so as to provide an
abstraction layer to the user. The CODEZERO hypervisor
[42] is modified to virtualize both the hardware and software
components of this platform enabling the use of the CPU
for software tasks and the FPGA for hardware tasks in a
relatively easy and efficient way. A block diagram of the hybrid
computing platform is shown in Fig. 1.

CPU

Microkernel based Hypervisor

uC/OS-II Linux
Bare-metal 
applications 

(SW, HW)

CPU
DMA

Peripherals

Interface

Intermediate fabrics (IF) Dynamic partial reconfiguration 
(DPR) Region

DMAContext sequencer

Static Accelerators 
Region

Fig. 1: Block diagram of the hybrid computing platform.

In this framework, we are able to execute a number of
operating systems (including uCOS-II, Linux and Android)
as well as bare metal/real-time software, each in their own
isolated container. By modifying the hypervisor API (described
in the next section), support for hardware acceleration can also
be added, either as dedicated real-time bare metal hardware
tasks, real-time HW/SW bare metal applications or HW/SW
applications running under OS control. This allows the time-
multiplexed execution of software and hardware tasks con-
currently. In these scenarios, a hardware task corresponds

to FPGA resources configured to perform a particular ac-
celeration operation, while a software task corresponds to a
traditional task running on the CPU. The framework treats the
FPGA region as either a static reconfigurable region, a DPR
region or a region of IF similar to those in [5], [14] or any
combination of these. The hypervisor is able to dynamically
modify the behaviour of the DPR and IF regions and carry out
hardware and software task management, task-scheduling and
context-switching.

As an example, a hardware task such as JPEG compression
can be decomposed into several contexts where each context
can determine the behaviour of the IF or DPR. These contexts
can then be used to perform a time multiplexed execution
of the task by loading context frames consecutively. These
context frames can be defined as either hypervisor controlled
commands for the IF region or pre-stored bitstreams for the
DPR region. The context sequencer, shown in Fig. 4, is used
to load context frames into these regions and also to control
and monitor the execution of these hardware tasks. The context
sequencer is described in more detail in the next section.

A. The Reconfigurable Fabric

A number of additional structures are needed to support
hypervisor control of regions of the reconfigurable fabric, as
shown in Fig. 2.

1) Task communication: The Zynq-7000 provides several
AXI based interfaces to the reconfigurable fabric. Each in-
terface consists of multiple AXI channels and hence pro-
vides a large bandwidth between memory, processor and
programmable logic. The AXI interfaces to the fabric include:

• AXI ACP – one cache coherent master port

• AXI HP – four high performance, high bandwidth
master ports

• AXI GP – four general purpose ports (two master and
two slave ports)

All of these interfaces support DMA data transfer between
the fabric and main memory (at different bandwidths) as shown
in Fig. 2. These different communication mechanisms can be
applied for different performance requirements. For example,
for a DPR region, a DMA transfer can be used to download
and read-back the bitstream via the processor configuration
access port (PCAP), while for an IF region, the contexts are
transferred between main memory and the context frame buffer
(CFB) under DMA control.

2) Context Frame Buffer: A CFB, as shown in Fig. 2, is
needed to store the context frames. A HW task can be de-
composed into several consecutive contexts. While the context
frames and other user data for small applications could be
stored in Block RAMs (BRAMs) in the fabric, this would scale
poorly as the number of contexts and size of the IF increases.
Hence, the CFB is implemented as a two level memory
hierarchy. The main (external) memory is used to store context
frames which are transferred to the CFBs (implemented as
BRAMs in the FPGA) when needed, similar to the cache
hierarchy in a processor.
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Fig. 2: Block Diagram of the Reconfigurable Region.

3) Intermediate Fabric: Use of an IF provides a much
quicker mechanism for hardware task management at runtime
without going through the full compilation (synthesis, map,
place and route) process. This is because the behaviour of
the IF can be directly modified using hypervisor controlled
commands. However, mapping circuits to IFs is less efficient
than using DPR or static implementations.

The IF (shown in Fig. 3) consists of programmable pro-
cessing elements (PEs), programmable interconnections and
BRAMs, whose behaviour is defined by the contents of a
context frame. Each PE is connected to all of its 4 immediate
neighbours using programmable crossbar (CB) switches. We
have used a multiplexer based implementation for the CB,
which can provide the data-flow direction among PEs and a
cross connection between inputs and outputs. The operation of
the PEs and CBs is set by PE and CB commands, respectively,
in the context frame.

CB PE CB

PE CB PE

CB PE CB

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM BRAM BRAM

BRAM BRAM BRAM

... ... ...

...

...

...

... ...

...

...

...

Fig. 3: Block Diagram of the Intermediate Fabric.

Dual Port BRAMs are used for data-streaming to and
from the IF at a very high speed, with one port connected
to the IF and the other port connected to the interconnect (e.g.
an AXI general slave port). A context frame can configure
all PEs, CBs, and BRAMs, and determines the data-flow,
interconnection, and the number of working PEs in a context.
As a result, different contexts will have different I/O latencies,

which must be communicated back to the hypervisor. The
context frame also includes the working mode selection for
a context. We have currently implemented three modes: 1D-
systolic (streaming), 2D-systolic, and dataflow. The working
mode determines how the fabric operates and how the data
flows into and out of the fabric. A context frame has the
following command groups:

• PE commands: define the operation of a processing
element.

• CB commands: define the operation of a crossbar
switch.

• USER commands: set the I/O base addresses, working
mode, latency, etc.

• BRAM commands: define the operation and data flow
of the BRAMs.

Device drivers have been added to CODEZERO to support
the IF, as shown in Table I.

TABLE I: Intermediate Fabric driver functions.

Driver function Functionality

gen_CF (context id, Generate a CF for a context with id to locn

addr, latency, num pe, in mem, set latency, num of PEs

num cb, context mode) num of CBs and mode (1D/2D/dataflow)

set_CB_command (pos, Configure the direction and cross-connection

dir, mode) for a CB in the IF

set_PE_command (pos, Configure the direction and operation of a

dir, op) PE in the IF

set_BRAM_command Configure the I/O and the data pattern mode

(pos,input/output, mode) of a BRAM in the IF

start_IF (addr, Start a HW task in the IF, load the CF from

num context) the base address, and set the context number

reset_IF () Reset the IF

set_Input_addr (addr) Set the start address for data/BRAM input

set_Output_addr (addr) Set the start address for data/BRAM output

4) DPR Region: The DPR region provides a mechanism
for hardware task management at the cost of a significant
reconfiguration time overhead. This is because the DPR region
can only be efficiently modified using pre-stored bit-streams
(generated using vendor tools). However, DPR allows for
highly customised IP cores for better performance.

IV. THE HYBRID PLATFORM HYPERVISOR

A microkernel-based hypervisor is a minimal OS that runs
directly on the bare (CPU) hardware. The hypervisor creates an
abstraction of the underlying hardware platform so that it can
be used by one or more guest OSs. In this context, a guest OS
and its applications (or a bare-metal application) runs within
a hypervisor container which provides the necessary isolation.

A. Porting CODEZERO to the Xilinx Zynq-7000

In this section, we describe the necessary modifications
to the CODEZERO hypervisor [42], firstly for it to execute
on the dual-core ARM Cortex-A9 processor of the Zynq-
7000 hybrid platform, and secondly, to provide hypervisor
support for HW task execution and scheduling, by adding
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additional mechanisms and APIs for FPGA virtualization.
Currently, CODEZERO only runs on a limited number of
ARM-based processors, and we first ported it to the Xilinx
Zynq-7000 hybrid computing platform. The main changes
needed included:

• Rewriting the drivers (e.g. PCAP, timers, interrupt
controller, UART, etc.) for the Zynq-7000 specific
ARM Cortex-A9 implementation

• FPGA initialization (e.g. FPGA clock frequency, I/O
pin mapping, FPGA interrupt initialization, etc.)

• HW task management and scheduling

• DMA transfer support

As the first two changes are mainly technical and not
specific to the requirements needed to support hardware virtu-
alization, we will not discuss these further.

B. Context sequencer behaviour

As mentioned in Section III, a context sequencer (CS)
is needed to load context frames (parts of a hardware task)
into the configurable regions and to control and monitor
their execution, including context switching and data-flow. We
provide a memory mapped register interface (implemented in
the FPGA fabric and accessible to the hypervisor via the AXI
bus) for this purpose. The control register is used by the
hypervisor to instruct the CS to start a HW task in either the
IF or DPR regions. The control register also sets the number
of contexts and the context frame base address for a HW task.
The status register is used to indicate the HW task status, such
as the completion of a context or of the whole HW task.

In the IDLE state, the CS waits for the control regis-
ter’s start bit to be asserted before moving to the CON-
TEXT START state. In this state, it generates an interrupt inter-
rupt start context, and then activates a context counter before
moving to the CONFIGURE state. In this state, the CS loads
the corresponding context frame to the CFB of the IF or to
the DPR region via PCAP to configure the context’s behaviour.
Once finished, the CS moves to the EXECUTE state and starts
execution of the context. In this state the CS behaves like a
dataflow controller, controlling the input and output data flow
depending on the working mode of the context frame. Once
execution finishes, the CS moves to the CONTEXT FINISH
stage and generates an interrupt finish context interrupt. The
CS then moves to the RESET state which releases the hardware
fabric and sets the status register completion bit for the context.
When the context counter is less than the desired number of
contexts, the CS starts the next context and repeats. When the
desired number of contexts is achieved, the whole HW task
finishes and the CS moves to the DONE state. This behaviour
is shown in Fig. 4.

C. Task communication

We have adopted two modes to transfer context frames and
user data using DMA between the IF (or DPR region) and main
memory. The first, called active DMA, uses a dedicated DMA
master controller, independent of the CPU, and automatically
loads data when the CFB is not full. The second, called
passive DMA, uses the existing DMA controller on the AXI
interconnection controlled and monitored by CPU. Passive

IDLE

CONTEXT_START

Start_bit=1

CONFIGURE

Start_bit=0

EXECUTE

CONTEXT_FINISHRESET IF/DPR

DONE

Counter=Num_Context

Counter != Num_Context

Task Start

Task finished

Context Start

Context Finish

Fig. 4: State-machine based Context Sequencer.

DMA has lower throughput than active DMA. The APIs of
Table II were added to support the DMA transfer modes, as
well as a non-DMA transfer mode.

TABLE II: Hypervisor APIs to support DMA transfer.

APIs Functions

init_Active_data Load user data from main memory s addr to

(s addr, d addr, size) BRAM d addr via DMA controller, size

indicates the data block size needed to move

start_Active_transfer These are only invoked by a fabric start,

reset_Active_transfer reset or stop (never by the user)

stop_Active_transfer

load_CF (addr, Load context frame from main mem addr to

num context, mode) CFB (PCAP). mode is 1) passive DMA; 2)

non-DMA (CPU): 3) active DMA

interrupt_CFB_full Interrupt handler triggered when CFB is

full, used for CPU monitoring the CFB

status in passive DMA mode

interrupt_PCAP_DONE This interrupt indicates that a bit stream

downloading via DPR is done

load_Data (s addr, Move user data from s addr to d addr

d addr, size, mode) memory-to-BRAMs or inter-BRAM,

mode 1) passive DMA, 2) non-DMA (CPU)

poll_CFB_status CPU polls the CFB status and return the

number of empty slots

D. Hardware task scheduling and context switching

In this section, we introduce two scheduling mechanisms
to enable HW task scheduling under hypervisor control: non-
preemptive hardware context switching and preemptive hard-
ware context switching.

1) Non-preemptive hardware context switching: HW task
scheduling only occurs when a HW context completes. At the
start of a context (when interrupt start context is triggered),
we use the hypervisor mutex mechanism (l4 mutex control)
to lock the reconfigurable fabric (IF or DPR) so that other
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contexts cannot use the same fabric. This denotes the fabric
as a critical resource in the interval of one context and
can be only accessed in a mutually exclusive way. At the
completion of a context (when interrupt finish context is
triggered), the reconfigurable fabric lock can be released
via l4 mutex control. After that, a possible context switch
(l4 context switch) among the HW tasks can happen. The ad-
vantage of non-preemptive hardware context switching is that
context saving or restoring is not necessary, as task scheduling
occurs after a context finishes. Thus minimal modifications
are required in the hypervisor to add support for HW task
scheduling as the existing hypervisor scheduling policy and
kernel scheme are satisfactory. The interrupt handlers and API
modifications added to CODEZERO to support this scheduling
scheme are shown in Table III.

TABLE III: Hypervisor APIs to support Hardware Task
Scheduling.

APIs Functions

interrupt_start_context Triggered when every context starts. In the

handler, it locks IF or DPR.

interrupt_finish_context Triggered when every context finished. in

the interrupt handler, it should unlock IF

poll_Context_status Poll the completion (task done) bit of a

poll_Task_status context (HW task) in the status register.

Also unlocks IF (DPR) after a context

finishes.

2) Pre-emptive hardware context switching: CODEZERO
can be extended to support pre-emptive hardware context-
switching. In this scenario, it must be possible to save a
context frame and restore it. Context-saving refers to a read-
back mechanism to record the current context counter (context
id), the status, the DMA controller status and the internal state
(e.g. the bitstream for DPR) into the thread/task control block
(TCB), similar to saving the CPU register set in a context
switch. The TCB is a standard data structure used by an OS
or microkernel-based hypervisor. In CODEZERO this is called
the user thread control block (UTCB). A context frame restore
occurs when a HW task is swapped out, and an existing task
resumes its operation. This approach would provide a faster
response, compared to non-preemptive context switching, but
the overhead (associated with saving and restoring the hard-
ware state) is considerably higher. This requires modification
of the UTCB data structure and the hypervisor’s context switch
(l4 context switch) mechanism, as well as requiring a number
of additional APIs. Pre-emptive hardware context switching is
a work in progress.

V. CASE STUDY

In this section, we present the details of a fully function-
ing virtualized hardware example using a simple IF operat-
ing under CODEZERO hypervisor control. In this example,
the hypervisor uses three isolated containers (the term that
CODEZERO uses to refer to a virtual machine), as shown
in Fig. 5. The first container runs a simple RTOS (uC/OS-II)
running 14 independent software tasks. The second container is
a bare metal application (an application which directly accesses
the hypervisor APIs and does not use a host OS) which runs an
FIR filter as a hardware task. The third container is also a bare

metal application which runs a hardware matrix multiplication
task. The two hardware tasks are executed on the same fabric,
scheduled and isolated by the hypervisor.

CPU

Microkernel based Hypervisor

uC/OS-II FIR application 
(HW)

Matrix 
multiplication

(HW)

Task 1
(SW)

Task 14
(SW)…

FPGA

Fig. 5: Multiple Hardware and Software task scheduling.

A. Systolic FIR Filter

A simple 5-tap systolic FIR filter (shown in Fig. 6) is used
for the first hardware task. This structure is composed of five
processing units and it can be efficiently mapped to the IF as
shown in Fig. 6 with a latency of 12 cycles. That is, the FIR
application has a single context frame. The PE is configured
as a DSP block with 3 inputs and 2 outputs. The FIR filter
coefficients are input and stored to a PE internal register. The
CBs are configured to map the data-flow as shown in Fig. 6.
The input data is transferred via the AXI bus and stored in the
“input” BRAM. The processed data is stored to the “output”
BRAM. The output data is then read by the CPU via the AXI
bus.

CB PE CB PE CB

PE CB PE CB PE

CB PE CB PE CB

PE CB PE CB PE

CB PE CB PE CB

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM BRAM BRAM BRAM BRAM

BRAM BRAM BRAM BRAM BRAM

IN

OUT0

Fig. 6: Systolic FIR filter and its mapping on the IF.

B. Matrix Multiplication

The second hardware task is a matrix multiplication. Fig. 7
shows the computation of one output element C for the matrix
product of matrices A and B (3×3 matrices). By mapping this
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structure as a hardware task to the IF three times it is possible
to calculate three output elements simultaneously, as shown in
Fig. 7. Thus the complete task can finish in three such contexts.
In this example, the PE is configured as a DSP block with 3
inputs and a single output. The CBs are configured to map the
data-flow as shown in Fig. 7, requiring 3 “input” BRAMs and
3 “output” BRAMs. The latency of a context is 8 cycles.

A11

C11

B11

A12

B21

A13

B31

CB PE CB PE CB

PE CB PE CB PE

CB PE CB PE CB

PE CB PE CB PE

CB PE CB PE CB

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM BRAM BRAM BRAM BRAM

BRAM BRAM BRAM BRAM BRAM

Fig. 7: Matrix Multiplication and its mapping on IF.

C. Multiple software-hardware tasks on ZynQ

In this experiment, uC/OS-II runs in container 0, while the
FIR Filter and the matrix multiplication run in container 1 and
2, respectively, as shown in Fig. 5. We use the CODEZERO
microkernel scheduler to switch tasks between container 0, 1
and 2. Software tasks running in container 0 are allocated and
executed on the CPU. Hardware tasks running in containers 1
and 2 are allocated and run on the IF. A context of a hardware
task will first lock the IF, configure the fabric behaviour,
execute to completion and then unlock the fabric (that is it
implements non-preemptive context switching). Algorithm 1
shows the steps involved in non-preemptive context switching.
Table IV gives the hardware context switch overhead for
the CODEZERO hypervisor. The context switch times are
significantly less than those for Linux [43]. The configuration
times and the (best-worst) hardware application response times
are given in Table V. It should be noted that these times will
increase both with application complexity and IF size.

TABLE IV: Hardware context switch overhead for
CODEZERO.

Clock cycles (time) Non-preemptive Preemptive

Tlock (no contention) 214 (0.32μs)
NA

Tlock (with contention) 7738 (11.6μs)

TC0 switch 3264 (4.9μs) 3140 (4.7μs)

VI. CONCLUSIONS AND FUTURE WORK

We have presented a framework for hypervisor based
virtualization of both HW and SW tasks on hybrid computing

TABLE V: Hardware task configuration time and total
application response times for the case study.

Clock cycles Non-preemptive Preemptive

(time) FIR MM FIR MM

Tconf 2150 (3.2μs) 3144 (4.7μs) 3392(5.1μs) 5378 (8.1μs)

Thw resp (8.5μs-19.7μs) (9.9μs-20.3μs) (9.8μs) (12.8μs)

Algorithm 1: Pseudocode for non-interrupt implementa-
tion for non-preemptive HW context switching.

begin
context id = 0;
while (!poll Task status()) do

l4 mutex control(IF lock, L4 MUTEX LOCK);
gen CF (context id, ∗(cf base + context id ∗
sizeof(cf)), ..., );
set CB commands(...);
...;
set PE commands(...);
...;
set BRAM commands(...);
...;
set Input addr(∗src base);
set Output addr(∗dst base);
start IF ();
while (!poll Context status()) do
end
reset IF ();
context id + +;
l4 mutex control(IF lock, L4 MUTEX UNLOCK);

end
end

architectures, such as the Xilinx Zynq 7000. The framework
accommodates execution of SW tasks on the CPUs, as either
real-time (or non-real-time) bare-metal applications or appli-
cations under OS control. In addition, support has been added
to the hypervisor for the execution of HW tasks in the FPGA
fabric, again as either bare-metal HW applications or as HW-
SW partitioned applications. By facilitating the use of static
hardware accelerators, partially reconfigurable modules and
intermediate fabrics, a wide range of approaches to virtualiza-
tion, to satisfy varied performance and programming needs,
can be facilitated.

The case study demonstrates that the hypervisor functional-
ity works, and that different types of tasks (both HW and SW)
can be managed concurrently, with the hypervisor providing
the necessary isolation. We are now working on providing
full support for DPR, and enabling fast partial reconfiguration
through the use of a custom ICAP controller and DMA
bitstream transfer. Additionally, we are working on developing
a more fully featured intermediate fabric, to enable higher
performance and better resource use. We also plan to examine
alternative communications structures between SW, memory,
hypervisor and FPGA fabric, to better support virtualized HW
based computing. Finally, with these initiatives we hope to
reduce the hardware context switching overhead, particularly
of the intermediate fabric, with the aim of developing a
competitive preemptive hardware context switching approach.
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