
Robot Learning with State-Dependent Exploration

Thomas Rückstieß, Martin Felder, Frank Sehnke, Jürgen Schmidhuber

Abstract— Policy gradient algorithms are among the few
learning methods successfully applied to demanding real-world
problems including those found in the field of robotics. While
Likelihood Ratio (LR) methods are typically used to estimate
the gradient, they suffer from high variance due to random
exploration at each timestep during the rollout. We therefore
evaluate several policy gradient methods with state-dependent
exploration (SDE), a recently introduced alternative to random
exploration, which deterministically returns the same action
for a given state during one episode. We apply SDE to a
simulated robotics task with realistically modelled physics, and
compare it to random exploration within several different
learning schemes. Our experiments show that SDE outperforms
traditional random exploration in almost every case.

I. INTRODUCTION

Reinforcement Learning (RL) is a powerful concept for
dealing with semi-supervised control tasks, since they don’t
require a teacher to tell the agent the correct action for
a given situation. While exploring the space of possible
actions, the reinforcement signal can be used to adapt the
parameters governing the agent’s behavior. Classical RL
algorithms [1], [2] are designed for problems with a limited,
discrete number of states. For these scenarios, sophisticated
exploration strategies can be found in the literature [3], [4].

In contrast, Policy Gradient (PG) methods as pioneered
by Williams [5] can deal with continuous states and actions,
as they appear in many real-life settings. They can handle
function approximation, avoid sudden discontinuities in the
action policy during learning, and were shown to converge
at least locally [6]. Successful applications are found e.g. in
robotics [7], [8], [9], financial data prediction [10] or network
routing [11].

However, a major problem in RL remains that feedback
is rarely available at every time step. Imagine a robot trying
to exit a labyrinth within a set time, with a default policy of
driving straight. Feedback is given at the end of an episode,
based on whether it was successful or not. PG methods
most commonly use a random exploration strategy [5], [7],
where the deterministic action (“if wall ahead, go straight”)
at each time step is perturbed by Gaussian noise. This way,
the robot may wiggle free from time to time, but it is very
hard to improve the policy based on this success, due to the
high variance in the gradient estimation. Obviously, a lot of
research has gone into devising smarter, more robust ways
of estimating the gradient, as detailed in the excellent survey
by Peters [7].

Our novel approach, introduced in [12], is much simpler
and targets the exploration strategy instead: In the example,
the robot would use a deterministic function providing an
exploration offset consistent throughout the episode, but still

depending on the state. This might easily change the policy
into something like “if wall ahead, veer a little left”, which
is much more likely to lead out of the labyrinth, and thus
can be identified easily as a policy improvement. Hence, our
method, which we call state-dependent exploration (SDE),
causes considerable variance reduction and therefore faster
convergence. Because it only affects exploration and does not
depend on a particular gradient estimation technique, SDE
can be enhanced with any episodic likelihood ratio (LR)
method, like REINFORCE [5], GPOMDP [13], or ENAC
[14], to reduce the variance even further.

Our exploration strategy is in a sense related to Finite
Difference (FD) methods like SPSA [15] or the recently de-
veloped PGPE [16], as both create policy deltas (or strategy
variations) rather than perturbing single actions. However,
direct parameter perturbation has to be handled with care,
since small changes in the policy can easily lead to unforseen
and unstable behavior and a fair amount of system knowledge
is therefore necessary. Furthermore, FD are very sensitive to
noise and hence not suited for many real-world tasks. SDE
does not suffer from these drawbacks—it embeds the power
of FD exploration into the stable LR framework.

The remainder of this paper is structured as follows: Sec-
tion II briefly introduces the policy gradient framework. Our
novel exploration strategy SDE will be explained in detail
in section III. Experiments and their results are described in
section IV. The paper concludes with a short discussion in
section V.

II. POLICY GRADIENT FRAMEWORK

An advantage of policy gradient methods is that they don’t
require the environment to be Markovian, i.e. each controller
action may depend on the whole history encountered. So
we will introduce our policy gradient framework for general
non-Markovian environments but later assume a Markov
Decission Process (MDP) for ease of argument.

A. General Assumptions

A policy π(u|h, θ) is the probability of taking action u
when encountering history h under the policy parameters θ.
Since we use parameterized policies throughout this paper,
we usually ommit θ and just write π(u|h). We will use hπ for
the history of all the observations x, actions u, and rewards
r encountered when following policy π. The history at time
t = 0 is defined as the sequence hπ0 = {x0}, consisting only
of the start state x0. The history at time t consists of all the
observations, actions and rewards encountered so far and is
defined as hπt = {x0, u0, r0, x1, . . . , ut−1, rt−1, xt}.

The return for the controller whose interaction with the
environment produces history hπ is written as R(hπ), which
is defined as R(hπ) = aΣ

∑T
t=0 aD rt with aΣ = (1 −

γ), aD = γt for discounted (possibly continuous) tasks and
aΣ = 1/T , aD = 1 for undiscounted (and thus necessarily
episodic) tasks. In this paper, we deal with episodic learning
and therefore will use the latter definition. The expectation
operator is written as E{·}.

The overall performance measure of policy π, independent
from any history h, is denoted J(π). It is defined as J(π) =
E{R(hπ)} =

∫
p(hπ)R(hπ) dhπ . Instead of J(π) for policy

π parameterized with θ, we will also write J(θ).
To optimize policy π, we want to move the parameters θ

along the gradient of J to an optimum with a certain learning
rate α:

θt+1 = θt + α∇θJ(π). (1)

The gradient ∇θJ(π) is

∇θJ(π) =
∫
hπ
∇θp(hπ)R(hπ) dhπ. (2)

B. Likelihood Ratio Methods

Rather than perturbing the policy directly, as it is the
case with FD methods [15], [7], LR methods [5] perturb the
resulting action instead, leading to a stochastic policy (which
we assume to be differentiable with respect to its parameters
θ), such as

u = f(h, θ) + ε, ε ∼ N (0, σ2) (3)

where f is the controller and ε the exploration noise. Unlike
FD methods, the new policy that leads to this behavior is not
known and consequently the difference quotient

∂J(θ)
∂θi

≈ J(θ + δθ)− J(θ)
δθi

(4)

can not be calculated. Thus, LR methods use a different
approach in estimating ∇θJ(θ), the most basic one be-
ing Williams’ REINFORCE gradient estimation [5], which
makes use of Monte-Carlo sampling:

∇θJ(π) ≈ 1
N

∑
hπ

T−1∑
t=0

∇θ log π(ut|hπt)R(hπ). (5)

A more detailed derivation of the general idea of likelihood
ratio policy gradients was presented in [12].

Several approaches to improve gradient estimates are
available, as mentioned in the introduction. Neither these
nor ideas like baselines [5], the PEGASUS trick [17] or other
variance reduction techniques [18] are treated here. They are
complementary to our approach, and their combination with
SDE will be covered by a future paper.

C. Application to Function Approximation

Here we describe how the results above, in particular (5),
can be applied to general parametric function approximation.
Because we are dealing with multi-dimensional states x and
multi-dimensional actions u, we will now use bold font for
(column) vectors in our notation for clarification.

To avoid the issue of a growing history length and to
simplify the equations, we will assume the world to be
Markovian for the remainder of the paper, i.e. the current
action only depends on the last state encountered, so that
π(ut|hπt) = π(ut|xt). But due to its general derivation, the
idea of SDE is still applicable to non-Markovian environ-
ments.

The most general case would include a multi-variate
normal distribution function with a covariance matrix Σ, but
this would square the number of parameters and required
samples. Also, differentiating this distribution requires calcu-
lation of Σ−1, which is time-consuming. We will instead use
a simplification here and add independent uni-variate normal
noise to each element of the output vector seperately. This
corresponds to a covariance matrix Σ = diag(σ1, . . . , σn).1

The action u can thus be computed as

u = f(x,θ) + e =

 f1(x,θ)
...

fn(x,θ)

+

 e1

...
en

 (6)

with θ = [θ1, θ2, . . .] being the parameter vector and fj the
jth controller output element. The exploration values ej are
each drawn from a normal distribution ej ∼ N (0, σ2

j). The
policy π(u|x) is the probability of executing action u when
in state x. Because of the independence of the elements, it
can be decomposed into π(u|x) =

∏
k∈O πk(uk|x) with

O as the set of indices over all outputs, and therefore
logπ(u|x) =

∑
k∈O log πk(uk|x). The element-wise policy

πk(uk|x) is the probability of receiving value uk as kth
element of action vector u when encountering state x and
is given by

πk(uk|x) =
1√

2πσk
exp

(
− (uk − µk)2

2σ2
k

)
, (7)

where we substituted µk := fk(x,θ). We differentiate with
respect to the parameters θj and σj :

∂ logπ(u|x)
∂θj

=
∑
k∈O

(uk − µk)
σ2
k

∂µk
∂θj

(8)

∂ logπ(u|x)
∂σj

=
(uj − µj)2 − σ2

j

σ3
j

(9)

For the linear case, where f(x,θ) = Θx with the parameter
matrix Θ = [θji] mapping states to actions, (8) becomes

∂ logπ(u|x)
∂θji

=
(uj −

∑
i θjixi)

σ2
j

xi. (10)

An issue with nonlinear function approximation (NLFA) is
a parameter dimensionality typically much higher than their
output dimensionality, constituting a huge search space for
FD methods. However, in combination with LR methods,
they are interesting because LR methods only perturb the

1A further simplification would use Σ = σI with I being the unity
matrix. This is advisable if the optimal solution for all parameters is expected
to lay in similar value ranges.

resulting outputs and not the parameters directly. Assuming
the NLFA is differentiable with respect to its parameters, one
can easily calculate the log likelihood values for each single
parameter.

The factor ∂µk
∂θj

in (8) describes the differentiation through
the function approximator. It is convenient to use existing
implementations, where instead of an error, the log likelihood
derivative with respect to the mean, i.e. the first factor of the
sum in (8), can be injected. The usual backward pass through
the NLFA—known from supervised learning settings—then
results in the log likelihood derivatives for each parameter
[5].

III. STATE-DEPENDENT EXPLORATION

As indicated in the introduction, adding noise to the
action u of a stochastic policy (3) at each step enables
random exploration, but also aggravates the credit assignment
problem: The overall reward for an episode (also called
return) cannot be properly assigned to individual actions
because information about which actions (if any) had a
positive effect on the return value is not accessible.2

Our alternative approach adds a state-dependent offset
to the action at each timestep, which can still carry the
necessary exploratory randomness through variation between
episodes, but will always return the same value in the same
state within an episode. We define a function ε̂(x; θ̂) on the
states, which will act as a pseudo-random function that takes
the state x as input. Randomness originates from parameters
θ̂ being drawn from a normal distribution θ̂j ∼ N (0, σ̂2

j).
As discussed in section II-C, simplifications to reduce the
number of variance parameters can be applied. The action is
then calculated by

u = f(x;θ) + ε̂(x; θ̂), θ̂j ∼ N (0, σ̂2
j). (11)

If the parameters θ̂ are drawn at each timestep, we have
an LR algorithm as in (3) and (6), although with a different
exploration variance. However, if we keep θ̂ constant for a
full episode, then our action will have the same exploration
added whenever we encounter the same state (Figure 1).
Depending on the choice of ε̂(x), the randomness can further
be “continuous”, resulting in similar offsets for similar states.
Effectively, by drawing θ̂, we actually create a policy delta,
similar to FD methods. In fact, if both f(x; Θ) with Θ =
[θji] and ε̂(x, Θ̂) with Θ̂ = [θ̂ji] are linear functions, we
see that

u = f(x; Θ) + ε̂(x; Θ̂)
= Θx+ Θ̂x

= (Θ + Θ̂)x, (12)

which shows that direct parameter perturbation methods (cf.
(4)) are a special case of SDE and can be expressed in this
more general reinforcement framework.

2GPOMDP [13], also known as the Policy Gradient Theorem [6], does
consider single step rewards. However, it still introduces a significant amount
of variance to a rollout with traditional random exploration.

Fig. 1. Illustration of the main difference between random (top) and state-
dependent (bottom) exploration. Several rollouts in state-action space of a
task with state x ∈ R2 (x- and y-axis) and action u ∈ R (z-axis) are
plotted. While random exploration follows the same trajectory over and
over again (with added noise), SDE instead tries different strategies and
can quickly find solutions that would take a long time to discover with
random exploration.

A. Updates of Exploration Variances

For a linear exploration function ε̂(x; Θ̂) = Θ̂x it is
possible to calculate the derivative of the log likelihood with
respect to the variance. We will derive the adaptation for
general σ̂ji, any parameter reduction techniques from II-C
can be applied accordingly.

The distribution of the action vector elements is uj =
fj(x,Θ) + Θ̂jx = fj(x,Θ) +

∑
i θ̂jixi, with fj(x,Θ)

as the jth element of the return vector of the deterministic
controller f and θ̂ji ∼ N (0, σ̂2

ji). Applying the standard
properties of normal distributions, we see that the action
element uj is distributed as

uj ∼ N (fj(x,Θ),
∑
i

(xiσ̂ji)2), (13)

where we will substitute µj := fj(x,Θ) and σ2
j :=∑

i(xiσ̂ji)
2 to obtain expression (7) for the policy compo-

nents again. Differentiation of the policy with respect to the
free parameters σ̂ji yields:

∂ logπ(u|x)
∂σ̂ji

=
(uj − µj)2 − σ2

j

σ4
j

x2
i σ̂ji (14)

For more complex exploration functions, calculating the
exact derivative for the sigma adaptation might not be
possible and heuristic or manual adaptation (e.g. with slowly
decreasing σ̂) is required.

B. Stochastic Policies

The original policy gradient setup as presented in e.g.
[5] conveniently unifies the two stochastic features of the
algorithm: the stochastic exploration and the stochasticity of
the policy itself. Both were represented by the Gaussian noise
added on top of the controller. While elegant on the one
hand, it also conceals the fact that there are two different
stochastic processes. With SDE, randomness has been taken
out of the controller completely and is represented by the
seperate exploration function. So if learning is switched off,
the controller only returns deterministic actions. But in many
scenarios the best policy is necessarily of stochastic nature.

It is possible and straight-forward to implement SDE with
stochastic policies, by combining both random and state-
dependent exploration in one controller, as in

u = f(x;θ) + ε+ ε̂(x; θ̂), (15)

where εj ∼ N(0, σj) and θ̂j ∼ N(0, σ̂j). Since the respec-
tive noises are simply added together, none of them affects
the derivative of the log-likelihood of the other and σ and σ̂
can be updated independently. In this case, the trajectories
through state-action space would look like a noisy version
of Figure 1, bottom.

IV. EXPERIMENTS

We tested our algorithm on a series of experiments
based on a simulated robot hand with realistically modelled
physics. We chose this experiment to show the predominance
of SDE over random exploration, especially in a realistic
robot task. We used the Open Dynamics Engine3 to model
the hand, arm, body, and object. The arm has 3 degrees
of freedom: shoulder, elbow, and wrist, where each joint
is assumed to be a 1D hinge joint, which limits the arm
movements to forward-backward and up-down. The hand
itself consists of 4 fingers with 2 joints each, but for
simplicity we only use a single actor to move all finger
joints together, which gives the system the possibility to
open and close the hand, but it cannot control individual
fingers. These limitations to hand and arm movement reduce
the overall complexity of the task while giving the system
enough freedom to catch the ball. A 3D visualization of the
robot attempting a catch is shown in Fig. 2.

A. Experiment setup

The information given to the system are the three coor-
dinates of the ball position, so the robot “sees” where the
ball is. It has four degrees of freedom to act, and in each
timestep it can add a positive or negative torque to the joints.
The controller therefore has 3 inputs and 4 outputs. We map
inputs directly to outputs, but squash the outgoing signal with
a tanh-function to ensure output between -1 and 1.

The reward function is defined as follows: upon release of
the ball, in each time step the reward can either be −3 if the
ball hits the ground (in which case the episode is considered a

3The Open Dynamics Engine (ODE) is an open source physics engine,
see http://www.ode.org/ for more details.

Fig. 2. Visualization of the simulated robot hand while catching a ball.
The ball is released 5 units above the palm, where the palm dimensions
are 1 x 0.1 x 1 units. When the fingers grasp the ball and do not release it
throughout the episode, the best possible return (close to −1.0) is achieved.

failure, because the system cannot recover from it) or else the
negative distance between ball center and palm center, which
can be any value between −3 (we capped the distance at 3
units) and −0.5 (the closest possible distance considering
the palm heights and ball radius). The return for a whole
episode is the mean over the episode: R = 1

N

∑N
n=1 rt. In

practice, we found an overall episodic return of −1 or better
to represent nearly optimal catching behavior, considering
the time from ball release to impact on palm, which is
penalized with the capped distance to the palm center.

One attempt at catching the ball was considered to be one
episode, which lasted for 500 timesteps. One simulation step
corresponded to 0.01 seconds, giving the system a simulated
time of 5 seconds to catch and hold the ball.

Training was stopped after 500 policy updates.

B. Experiment Variations

Several different approaches were compared in this set of
experiments, which we will briefly describe here.

1) Gradient Estimators: Most of our experiments were
conducted using Williams’ REINFORCE gradient estimator.
While there are several other policy gradient techniques
known in the literature [13], [6], we will only focus on
episodic Natural Actor-Critic [14] as a comparison to RE-
INFORCE to demonstrate that SDE can be applied to other
estimation methods as well.

2) Setpoints vs. Torques: Learning to control a robot can
be done at different levels in the control hierarchy. One
possibility is to learn to control the forces, that will be added
to each controlled joint of the robot, which we called Torque
Learning. Depending on the task, it can be easier to learn
the angular setpoints for each joint and let an automatic
controller add the torques accordingly to quickly reach the
setpoints without overshooting too much. We refer to this
variation as Setpoint Learning.

3) Batch Learning vs. Queued Learning: In Batch Learn-
ing, we execute a number of episodes (we used 20 episodes
throughout the experiments described here) followed by a
learning step, where all episodes are taken into account, a
gradient is calculated and the parameters of the controller
are moved in the direction of the gradient. It is advisable to
have a large number of episodes in each batch to gain an
accurate estimate of the gradient. However, more episodes
also require more time and therefore slow down learning.

What we call Queued Learning, is a variation of this
scheme that can execute controller updates in very short
time intervals. Just like with Batch Learning, we also collect
a number of episodes and execute one learning step at the

Fig. 3. Results after 100 runs with REINFORCE. Left: The solid and
dashed curves show the mean over all runs, the filled envelopes represent the
standard deviation. While SDE (solid line) managed to learn to catch the ball
quickly in every single case, REX occasionally found a good solution but in
most cases did not learn to catch the ball. Right: Cumulative number of runs
(out of 100) that achieved a certain level. R ≥ −1 means “good catch”,
R ≥ −1.1 corresponds to all “catches” (closing the hand and holding the
ball). R ≥ −1.5 describes all policies managing to keep the ball on the
hand throughout the episode. R ≥ −2 results from policies that at least
slowed down ball contact to the ground. The remaining policies dropped
the ball right away.

Fig. 4. Results after 100 runs with ENAC. Both learning curves had
relatively high variances. While REX often didn’t find a good solution,
SDE found a catching behavior in almost every case, but many times lost
it again due to continued exploration. REX also found slightly more “good
catches” but fell far behind SDE considering both “good” and “average”
catches.

beginning. Then, however, we discard only the oldest episode
from the batch, and add one newly executed episode to the
front of the queue, followed by another update step of the
current batch, and so forth. This way, we can update our
policy after each episode.

C. Results

The best results were achieved when using SDE with
REINFORCE gradient estimation, optimal baseline and a
learning rate of α = 0.0001. The experiment ran with the
Queued Learning scheme and learned to control torques
directly.

The whole experiment was repeated 100 times. The left
side of Figure 3 shows the learning curves over 500 episodes.
Please note that the curves are not perfectly smooth because
we only evaluated every twentieth policy. As can be seen,
SDE finds a near-perfect solution in almost every case,
resulting in a very low variance. The mean of the REX
experiments indicate a semi-optimal solution, but in fact
some of the runs found a good solution while others failed,
which explains the high variance throughout the learning
process.

The best controller found by SDE yielded a return of
−0.95, REX reached −0.97. While these values do not differ
much, the chances of producing a good controller are much

higher with SDE. The right plot in Figure 3 shows the
percentage of runs where a solution was found that was better
than a certain value. Out of 100 runs, REX only found a mere
7 policies that qualified as “good catches”, where SDE found
68. Almost all SDE runs, 98%, produced rewards R ≥ −1.1,
corresponding to behavior that would be considered a “catch”
(closing the hand and holding the ball), although not all
policies were as precise and quick as the “good catches”. A
typical behavior that returns R ' −1.5 can be described as
one that keeps the ball on the fingers throughout the episode
but hasn’t learned to close the hand. R ' −2.0 corresponds
to a behavior where the hand is held open and the ball falls
onto the palm, rolls over the fingers and is then dropped
to the ground. Some of the REX trials weren’t even able
to reach the −2.0 mark. A typical worst-case behavior is
pulling back the hand and letting the ball drop to the ground
immediately.

To investigate if SDE can be used with different gradient
estimation techniques, we ran the same experiments with
ENAC [14] instead of REINFORCE. We used a learning rate
of 0.01 here, which lead to similar convergence speed. The
results are presented in Figure 4. The difference compared
to the results with REINFORCE is, that both algorithms,
REX and SDE had a relatively high variance. While REX
still had problems to converge to stable catches (yet showed a
26% improvement over the REINFORCE version of REX for
“good catches”), SDE in most cases (93%) found a “catch-
ing” solution but often lost the policy again due to continued
exploration, which explains its high variance. Perhaps this
could have been prevented by using tricks like reducing the
learning rate over time or including a momentum term in the
gradient descent. These advancements, however, are beyond
the scope of this paper. SDE also had trouble reaching near-
optimal solutions with R ≥ −1.0 and even fell a little behind
REX. But when considering policies with R ≥ −1.1, SDE
outperformed REX by over 38%. Overall the experiments
show that SDE can in fact improve more advanced gradient
estimation techniques like ENAC.

Then we ran the same experiment as stated above, with
the same initial parameters and REINFORCE gradient esti-
mation, but learned the controller setpoints for joint angles
rather than the forces directly (see section IV-B.2). We used
a basic PD controller following this equation MV (t) =
Kpe(t)+Kd

∂e
∂t , with MV (t) being the manipulated variable

over time, e(t) the difference of the process variable and
the setpoint at time t, Kp = 2.0 the proportional gain, and
Kd = 0.1 the derivative gain (the gain constants are tuning
parameters that need to be determined experimentally). We
expected a performance improvement assuming that it is
easier to only learn the desired angles and let a controller take
care of the forces, rather than learning the torques directly.
As can be seen in Figure 5, lefthand side, this turned out
to be the case for returns of R ≥ −1.5, i.e. keeping the
ball on the hand. Now, not only SDE (which was able to
reach this performance in all runs even when controlling the
torques directly) but also REX achieved at least R = −1.5
in 100% of their runs. However, if we look at good catches

Fig. 5. Cumulative number of runs (as percentages) that achieved a
certain return value. Left side: Agent learned setpoints for joint angles,
which improves average performance but makes it harder to get results with
R ≥ −1.0 for both REX and SDE. Right side: Agent learned joint torques
directly, but in a batch fashion, rather than queued. Convergence speed
dropped, overall performance increased slightly for REX and decreased
slightly for SDE.

of R = −1.0 or better, it turns out that this was more
difficult in the setpoint learning experiment for both SDE
and REX. Two reasons could explain this fact: firstly, the PD
controller gains might not be perfectly tuned, overshooting
for small, precise movements and resulting in a somewhat
clumsy hand coordination. Secondly, controlling the torques
might be less sensitive to noise because the forces add up
over time and gain momentum, which smudges and averages
the noisy signals over time. This issue will be investigated
in a future publication.

Lastly, we compared the performance between batch and
queued learning, as described in section IV-B.3. The setup
was again identical to the first experiment but used the tradi-
tional batch update, discarded the whole batch afterwards and
executed a new batch. Because queued learning uses each
sample not just once but 20 times (the size of the batch),
we expected to be able to increase the learning rate of the
batch learning experiment by a factor of 20. However we
discovered instabilities with increased learning rate, which
lead to big jumps in parameter space, potentially ruining
otherwise promising solutions. Therefore we used the same
learning rate as with the queued experiment, which lead to a
much slower convergence with a factor of 0.09 compared to
the queued version. Besides this difference in convergence
speed, the overall result did not change dramatically. Looking
at the percentages of good catches reached (see Figure 5, on
the right), REX performed 18% better with batch learning,
while SDE decreased by 12%. Overall, it seems that SDE
favours queued learning, while REX performs better with the
traditional batch learning approach. It remains to be seen if
this holds for different tasks and on real robots as well.

V. CONCLUSION

We evaluated state-dependent exploration as an alternative
to random exploration for policy gradient methods. By cre-
ating strategy variations similar to those of finite differences
but without their disadvantages, SDE inserts considerably
less variance into each rollout or episode. In a robotics
simulation task, we investigated in several different learning
setups, where SDE could always clearly outperform REX.
We found that learning setpoints for automatic control can

improve average performance but makes it harder to find
excellent solutions. SDE also improves upon recent gradient
estimation techniques such as ENAC. Furthermore, SDE is
simple and elegant, and easy to integrate into existing policy
gradient implementations. All of this recommends SDE as a
valuable addition to the existing collection of policy gradient
methods. The physics-based ball catching simulation gives a
first hint of SDE’s performance in real-world applications,
while ongoing work is focusing on grasping tasks in realistic
robot domains.

VI. ACKNOWLEDGEMENTS

This work was funded within the Excellence Cluster
Cognition for Technical Systems (CoTeSys) by the German
Research Foundation (DFG).

REFERENCES

[1] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3, pp. 279–292, 1992.

[2] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[3] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: a survey,” Journal of AI research, vol. 4, pp. 237–285, 1996.

[4] M. A. Wiering, “Explorations in efficient reinforcement learning,”
Ph.D. dissertation, University of Amsterdam / IDSIA, February 1999.

[5] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, pp.
229–256, 1992.

[6] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
in Advances in Neural Information Processing Systems, 2000.

[7] J. Peters and S. Schaal, “Policy gradient methods for robotics,”
in Proceedings of the 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2006.

[8] Y. Nakamura, T. Mori, M. Sato, and S. Ishii, “Reinforcement learning
for a biped robot based on a CPG-actor-critic method,” Neural
Networks, vol. 20, no. 6, pp. 723–735, 2007.

[9] N. Mitsunaga, C. Smith, T. Kanda, H. Ishiguro, and N. Hagita,
“Robot behavior adaptation for human-robot interaction based on pol-
icy gradient reinforcement learning,” Intelligent Robots and Systems,
2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pp.
218–225, 2005.

[10] J. Moody and M. Saffell, “Learning to trade via direct reinforcement,”
Neural Networks, IEEE Transactions on, vol. 12, no. 4, pp. 875–889,
2001.

[11] L. Peshkin and V. Savova, “Reinforcement learning for adaptive
routing,” Neural Networks, 2002. IJCNN’02. Proceedings of the 2002
International Joint Conference on, vol. 2, 2002.

[12] T. Rückstieß, M. Felder, and J. Schmidhuber, “State-dependent explo-
ration for policy gradient methods,” in Proceedings of the Nineteenth
European Conference on Machine Learning ECML, 2008 (in print).

[13] J. Baxter and P. Bartlett, “Reinforcement learning in POMDP’s via
direct gradient ascent,” Proceedings of the Seventeenth International
Conference on Machine Learning, pp. 41–48, 2000.

[14] J. Peters, S. Vijayakumar, and S. Schaal, “Natural actor-critic,” in Pro-
ceedings of the Sixteenth European Conference on Machine Learning,
2005.

[15] J. Spall, “Implementation of the simultaneous perturbation algorithm
forstochastic optimization,” Aerospace and Electronic Systems, IEEE
Transactions on, vol. 34, no. 3, pp. 817–823, 1998.

[16] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and
J. Schmidhuber, “Policy gradients with parameter-based exploration
for control,” in Proceedings of the International Conference on Arti-
ficial Neural Networks ICANN, 2008 (in print).

[17] A. Ng and M. Jordan, “PEGASUS: A policy search method for large
MDPs and POMDPs,” Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence, pp. 406–415, 2000.

[18] D. Aberdeen, Policy-gradient Algorithms for Partially Observable
Markov Decision Processes. Australian National University, 2003.

