
Early Safety Evaluation of Design Decisions in E/E
Architecture according to ISO 26262

Vladimir Rupanov, Alois
Knoll

Technische Universität
München

Boltzmannstr. 3
Garching, Germany
{rupanov,knoll}

@in.tum.de

Ludger Fiege, Michael
Armbruster, Gernot

Spiegelberg
Corporate Research &

Technologies
Siemens AG

Otto-Hahn-Ring 6
Munich, Germany

{firstname.name}
@siemens.com

Christian Buckl
ForTISS GmbH
Guerickestr. 25

Munich, Germany
buckl@fortiss.org

ABSTRACT
ISO 26262 addresses development of safe in-vehicle func-
tions by specifying methods potentially used in the design
and development lifecycle. It does not indicate what is suf-
ficient and leaves room for interpretation. However, the ar-
chitects of electric/electronic systems need design bound-
aries to make decisions during architecture evolution with-
out adding a risk of late architectural changes. Designing
and changing a system benefits from correct selection of sa-
fety mechanisms at early design stages. This paper presents
an iterative architecture design and refinement process that
is centered around ISO 26262 requirements. We propose a
domain-specific modeling scheme and component reposito-
ries to build up a bottom-up analysis framework that allows
early quantitative safety evaluation. To guarantee that the
target ASIL level can be reached, we complement our design-
time component-level analysis with conservative top-down
analysis. Given that analysis starts at early design stages,
evolution of the architecture is supported by different levels
of detail used in the analysis framework.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance

General Terms
Reliability

Keywords
Automotive Systems, Architecture Modeling, Functional Sa-
fety, Integration of Analysis Techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISARCS’12, June 26–28, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1347-6/12/06 ...$10.00.

1. INTRODUCTION
In today’s cars, most of the functionality is implemented

using hardware and software solutions. As more and more
safety-critical functions heavily rely on software, safety be-
comes a hot topic. The recently published international
standard ISO 26262 [14, part 1] adresses this topic by defin-
ing a design process and proposing safety mechanisms. It
does not indicate what is sufficient and leaves room for in-
terpretation [8]. The architects of in-vehicle systems need,
however, design boundaries to make decisions during archi-
tecture evolution without adding a risk of late architecture
changes.
To reduce the complexity of the electric/electronic (E/E)
architectures, the car manufacturers intend to use generic
hardware and software platforms executing mixed-criticality
functions, such as AUTOSAR1. This enables software reuse,
but limits the system-level analysis for early assessment of
functional and non-functional properties [10]. An E/E sys-
tem architect has to account on numerous design aspects
at the same time: real-time properties, safety, security, cost,
etc. As late architectural changes are very expensive, it is ex-
tremely important to support early architectural decisions.
An important part of these decisions covered by ISO 26262
is selecting and configuring safety measures.
In this paper, we propose an approach for safety analysis and
design guidance early in the design process. Although sa-
fety analysis has been applied in the automotive industry for
decades, no common safety lifecycle was applied. ISO 26262
triggers a change in the development lifecycle that requires
adaptation and alignment of numerous processes in E/E sys-
tem development. The standardized lifecycle also acts as an
enabling factor for extensive use of model-based tools for en-
gineering support including automation of routine analysis
steps, collection of data in a unified format and reuse of that
data in new developments.
This paper suggests to systematically evaluate safety mech-
anisms in context of ISO 26262 requirements and assess
design alternatives from different viewpoints (performance,
cost). The approach starts with a specification of the fault
behavior of hardware component models. We relate safety

1AUTOSAR: AUTomotive Open System ARchitecture, mo-
re details at: http://www.autosar.org

1

mechanisms to fault models and provide methods to eval-
uate achievable coverage. The presented design methodol-
ogy supports evolution of E/E architecture (EEA) under a
guarantee that the target ASIL (Automotive Safety Integrity
Level) can be reached by stepwise refinement of both com-
ponent and safety mechanism models controlled by evalua-
tion of ISO 26262 architectural metrics. The necessary steps
for implementing our approach are discussed including the
definition of metamodels and quantitative metrics and an
automotive case study presented.
The rest of the paper is organized as follows. Section 2
provides the reader with an overview of the context and
the range of applications that are motivating our work. In
Section 3 we present an iterative process of safety-centric
architecture development. We discuss modeling abstrac-
tions, which support encapsulation of important attributes
within reusable model hierarchies, in Section 4. Associated
standard-defined metrics are linked to models in Section 5.
We discuss application possibilities for the presented ap-
proach in Section 6. The paper is concluded by a review
of related work in Section 7 and a summary in Section 8.

2. SAFE ICT PLATFORM FOR MASS PRO-
DUCTION VEHICLES

During the last 30 years, electronic systems have become
widely used in cars, resulting in numerous advances in driv-
ing safety, comfort and controllability of vehicles. The use of
computers in vehicle applications raises the question of ad-
equate behavior of automotive systems, especially of those
controlling or related to vital functions, such as braking,
steering and longitudinal speed control. E/E systems al-
ready play a key role in implementation of assistance func-
tions like electronic stability program (ESP) or electronic
brakeforce distribution (EBD), and the likely introduction
of Drive-by-Wire systems will lead to total reliance of driver
safety on E/E systems [13].
Safety is a dependability attribute of a system or an archi-
tecture, which reflects“absence of catastrophic consequences
on the user(s) and the environment” [2]. Absolute safety
is hardly reachable, so safety-related standards introduce a
notion of “unacceptable risk” [14, part 1] into the safety def-
inition. The ASIL assignment to a function specifies which
level of risk is acceptable. The safety of a system is directly
influenced by the EEA, which describes the subsystems,
their boundaries and interfaces, and includes the allocation
of functions to hardware and software elements. In context
of systems with integrated architecture, EEA represents the
functional structure of the system (functional concept) and
physical structure of the system (hardware components) and
mapping between them.
The state of the art design process in industry focuses on
optimizing safety at the function level. This approach was
feasible, as most functions could be analyzed in an isolated
fashion. With the trend towards more interconnected func-
tions, such as a global energy management in electric cars,
the complete architecture must be analyzed according to its
suitability to achieve safety. The trend towards system sa-
fety is also increased by shortened development cycles. As
functions have to be integrated into the car in shorter time
intervals, E/E platforms providing generic mechanisms to
reach safety goals are becoming more important [5]. The
name “platform” comprises the following item of a full ve-

hicle control-system: a) a central (fault-tolerant) platform-
computer with access to all sensors and actuators via net-
work; b) an operating system extended by a middleware run-
ning mainly on the central platform-computer which pro-
vides means to execute and transparently protect vehicle
system functions and provides mode management function-
ality (including platform-reconfiguration due to faults, mas-
ter-slave switchovers to ensure fail-operational behavior);
c) a communication and power-distribution network. When
talking about generic mechanisms, one has to distinguish
between two categories of functions. For some functions it
is possible to define a safe state. These functions can be
designed in a way that any failure in a system leads to a
safe state (which means passivation of the considered func-
tion), so they have “fail-safe”, or “fail-passive” requirements.
In the second category, functions do not have a defined safe
state: these functions need to operate in order to maintain
driver and occupant safety. “Fail-operational” behavior is
necessary to meet quantitative safety requirements for these
functions [13].
An important task for an architecture designer is to provide
a reasonable architecture sketch and its evolution into a safe
and stable system, without limiting the software capabilities
and undergoing deep changes. Depending on the selected
safety mechanisms (SMs), the safety goals for a specific in-
stantiation of the E/E platforms may be violated. Safety
mechanisms, as defined by [14, part 1], are measures imple-
mented by an E/E system function or element to detect or
control failures. The faults in hardware components result
from aging / wear-out, aggressive environment and manu-
facturing process variations.
Although, ISO 26262 defines concrete safety mechanisms,
literature reports different problems [8], mainly regarding
the correct selection of the right level of detail and trace-
ability between FMEA and safety assessment. This leads to
the problem, that sufficiency and adequacy of safety mech-
anisms are hard to predict for a concrete EEA design. We
present a solution for the last problem by suggesting an ap-
proach for early safety evaluation to simplify the correct
selection of safety mechanisms and avoiding changes late in
the design process. It is important to note that this paper
focuses on random faults in hardware and does not target
the toleration of systematic faults in hardware and software.
The latter problem is tackled by the suggested development
process of the ISO 26262.
There is a huge range of implementations of SMs available
on the market in the form of either hardware component fea-
tures or middleware, but there are no tools to quantify the
effect of selected mechanisms in advance and to compare
these against objectives (e.g., target values for ISO 26262
architectural metrics). Our approach aims at methods and
tools that support system architects in evaluating design
choices. The methods that engineers apply are usually deal-
ing with consequences of faults; it is usually not possible to
identify the source. Failure mode analyses in inductive (e.g.,
FMEA) or deductive (e.g., Fault Tree Analysis, FTA) meth-
ods rely on partially or fully automated [18] use of detailed
failure modes of components and analysis of safety measures
that are implemented in the system to reduce or eliminate
the risk. We propose a focused approach to model design
trade-offs and limit effort spent for safety estimation.

2

Figure 1: Architecture design cycle: phases and artifacts

Figure 2: Evolutionary staged development process

3. ITERATIVE DESIGN PROCESS
This section in combination with the following two de-

scribes our approach for design-time quantitative safety ana-
lysis. It is based on quantitative evaluation of safety-related
metrics in each design cycle explained in this section. Struc-
tured models, which are described in the next section, en-
able the automation of safety assessment (section 5). The
approach can be applied iteratively, which means that de-
sign boundaries are evaluated at each EEA evolution cycle,
and design decisions are driven by results of this evaluation.
We want to provide guidelines for system architect in se-

lecting hardware components and hardware and/or software
implemented safety mechanisms to be realized in the EEA
that targets a certain ASIL level. This is reached by iden-
tifying boundaries of EEA design guaranteeing that each
solution within these boundaries satisfies the safety require-
ments. Safety is only one design criterion (although, a pri-
mary architectural driver for critical systems); cost, per-
formance, and other quality attributes are also important,
and comparison of design alternatives with regard to other
attributes needs to be supported. To achieve the defined
goals in the design environment of an evolving EEA, we
need: a) support for EEA evolution: methods and models
enable different levels of detail; b) methods for early conser-

vative quantitative evaluation of item safety; c) estimation
of quality attributes (resources, cost); d) selection of safety
mechanisms from possible alternatives; e) proof of design
for safety according to the ISO 26262 standard; f) means
of safety mechanism instantiation. The EEA design is a
process of cyclic refinement in a domain-specific safety pre-
diction framework (figure 1). Cycles represent levels of de-
tail of EEA design that are passed throughout the design
process. Every cycle of the process begins with model up-
date: an architecture blueprint is created or updated.
An initial blueprint defines a set of computer nodes (Elec-
tronic Control Units - ECU’s), functions (items) and pre-
liminary assumptions on components of each node. Typical
artifacts of the architecture draft are: structural block di-
agrams, functional network diagrams, function deployment.
At the next step, identification of safety requirements
takes place. Requirements include safety goal (SG) defini-
tions, ISO 26262 hardware architectural metric and proba-
bility of safety goal violation target values. Metric target
values are directly derived from hazard and risk analysis of
the items to be deployed on the EEA (i.e. from the usage
profile). These requirements are typically stable through-
out the whole EEA design process. Deductive analysis is
initiated based on the preliminary hazard analysis and the
identified SGs. A typical method applied at this stage is
fault tree analysis2. The result of its application is a set of
fault trees where leaves represent node-level failure effects
of components (such effects are “value delivered late” and
“wrong value”). The fault trees built at this stage are a
system-level safety evaluation model. Selection of safety
mechanisms is performed based on coverage requirements
identified before (using component- and mechanism- specific
evaluation models). In addition, design quality attributes
such as memory footprint and performance are taken into
account. We return to this in detail in next paragraphs. The
methodology includes these attributes into analysis to avoid
late architecture updates because of not implementable re-
quirements to the execution platform. Inductive analysis
is performed as a form of typical failure modes, effects and
diagnostics analysis (FMEDA). We extract diagnostic cov-

2http://www.fault-tree.net

3

Figure 3: Essential part of the proposed metamodel

erage of specific mechanisms in application to components
of the ECU, and use this information to calculate total cov-
erage and intermediate failure rates for failure effects (i.e.
apply composition algorithms at node level). Combination
of artifacts and quantification consists of using FMEDA
results as inputs in the fault tree and enables the evaluation
of quantitative metrics according to ISO26262. This step
results in a preliminary assessment of the item’s expected
safety. An update of the architecture may be vital if the
evaluated metrics or design quality attributes did not match
the target. If these have matched, the cycle is repeated with
introduction of next level of detail (figure 2).
At the initial stage, only basic architectural assumptions
are typically present: classes of components, structure of
the system. Based on this information it is possible to de-
fine the basic structure of the system, identify functional
safety requirements and to validate plausibility of the struc-
ture. At further stages, technical safety requirements arise
as component descriptions are specified. This can be seen as
a “stacking model” of evolution: at each next level the vol-
ume of information increases, more specific component and
mechanism models are applied in the architecture blueprint,
so the design space is reduced. This approach enables the
development of multiple product lines. Updating a func-
tion set that is supported by the EEA results in new re-
quirements. If an architecture has been developed through
a series of blueprints, the approach allows to perform the
evaluation of blueprints in reversed sequence starting with
the most detailed one. This approach results in a fast selec-
tion of a valid baseline which has sufficient design space to
satisfy the updated requirements.
To limit the scope, it is useful to split the design into smaller
parts, providing certain budgets to each part. This approach
is productive from the safety point of view, as conservative
estimations hold even after the full design is evaluated. From
the cost side it is more risky, as cost reduction is not efficient
without re-estimation of the overall budget. A reasonable
balance needs to be found, for example, by reassigning the
budget based on slack of the parts.
The set of hazardous events that lead to failure effects in
hardware is not stable with time. For example, integrated
circuits become smaller and more sensitive to single event

upsets (SEU), electromagnetic interference (EMI) and other
environmental disturbances. Changes in the architecture of-
ten lead to re-estimation of the failure modes and effects.
Detection mechanisms are to be adjusted to these changes as
a result. Both the set of mechanisms and their parametriza-
tion over components might change over time. Therefore, we
propose a repository-based approach to store informa-
tion on both components and detection mechanisms. This
allows us to systematically collect a component hierarchy
(from basic components down to concrete devices) and corre-
sponding detection mechanisms in a consistent manner and
enables reuse of data that has once been entered into the sys-
tem. We propose to use two repositories: one for component
models and one for models of safety mechanisms. Compat-
ibility of a safety mechanism and a component (application
pattern of the safety mechanism) is unambiguously defined
through a composition of component class CC and covered
failure modes {FMi}.
Methods for evaluation of safety-relevant and other design
quality attributes are encapsulated into safety mechanism
models. This enables building modeling tools for evaluation
of safety metrics on system level and resource utilization on
node level. Definition of a consistent set of metrics is an im-
portant part of automation of the process implementation.
The use of model-based approach also makes automated in-
stantiation of the mechanisms possible through generation
of code from the final model of EEA.

4. STRUCTURED DESCRIPTION
OF SAFETY MECHANISMS

As mentioned above, an adequate approach to modeling
safety mechanisms and components allows partial automa-
tion of analysis activities while integrated in a straightfor-
ward process. In this section we present a suitable meta-
model for representing the essential part of design artifacts.
At the top level, EEA is represented by a set of comput-
ing nodes, where functional networks responsible for execu-
tion of each item, and network or bus connections between
those. Network-related components can be treated as a sep-
arate node [20], and are not in focus of our attention. It
is possible to describe the top-down propagation structure

4

of such a system using existing generic analysis frameworks.
In this paper we pick component fault trees, but other top-
down safety-oriented frameworks are plausible. In their ba-
sic version, component fault trees (CFT) are layered fault
propagation graphs just like normal fault trees without the
requirement for the graph to be a tree. We use these to
describe top-level undesired events, which is the violation of
safety goals, break these hierarchically down to node level
and further to failure effects of certain components in cer-
tain node. Mathematically, each CFT represents a logical
function from its input ports and internal events to its out-
put ports [16]. We use this modeling approach without any
significant changes.
To analyze the node-level fault behaviors and achieve flexi-
bility in modeling safety mechanisms, the following require-
ments are to be considered:

1. Models of safety mechanisms have to be kept separate
from component models, as a single safety mechanism
can cover numerous failure modes of different compo-
nents causing the same failure effect on the node level.

2. Flexible description of safety mechanisms should al-
low specialization with regard to particular attributes
(such as specific algorithm, signature or array size) at
later design cycles.

3. Semantic correctness (applicability of specific mecha-
nism to certain component) has to be resolved through
component class hierarchy.

4. Models need to provide sufficient information
for bottom-up quantitative analysis up to node-level
failure effects set, which acts as an interface layer to
top-down analysis.

5. Architecture evolution must be enabled by hierarchic
approach to component modeling.

To satisfy these requirements, the metamodel shown on fig-
ure 3 is proposed. The essential part of the metamodel is
compact and can potentially be integrated with any system
modeling framework (more details follow in Section 7). We
explain the relations between entities in detail below.
A node N in the EEA is modeled by a list of components
and a list of safety mechanism instances:{{Cj}, {SMk}}.
This allows analysis of all the component-failure effects on
node level. A Component Ci is identified as a source of a
set of FailureEffects {FECj ,k} that can lead to violation
of safety goal on the top level. These failure effects are
included into Component’s faultHypothesis. A Failure-

Effect FE can be caused by a number of different Fail-

ureModes: {FMi}: FaultHypothesis associates them with
fraction KFMi,Cj as percentage of failure rate for an effect
caused by specific failure mode.34

3For electronic and mechanical components, distribution of
failure modes can be found in datasheets or special literature
(e.g. [4], [21])
4Failure modes decomposition to the lowest level (trace-
able to physical failure mechanisms) is not required. Ex-
tra detail could lead to increasing design space, and conser-
vative estimations do not change significantly. The tradi-
tional classification is often enough: value(“wrong”), tim-
ing(“early”/”late”), “omission”/”commission”. It might be
even reasonable to assign a single “arbitrary” failure effect to
a single “arbitrary” failure mode if detailed failure behavior
is not defined.

Hierarchy of components is supported by inheritance from
Component type. A basic component (for example, variable
memory) has only limited notion of failure modes and ef-
fects that it can cause on the node level. After we con-
tinuously refine the design, the specialized component has
a refined (concretized) faultHypothesis and some implicit
safety mechanisms that are embedded in the specific chip.
A SafetyMechanism is modeled as possessing one or more
detection capabilities. An object of class DetectionCapa-

bility characterizes mechanism’s coverage DC of specific
failure modes (through the use of getCoverage() method)
of specific component classes CC (association is managed
through hierarchy of ComponentClass enumeration values).
In simple cases capabilities can be represented in a tabu-
lar form: {{CCi, FMi, DCi}}. When a safety mechanism
SM is instantiated in an EEA model, it is applied to one
or more specific components by adding mechanismsApplied

reference list. Some components have also predefined mech-
anisms that are implicit (e.g., embedded error detection and
correction logic), these are modeled by implicitMechanisms

reference list. Additionally, a set of functions to evaluate re-
source utilization is encapsulated into a safety mechanism
getResUtilMetric(N,C), which can be used to compare de-
sign decisions. ComponentClass value hierarchy and ResU-

tilMetric are arbitrary: the only requirement is the possi-
bility to compare two typically values of a metric (it is not
typically a scalar value).
Inheritance of safety mechanisms also supports different lev-
els of detail description at different EEA evolution stages:
the same mechanism can pass stages from basic description
(e.g., a “march”memory test), which can only derive certain
(theoretic) limits on coverage of component failure modes, to
a highly specific implementation (e.g. MATS++, a “march”
test with high coverage), which is fully parametrized and can
evaluate exact statistical coverage of certain failure modes.
Another typical situation is that some mechanisms are ini-
tially not introduced in the system, and then after selection
of specific component it appear implicitly. An example is
an SRAM chip with built-in EDC logic. An alternative to
inheritance-based modeling might be the use of feature mo-
dels [3] to model component and safety mechanism variety,
e.g. representing safety mechanisms with a multiple-level
“or”-tree, every next level of which increases the detail.
Our method also allows accounting on design quality at-
tributes, such as performance and memory footprint. To
achieve this, each safety mechanism has an associated func-
tion that provides representative metric. This metric can be
a single value or a vector (if multi-criteria optimization is
performed). Implementation of EEA evolution process with
these modeling capabilities requires adequate implementa-
tion with tools and integration with other quality attribute-
specific development processes.

5. QUANTITATIVE ANALYSIS
We describe in this section the approach to quantitative

safety analysis that can be automated and makes use of the
models defined in the previous section. The state-of-the-
art requirements to EEA safety are defined by ISO 26262-5
[14, part 5]. To simplify the diagnostic coverage assessment
process, all the random hardware faults in ISO 26262 are
classified into single point, multiple point, safe faults, and a
set of architectural metrics is defined based on these classes.
Most important categories are single-point faults, residual

5

ASIL Single point Latent faults Probability of
faults metric, metric, violation of

safety goal
SPFM LFM PV SG

B ≥ 90% ≥ 60% < 10−7h−1

C ≥ 97% ≥ 80% < 10−7h−1

D ≥ 99% ≥ 90% < 10−8h−1

Table 1: ASIL-specific target values for architectural and
probabilistic metrics [14, part 5]

faults (not covered by any mechanism) and latent multi-
ple point faults.5 This classification is used throughout the
standard and is used to compose a set of metrics, which char-
acterize the achieved safety level. Both single point faults
metric (SPFM) and latent faults metric (LFM) character-
ize the EEA coverage of dangerous (related to safety goals)
events:

SPFM = 1− (

∑
(λSPF + λRF)∑

λ
(1)

LFM = 1−
∑

λMPF latent∑
(λ− λSPF − λRF)

(2)

λSPF , λRF and λMPFLatent represent the failure rates of
corresponding non-intersecting fault classes:

λ = λSPF + (λdetected + λRF)

+ (λMPF detected + λMPF perceived + λMPF latent) (3)

The higher the value of each of the architectural metrics,
the more robust is the design. Target values for each metric
are summarized in table 1.
Another set of requirements are probabilistic metrics of hard-
ware. Each ASIL level is assigned a quantitative target value
enforced by ISO 26262. It can be either based on exist-
ing similar systems (derived either by analysis or from field
data), or derived from standard recommendations (table 1).
All faults in the system are assigned failure rate classes de-
pending on how associated failure rate compares with the
target for specified ASIL level:

λclass i <
PV SGmax

103−i

Based on failure rate classes, some ASIL-specific constraints
are applied (for example, residual and single point faults are
acceptable in an ASIL D system only if ranked as class 1).
We use the modeling schema proposed in the previous sec-
tion, to predict quantitative safety metrics required by ISO
26262 and to analyze a set of safety mechanisms for suf-
ficiency when implementing specific item. We suggest the
following workflow:

• Based on the safety goal and its classification, the tar-
get values for the following quantitative requirements

5Scope of multiple point fault analysis is limited to order
of two unless higher-order faults are shown relevant by the
safety concept.

can be set6:

PV SG < PV SGmax

SPFM > SPFMmin (4)

LFM > LFMmin

• Top-down analysis Based on preliminary hazard
analysis, we can build a fault tree that lets us trace
back the failure propagation to node-level failure ef-
fects. We can build such a tree without specific knowl-
edge of the hardware used on exact node, just by spec-
ifying generic components (and, of course, generic fail-
ure effects). Evolution of the architecture will lead to
a finer definition of the fault tree. Such a fault tree
allows evaluation of probability of violation of safety
goal based on node-level failure rates associated with
failure effects which are leaf nodes of the fault tree. So,
to perform full PV SG calculation, we need the results
of bottom-up analysis.

• Bottom-up analysis On each node we analyze the
set of components for dangerous failure rates. Based
on fault hypothesis of the component C and the knowl-
edge of dangerous failure effects FE, coverage of the
safety mechanism SM is evaluated (DCSM,FMk,C),
and dangerous failure rates are calculated from the
“fraction”KFMk,Cj (as the sum of all dedicated failure
mode specific ones):

DCSM,FE,C = KFM1,C ×DCSM,FM1,C + ...+

KFMn ×DCSM,FMn,C

Given that safety mechanisms are instantiated inde-
pendently, we calculate residual failure rate:

λRF,FE,C = λFE,C × (1−
∑

DCSM,FEk,C)

Iterating over all components, we calculate SPFM va-
lue (eq.1).

Calculating with the same method safety mechanism
coverage over non-dangerous failure modes, we eval-
uate λMPF detected – “detected” multiple point failure
rate. Assuming no multiple point failures are per-
ceived, the conservative evaluation of eq. 2 looks like
this:

LFM = 1−
∑

(λ− λSPF − λRF − λMPF latent)∑
(λ− λSPF − λRF)

• Completing the evaluation Adding summary resid-
ual failure rates (λSPF + λRF + λMPF LATENT) into
the top-level fault tree, we quantify conservatively the
probability of the top-level event, which is in our case
violation of the safety goal.

Evaluation of resource utilization metrics is dependent on
the metric selected. In fact, selection of good metrics and
(possibly) establishment of a link between those and exter-
nal dedicated analysis tools (e.g. timing analysis) enables
significant increase of architect’s outlook.

6Here we use for simplicity reasons a quantification model
without accounting on failure rate classes. Specific con-
straints are defined precisely in [14, part 5-9.9.4.]

6

(a) System structure (b) Fault tree, failure effects and failure modes

Figure 4: Application: steer-by-wire system

6. APPLICATION
We have chosen a steer-by-wire system (figure 4a) as a

motivating example. There are multiple reasons for that:
a) the steer-by-wire system features a number of multi-level
control loops, which makes it hard to analyze fully using tra-
ditional techniques like FTA; b) it includes the driver input
controls and steering axis-side sensors and actuator, which
means that it is surely deployed on at least three differ-
ent ECUs. The steer-by-wire system functionality and ini-
tial architecture blueprint are inspired by [20] and [7]: the
steering-related functions are allocated at the nodes of an
ICT with centralized concept (figure 4a). To fit in this paper,
we limit our analysis by one item and one class of compo-
nents, namely volatile memory (RAM). Typical mechanisms
applied to RAM are common for other component types.
These include different levels of replication, monitoring with
redundant signatures, functional tests and application-speci-
fic plausibility checks.
Architecture draft. To further simplify the analysis, we
analyze the parts of steer-by-wire system on the “Central
Platform Computer” (CPC) node as groups of functions
(differently coloured in fig. 4a). “Steering Control” func-
tion group controls steering regulator by providing steering
command δH∗ to it, “Driver Feedback”receives data and pro-
vides tactile feedback to the steering wheel (DI node). Both
classes of functions use data from external systems, reading
sensor and steering regulator state values (SCU node). De-
veloping the ICT platform, we want to extract requirements
to CPC components and establish an EEA design process,
which keeps system safety in specific limits required by the
standard.
Identification of safety requirements. This function
has no safe state: safety is maintained through maintaining

“operational” mode of this function. The safety goal is “no
uncontrolled steering should occur”, fault tolerant timespan
requirement: Δ Tmax = 50ms. For all usage scenarios ex-
cept parking, we classify probability of exposure factor as
E4, controllability factor as C3 and severity factor as S3 (all
maximal values possible). The resulting ASIL level is D.
ASIL D requirements according to ISO 26262 (metric values
and probability of safety goal violation) are:

SPFM > 99%; LFM > 90%;PV SG < 10−8h−1

Failure rate assumptions. We use conservative estima-
tions for a typical DRAM chip: λhard = 500 FIT , λsoft =
100000 FIT .
Top-down analysis. We identify the nodes and failure
effects that can cause violation of a safety goal. For CPC:
node-level failure effects: invalid command (bad command),
late (or missing) command (bad timing). A fragment of the
corresponding fault tree is given in figure 4b. Next, two
RAM failure effects are traced up to top-level failure effects
(data faults may cause incorrect branches and thus also lead
to time-domain failure effects):

bad sequence control word→{bad timing, bad command}

bad data word → {bad timing, bad command}
These failure effects map to the following RAM failure modes
(table 2): single-bit (SB) error, odd-bit (OB) error, even-bit
(EB) error; each of these failure modes are further decom-
posed into permanent (P) and transient (T).
At the initial level of detail, selection of safety mechanisms
is driven by the requirement to achieve maximal possible
coverage of all the identified failure modes. We form our
repository of safety mechanisms from our knowledge in
the problem domain and information from [14, part 5]. The

7

Mechanism Correction Maximum total SB P, SB T, OB P, OB T, EB P, EB T,
possible coverage, % % % % % % %

Monitoring with parity No 60 100 100 100 100 0 0
Monitoring with EDC Partial 99 100 100 0-50 0-50 20-60 20-60
Monitoring with signature No 99 100 100 50-100 50-100 40-90 40-90
Block replication Yes 99 99 100 99 100 99 100
RAM test No 99 100 0 20-98 0 20-98 0

Table 2: Maximal coverage of safety mechanism classes [14, Part 5, Annex D]

set of safety mechanisms is represented in table 2, annotated
by coverage limits for certain failure modes. We complete
the data from the standard with our knowledge (e.g. any
RAM test is capable of detecting only permanent faults, so
its coverage limits are aligned proportionally between failure
modes). At the first cycle we use the upper and lower range
limits for coverage for plausibility check: if it is generally
possible to reach required level of safety.
Architectural decisions driven by ISO requirements.
Our strategy is to select a set of mechanisms that provides
high coverage over all failure modes. As our goal is fail-
operational behavior, another important quality of safety
mechanisms is the ability to correct detected errors. We can
see that RAM tests can reach high coverage at all “perma-
nent”failure modes, which are uncorrectable by their nature.
Transient faults have to be detected and either corrected or
result in reactions, which allow delivery of steering command
within fault-tolerant timespan (e.g. repeated calculation if
the input data has not been corrupted). Simple analysis
shows that block replication is the only option providing
both correction capability and highest coverage 7.
We select a combination of two mechanisms for the CPC
node RAM: a functional test, a detection mechanism with
high coverage (signature monitoring) and replication. In this
case SPFM value is very close to 100% as more than 99%
of the single point faults are covered by replication mecha-
nism, and residual faults may only occur as a result of imple-
mentation of replication mechanism (e.g. software code in
EEPROM, CPU errors, etc.). Latent faults are covered to a
great extent by the signature monitoring, so an LMF value
of ≥ 97% can be claimed. PV SG metric can only be eval-
uated in combination with other components. If we assign
certain budget of failure rate to memory (e.g. 10−9h−1 out
of 10−8h−1), and assume that PV SG ≈ λperm residual then
PV SG ≈= λhard × (1−DCtest)× (1−DCreplicationperm) =

500× 0.0099× 0.01× 10−9 = 0.495× 10−9. So, if a correct
instantiation of safety mechanisms is possible, ISO 26262
quantitative requirements will be satisfied.
Evolution of component models occurs by increasing
detail level of the component. In our case, at first stage
SRAM or DRAM is selected based on cost and size require-
ments, fault hypothesis and comparison of achievable metric
values. Further selection includes different component fea-
tures that lead to update of fault hypothesis or inclusion of
additional safety mechanisms. Two examples are provided
below:

• Update of the fault hypothesis. Some RAM chips
implement scrambling techniques to achieve chip archi-

7Similar observations for other node components (especially,
for CPU) might lead to an update of architecture blueprint
(duplicate the CPC node) and resulting reformulation of re-
quirements to the CPC node (fail-silent behavior).

tecture and reliability optimization. For example, a
distributed folding scheme used in a logically 2K*32
memory chip allows using a 256*256 memory cell ar-
ray, so the bitlines in the chip are kept short. A side-
effect is hardware bit interleaving, so in the memory
chip each two logically adjacent bits of a single 32-bit
word are physically separated by 7 bits of other words.
This causes changes in the fault hypothesis of the RAM
chip, stating that odd-bit and even-bit faults are less
likely in favor of single-bit faults.

• Implicit safety mechanisms. Some RAM chips im-
plement an EDC circuit which implements (typically)
parity-modified Hamming code with Hamming distan-
ce d = 4. This allows to detect any two-bit errors and
correct single-bit errors. Using such a RAM compo-
nent requires that we update the set of implicit mech-
anisms associated with it. This also introduces new
failure modes: an error in the ECC circuit can deliver
false positive correction (data corruption happens)
and false negative correction (correction of corrup-
ted word does not happen). We include these failure
modes into the fault hypothesis, and will be in the
next iteration looking for safety mechanisms which can
cover these.

Now let us consider evolution of safety mechanism mo-
dels with “Monitoring with signature”mechanism class. At
the next design stage we need to select from a number of
mechanism classes with higher implementation detail: “Mon-
itoring with CRC”, “Monitoring with modified checksum”.
CRC-based mechanism requires higher computational ef-
fort and (optionally) an array of constants for computation.
Checksum-based mechanism suffers from lower detection ca-
pabilities, and plausibility check is required at this level to
choose the right evolution direction. Encapsulated models
for evaluation of both coverage, cycle count and ROM foot-
print provide the architect with data which drives CRC se-
lection. The next level decomposition of “Monitoring with
CRC” leads to several options including CRC polynomial
size (8, 16, 32) and decomposes further to specific polyno-
mials. Evaluation models, based on available evidence (e.g.
[19]) are applied to select the right polynomial size. As a
final decision, specific implementation algorithm8,block size
and monitoring schedule are selected.

7. RELATED WORK
The rapid growth of the number and importance of E/E

systems resulted in tailoring of IEC 61508 [12] standard for
automotive domain and development of ISO 26262 safety

8There are at least three generic implementations that pro-
vide different balance between performance and ROM foot-
print [19].

8

standard [14]. It completes the existing homologation reg-
ulations - (e.g. FMVSS9 or ECE norms10) by introducing
additional constraints on the way how the components of
E/E systems are developed or reused, integrated and veri-
fied.
In many cases ISO 26262 is seen only as a collection of
process practices, which are important for developing a de-
pendable product in limited time [17]. This leads to full
or partial avoidance of quantitative measures. In [15] the
authors present a methodology with the goal of integration
of architecture and failure net modeling, allocation of sa-
fety mechanisms to architectural elements, and traceability
to requirements and test coverage. The discussion, how-
ever, concentrates around systematic requirements tracking
(DOORS), reflection of requirements to system architecture
(SysML) and tracing them down to analysis tools. The au-
thors of another engineering support method [11] take an
artifact-centric point of view and concentrate on the mod-
eling approach of all aspects of E/E architectures, which is
implemented in an emerging “PREEvision” toolset. Selec-
tion of right safety mechanisms is, however, not supported
sufficiently in the mentioned tools.
There are a number of developing model-based dependabil-
ity analysis techniques that are aiming at specification and
automated analysis of EEA dependability. FTOS [6] is a
tool for synthesis of fault-tolerant real-time systems. It pro-
vides a system engineering approach which allows (under
an assumption of model correctness) generation of source
code for real-time systems. FTOS allows modeling of failure
modes of components and their probabilistic behavior, but
does not provide quantitative evaluation of achieved system
safety.
An approach to selection of safety mechanisms has been pro-
posed in [22]. It is similar to our approach in that a “library
of diagnostic techniques” is used to deliver safety mecha-
nisms for IEC 61508 compliance. The evaluation of alterna-
tives during selection stage in performed inside the library
and is not specified in detail that allows comparison with
our approach.
Hierarchically Performed Hazard Origin and Propagation
Studies (HiP-HOPS, [18]) is a top-down methodology to
perform automated safety analysis of component-level hi-
erarchical models using information from interface-focused
FMEA. Relation to top-level safety goals is maintained
through manually performed functional failure analysis. Op-
timization of dependability is addressed by HiP-HOPS [1],
but the evolutionary concept is missing: a separate model is
required for early design stages. Often detailed fault prop-
agation logic is not available for components of automotive
systems, which renders the approach less useful than in mil-
itary and aerospace domains. Other related approaches to
failure logic analysis build on component fault trees (CFT,
[16]), which wrap the failure behavior into graph-based mod-
ularized fault trees, and on Fault Propagation and Transfor-
mation Calculus (FPTC, [23]), where a clear notation is used
to describe the local failure logic of the components. These
methods are not intended to provide full engineering support
and can be used in combination with our design process.

9Federal Motor Vehicle Safety Standards is a series of regu-
lations issued by National Highway Traffic Safety Adminis-
tration

10Regulations issued by United Nations Economic Commis-
sion for Europe

In the modeling area most relevant standards are MARTE11

– a UML profile for modeling real-time systems, and EAST-
ADL12 – a domain-specific language for development of auto-
motive electronic systems. MARTE as a real-time profile
concentrates on precise timing behavior modeling. Due to its
generic nature MARTE supports modeling of other quality
attributes including failure behavior. EAST-ADL provides
multiple levels of vehicle description, where “Design Level”
models are in many points similar or intersecting with our
concepts (e.g., hardware components are put in a hierarchy
using prototypes). We see both MARTE and EAST-ADL
as perspective metamodels compatible with our approach.
Our method is based on an application-specific safety pre-
diction framework. Similar to generic framework presented
in [9], it includes all the elements required (encapsulated
evaluation models, operational / usage profiles, composition
algorithm and evaluation algorithm) but is adapted to auto-
motive system domain and its specifics. The key difference
is the optimization-centric selection and configuration of sa-
fety mechanisms.
In summary, system synthesis oriented tools currently lack
the safety constraints and decision support for early model-
ing steps. Our design methodology can provide significant
benefits for the evolution-time analysis and optimization of
E/E architectures.

8. CONCLUSION AND OUTLOOK
In this paper we presented a method to evaluate design

choices early in development process and add architectural
detail until a specific safe and cost-effective E/E architecture
is derived. We encapsulate an important part of domain
knowledge (coverage of safety mechanisms and associated
resource tradeoffs) in hierarchical models, which results in
higher determinism of design decisions.
As a side effect, evidence and arguments on safety-essential
attributes, such as coverage and fault models, are continu-
ously accumulated within design infrastructure, which makes
reuse of this data, and even of the whole architecture blue-
print, possible. To provide maximum benefit, the presented
approach has to be applied in a model-based development
process. In such a setting requirement-driven iterative pro-
cess provides high traceability from input requirements to
implementation and quantitative argumentation necessary
for ISO 26262 certification. Our preliminary evaluation with
a practical application shows that iterative evolution allows
concentration at sufficiently high modeling level (thus, re-
ducing the required level of expertise) to make design deci-
sions. Exact fault models are used (if necessary and available
at all) only at late design steps, when related information
is available. Set of metrics for evaluation of design qual-
ity attributes (particularly, resource-related constraints) is
not covered in this paper and is subject for further defini-
tion. Development of repositories and applicability of the
approach at the larger scale (as well as issues of integration
with real processes in the industry) are very important and
will be considered in the nearest future.
Further refinement and formalization of our methodology
heads in multiple directions. We are working on tooling

11Modeling and Analysis of Real-Time and Embedded Sys-
tems, http://omgmarte.org

12Electronics Architecture and Software Technology – Archi-
tecture Description Language, http://www.east-adl.info

9

support that can handle SysML models as input. SysML
models are already used to represent automotive architec-
tures: they have been proven suitable for continuous data
streams [15], and are often used in a tight combination with
MARTE profile, which allows coordination of safety mecha-
nism selection with real-time behavioral models of the E/E
architecture. Another perspective extension is related to
AADL13. AADL Error Annex uses a state-based formalism
to define fault models. Taking into account existence of
analysis methods for AADL fault models, and the fact that
AADL is a widely used cross-industrial standard, integra-
tion of our approach with AADL models has a good chance
to result in a solid standard-supported toolchain.
Development and integration of engineering support tools
remains an important prerequisite of a qualitative change in
the E/E architectures. Our methodology has the potential
to speed up preliminary safety analyses for automotive sys-
tems, assisting safety architect in generating design decisions
that allow rapid rapid adaptation to ISO 26262 development
lifecycle.

9. REFERENCES
[1] M. Adachi, Y. Papadopoulos, S. Sharvia, D. Parker,

and T. Tohdo. An approach to optimization of fault
tolerant architectures using HiP-HOPS. Software –
Practice and Experience, 41(11):1303–1327, 2011.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. E.
Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans.
Dependable Sec. Comput., 1(1):11–33, 2004.

[3] D. Batory. Feature models, grammars, and
propositional formulas. In H. Obbink and K. Pohl,
editors, Software Product Lines, volume 3714 of
Lecture Notes in Computer Science, pages 7–20.
Springer, 2005.

[4] A. Birolini. Reliability Engineering : Theory and
Practice. Springer, 2010.

[5] C. Buckl, A. Camek, G. Kainz, C. Simon, L. Mercep,
H. Staehle, and A. Knoll. The software car: Building
ICT architectures for future electric vehicles. In
Proceedings of the first IEEE International Electric
Vehicle Conference (IEVC), 2012.

[6] C. Buckl, D. Sojer, and A. Knoll. FTOS: Model-driven
development of fault-tolerant automation systems. In
ETFA, pages 1–8, 2010.

[7] US 6 219 604. Steer-by-wire steering system for
motorized vehicles E. Dilger, P. Ahner et al., 04 2001.

[8] T. Dittel and H.-J. Aryus. How to “survive” a safety
case according to ISO 26262. In E. Schoitsch, editor,
SAFECOMP 2010, LNCS 6351, pages 97–111, 2010.

[9] L. Grunske. Early quality prediction of
component-based systems – a generic framework.
Journal of Systems and Software, 80(5):678 – 686,
2007.

[10] H. Heinecke, W. Damm, B. Josko, A. Metzner,
H. Kopetz, A. L. Sangiovanni-Vincentelli, and M. D.
Natale. Software components for reliable automotive
systems. In DATE, pages 549–554, 2008.

13Architecture Analysis & Design Language (SAE AS5506A),
www.aadl.info

[11] M. Hillenbrand, M. Heinz, N. Adler, K. D.
Müller-Glaser, J. Matheis, and C. Reichmann.
ISO/DIS 26262 in the context of electric and
electronic architecture modeling. In H. Giese, editor,
ISARCS 2010, LNCS 6150, pages 179–192, 2010.

[12] IEC 61508. Functional safety of
electrical/electronic/programmable electronic
safety-related systems. International Electrotechnical
Commission (IEC), TC 65/SC 65A, 2010.

[13] R. Isermann, R. Schwarz, and S. Stolzl. Fault-tolerant
drive-by-wire systems. IEEE Control Systems,
22(5):64–81, 2002.

[14] ISO 26262:2011. Road vehicles - Functional safety.
International Organization for Standardization (ISO),
TC 22/SC 3, 2010.

[15] B. Kaiser, V. Klaas, S. Schulz, C. Herbst, and
P. Lascych. Integrating system modelling with safety
activities. In E. Schoitsch, editor, International
Conference on Computer Safety, Reliability and
Security, pages 452–465, 2010.

[16] B. Kaiser, P. Liggesmeyer, and O. Mäckel. A new
component concept for fault trees. In Proceedings of
the 8th Australian workshop on Safety critical systems
and software - Volume 33, SCS ’03, pages 37–46,
Darlinghurst, Australia, 2003.

[17] P. Löw, R. Pabst, and E. Petry. Normiert auf die
strasse. iX kompakt, Jan(1):136–138, 2011.

[18] Y. Papadopoulos, J. McDermid, R. Sasse, and
G. Heiner. Analysis and synthesis of the behaviour of
complex programmable electronic systems in
conditions of failure. Reliability Engineering & System
Safety, 71(3):229–247, 2001.

[19] J. Ray and P. Koopman. Efficient high hamming
distance crcs for embedded networks. In DSN, pages
3–12, 2006.

[20] R. Reichel and M. Armbruster. X-by-Wire platform -
concept and design. Automatisierungstechnik,
59(9):583–596, 2011.

[21] RIAC FMD97. Failure mode / mechanism
distribution. The Reliability Information Analysis
Center (RIAC), 1997.

[22] D. Sojer, D. Knoll, and C. Buckl. Synthesis of
diagnostic techniques based on an IEC 61508-aware
metamodel. In SIES, pages 59–62, 2011.

[23] M. Wallace. Modular architectural representation and
analysis of fault propagation and transformation.
Electronic Notes on Theoretical Computer Science,
141(3):53–71, 2005.

10

