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Abstract

In  this  thesis,  an autonomous driving model  car  is  presented,  using LiDAR 
sensor data and a 2D map to get the shortest path from a designated point to its 
destination. 

First  of all  the whole area in which the car is to drive,  is  scanned with a 
LiDAR sensor. A 2D map with all obstacles is created, based on the sensor data. 
Afterwards  the  starting  point  of  the  car  can  be  entered  on  this  map and a 
destination where it should drive to can be set. The car will find the shortest 
path  from  the  starting  point  to  its  destination,  without  crashing  into  any 
obstacles. On its way to the destination the LiDAR sensor is constantly scanning 
the local environment, so the car will also be able to detect uncharted obstacles 
and will replan the path, if needed.

The creation of the map and the route planning is done on a Laptop and the 
LiDAR  sensor data is scanned by a RaspberryPi board.  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1. Introduction

1.1. Motivation
In the year 1970 the number of people who died in traffic accidents was the 
highest  in  Germany ever.  Since  that  time the death rate  strongly decreased, 
although the  number  of  road  users  intensively  increased.  On the  one  hand 
that’s  because of  the higher penalties  for  road delicts  like a  violation of  the 
speed limit, but on the other hand, because of the constantly increasing safety of 
the  automobiles.[1]  Nowadays a  car  is  a  rolling computer,  full  of  assistance 
systems to aid the driver and increase safety. For example a Lane Keeping Assist 
to  hold the car’s  lane or  an Active  Distance  Control  to  follow a car  which is 
driving in front, with an optimal safety distance, and also an Emergency Brake 
Assist to rapidly stop the car in an emergency situation. A lot of these systems 
are only half  automated systems,  so they still  need the driver to implement 
them and to do their jobs. 

The  next  step  is  to  develop  a  fully  automated  system,  driving  a  car 
autonomously and replace the driver completely. This would of course greatly 
decrease the accident rate on the basis of human driving errors. The road safety 
is the most important criteria of autonomous driving, but there are also a few 
more.  The traffic flow will  also be optimized and time-efficient  driving will 
become  standard.  Less  traffic  jams  and  thereby  the  reduction  of  fuel 
consumption and CO2 emissions are positive consequences in times of global 
warming problems. It is also an aid for disabled and old people, who aren’t able 
to drive by themselves, but have to be mobile.[2]

1.2. Related Work
ROS “A flexible  framework for  writing robot  software.  It  is  a  collection of 
tools,  libraries,  and  conventions  that  aim  to  simplify  the  task  of  creating 
complex  and  robust  robot  behavior  across  a  wide  variety  of  robotic 
platforms.“[3] This operating system is the basis of the autonomous driving car. 
It runs on the Laptop as a full desktop version and on the raspberry pi as an 
embedded version.

urg_node The urg_node is the ROS driver library for the Hokuyo LiDAR sensor 
used on the car to scan the environment. This enables using the LiDAR as an 
ROS node together with the other tools needed for the project.[4]

hector_slam This is a package including the hector_mapping node to create a 2D 
map based on the “high update rate of modern LIDAR systems“ developed for 
ROS.[5]  It is used to create the 2D map of the environment in which the car 
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should drive and which is used to plan the shortest route from the designated 
point to the destination of the autonomous car.

hector_slam_example It is a bunch of launch files and configuration files to use 
the LiDAR sensor to create a SLAM map. Using these files makes it more easier 
and faster to create the map.[6] 

navigation_stack The navigation stack  is  a  library that  includes all  important 
functions to navigate a ROS running robot through a 2D map with the help of 
sensor data. “It needs to be configured for the shape and dynamics of a robot to 
perform at  a  high  level“.  The  library  contains  the  global_planner  to  find the 
shortest route from a starting point to a destination, the move_base package is 
designated  to  give  certain  velocity  commands  for  the  robot’s  motor 
management based on the route and amcl localizes the car on the 2D map using 
the LiDAR sensor data.[7] 

teb_local_planner “The teb_local_planner  package implements a plugin to the 
base_local_planner of the 2D navigation stack.“[8] It enables finding a local route 
based  on  the  LiDAR  sensor  data  to  avoid  obstacles  and  create  velocity 
commands  optimized  for  a  car-like  robot  with  Ackermann  steering.[9]  The 
teb_local_planner  is  responsible  for  replanning  the  original  route  of  the  car, 
should  the  LiDAR  sensor  detect  some  uncharted  obstacles  while  the  car  is 
moving. 

1.3. Problem Statement
The  aim  of  this  work  is  to  demonstrate  the  development  an  autonomous 
driving car based on a SLAM map with the help of a LiDAR sensor. However, 
the goal contains some mechanical and software problems. 

On the one hand all components have to be well placed in the car and they 
need to be connected correctly. All cables should run through the car without 
hanging on the ground or blocking the wheels and all the contacts need to be 
well insulated.

On  the  other  hand  the  car  requires  some  software  to  control  the  whole 
movement correctly. The first requirement is a software to create the 2D SLAM 
map based on the LiDAR sensor data. After that a software is needed that is 
able to find the shortest  route on the global  map and one to spontaneously 
avoid local obstacles. Furthermore the software has to connect a management 
unit in the car with a laptop via Wifi to exchange all important data. The LiDAR 
sensor has to be on top of the car, but the route finding algorithm and the map 
of the environment runs on a laptop because of the required CPU performance.
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1.4. Structure of this thesis
The next chapter, chapter 2, includes some theoretical background information 
about the basic SLAM process and the hardware what is required to create a 
SLAM map. 

In chapter 3 the implementation of the whole software and hardware used in 
this thesis is  presented. It  includes the different methods and its theory and 
functionality is illustrated.
In the last chapter,  chapter 4,  the results of the implemented method in this 
thesis are shown and evaluated.  

�3



2. Background

2.1. About SLAM
The term SLAM is as stated an acronym for Simultaneous Localization And 
Mapping.  It  was  primarily  developed  by  Hugh Durrant-Whyte  and  John  J. 
Leonard[10]  based on earlier work by Smith, Self and Cheeseman[11]. Durrant-
Whyte and Leonard initially termed it SMAL but it was later changed to give a 
better impact. SLAM is concerned with the problem of building a map of an 
unknown area by a mobile robot while at the same time navigating through the 
environment using the map. So the robot starts anywhere in the environment 
and needs to  know anytime where it  currently  is  relative  to  the recognized 
obstacle.

SLAM can be implemented in lots of ways, with a huge amount of hardware 
that can be used. SLAM is more than just one algorithm, it is more like a whole 
concept  to  fix  a  few  problem.  It  consists  multiple  parts  like  "Landmark 
extraction,  data  association,  state  estimation,  state  update  and  landmark 
update“[12]  Every of these small parts of the concept can be solved by a lot’s of 
ways. It depends on the usage, like what robot will be used. In which area will 
the  robot  be  driving?  Is  it  a  hall  with  only  static  objects  or  is  it  an  urban 
crowded street with lots of movement during the building of the map? Do the 
robot need a 2D or a 3D vision? Questions like this needs to be answered before 
starting to  implement  the  SLAM process.  They all  influence what  hardware 
devices and algorithms used to implement a well working SLAM concept. In 
the  case  of  this  thesis,  the  autonomous  driving  car,  only  a  2D  motion  is 
considered.  The area in which the car should drive is  exclusively an indoor  
environment with static objects.   

2.1.1. Required hardware
As important  as  the  choice  of  good algorithms  is  the  selection  of  the  right 
hardware.  To do SLAM a mobile  robot  and a  range measurement  device  is 
required. 

A robot using SLAM and 2D motion needs to be mobile and “should not 
have an error  of  more  than 2  cm per  meter  moved and 2°  per  45°  degrees 
turned“. [12] In an indoor environment it’s normally a wheel-based robot like 
the  car  used  for  this  thesis.  The  robot  also  needs  a  proper  working  motor 
management to control the car in the area correctly. 

To scan the  area  different  devices  can be  used.  In  these  days  normally  a 
LiDAR sensor or a camera is used. The reason why most of the people doing 
SLAM using the LiDAR as measurement device is, that they are very accurate 
and the data output does not need a high computing power.  A bad thing of the 
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laser sensors is, that they aren’t able to measure underwater or don’t recognize 
some surfaces like glass as an obstacle.[12] 

Figure 2.1: Different LiDAR sensors. (a) shows the LiDAR sensor used in the car 
presented in this thesis [13] (b) shows a 360 degree LiDAR sensor [14]

Another  option  is  to  use  a  camera  as  measurement  device.  It’s  also  very 
accurate, but it needs lots of computing power to handle the big input data. 
Also the vision of a camera only works with a well lighted environment, so it is 
more prone to errors or certainly does not work anymore if it is used in a dark 
room or at night. The camera is better to use for 3D map, because of its 3D 
vision. A cheap choice to use is for example the Microsoft Kinect camera. The 
best result can be obtained by the combination of both sensor data.[12]

Figure 2.2: Microsoft Kinect sensor. The camera records RGB images and includes 
a depth sensor.[15]  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2.1.2. The SLAM process
The aim of SLAM is to create a map of the area in which the robot is moving 
around. The basic SLAM process is done by a number of steps. All these steps 
can be done in different ways. The following graphic shows an example of such 
a SLAM process with use of the extended Kalman filter. The EKF is one of the 
first  probabilistic  SLAM algorithms.  It  is  often picked to  explained how the 
SLAM process  is  working,  but  in  reality  also  some other  algorithms can be 
used. 

Figure  2.3:  Overview  of  a  typical  SLAM  process.  The  Graph  shows  the  basic 
process of SLAM done with the EKF algorithm.[12]

The  first  step  is  to  scan  the  environment  of  the  initial  pose  with  the 
measurement device and in this case gather the LiDAR sensor data. This data 
contains the distance how far a so called landmark is away and also the angle 
where it is located, based on the initial position of the robot. These landmarks 
are various points like obstacles in the local  environment and are combined 
with the distances to the robot and their angles most  the input of the EKF. 
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Figure 2.4: Typical SLAM entities.[16] The picture gives a good example how the 
sensor  information  is  filled  with  an  angle  and  a  distance  to  an 
obstacle.  Robot(1)  detects  landmark(4)  at  the  initial  pose,  then  it 
moves on to robot position (3) and it still detects the landmark (4) but 
with another distance and angle. 

The EKF is an algorithm to estimate the robots position is at the moment on the 
map and update  its  odeometry if  needed.  The odeometry data  of  the  robot 
contains  the  position  of  the  robot  on  the  map.  This  data  needs  to  be  very 
accurate to build the map correctly.  The map is a large state vector stacking 
robot and landmark states, where R is the robot and M is the set of landmark 
states. The EKF algorithm models the map by a Gaussian variable using the 
mean and the covariances matrix of the state vector, denoted by x and P. The 
aim of SLAM and EKF is to keep this map up to date at all time. [16]

At the beginning the map starts without any landmarks and the initial robot 
pose is set to the origin of the map, so n = 0 and x = R.
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As soon as the robot starts moving around its odeometry will change. The robot 
motion is based on a generic time-update function. Based on the state vector x, 
the control vector u and the perturbation vector n.

During the movement and on every new position, the LiDAR collects new data 
of the environment. The significant landmarks get extracted again and they get 
associated  to the landmarks the robot previously has seen. Based on the re-
observated points  the robot  can update its  new position in the EKF.  This  is 
possible because the robot always has a relative distance and angle from its 
current  position.[12]  The  observation  is  based  on  the  generic  observation 
function  where  y  is  the  noisy  measurement,  x  is  the  full  state,  h()  is  the 
observation function and v is the measurement noise. [16]
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3. Implementation

This  chapter  is  about  the  implementation of  the  autonomous driving car.  It 
shows  what  hardware  is  used  and  what  algorithms  are  used  to  produce  a 
functional software to get the car working. 

3.1. Used Hardware

3.1.1. The car
The basic of the whole project is of course the car. It is an electric driving car,  
constructed with metal and it needs an input voltage of 12 volts. The wheelbase 
of the car is 55 centimeters, the whole length is 70 centimeters and the width is 
55  centimeters.  Its  maximum speed is  up  to  80  km/,  but  for  this  project  a 
maximum velocity of 0,55 m/s is used. It is a good speed to operate safe in an 
indoor  area,  without  damaging  any  obstacles  or  persons  in  case  of  testing 
failures.

Figure 3.1: Autonomous driving car. The picture shows in (a) the front of the car 
used in this thesis. And (b) shows it from the back.

Like you can see in the pictures the car contains a lots of sensors and other 
electronically devices. As motor management the car has a small Arduino board 
in it to feed the engine with the required values.  It is able to send a PWM signal 
in percentage to the engine as a speed value and a degree value to control the 
steering angle of the car. It is possible to do forward and backward driving. The 
input values are sent by a RaspberryPi board via serial USB. 

The RaspberryPi board is also planted in the car. It is running Ubuntu Mate 
16.04  as  operating  system  and  a  ROS  distribution  is  installed.  Its  job  is  to 
communicate via Wifi with the ROS Master, which is running on a Laptop. The 
RaspberryPi board receives the required data, like the steering angles and the 
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speed values, from the master. These data is calculated by the Laptop and the 
RaspberryPi board forwards them to the Arduino board. 

3.1.2. The laptop
The control basis of the whole project is a customary Sony Vaio laptop. It is 
running  Linux  14.04  Indigo  as  operating  system  and  a  ROS  distribution  is 
installed too. An Intel Pentium dual core processor is used to execute the route 
planning algorithm, present the map and compute the localization needed for 
the autonomous driving car. The laptop has all the required tools for the project 
installed and the ROS master is running on this machine. The data of all  so 
called topics like the scan data of the LiDAR and the velocity commands are 
published to the ROS master. The whole visualization is done by it too. You can 
set the starting point of the car and you can set a goal on the created SLAM 
map.

3.1.3. The measurement device
The  whole  measurement  is  done  by  a  single  LiDAR  sensor,  the  Hokuyo 
UTM-30LX-EW (Fig. 2.1(a)). It is placed in front of the car(Fig. 3.1(a)) and scans 
the environment with a radius of 270 degree. It has an accurate detection range 
from 0.1 to 30 meters with a scanning rate of  25 millisec/scan.  The angular 
resolution is 0.25 degree. 

Figure 3.2: Diagram of scanned area[17]. It shows how the scanning area of the 
used LiDAR looks like.

The whole data is transferred via ethernet to the destination device. The output 
datatype is an array including the distance values detected from 0 to 270 degree 
around the LiDAR. So the LiDAR publishes every 25 milliseconds an array of 
270 * 4 = 1080 double values. It is connected directly to the Laptop.[17]
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3.2. Software

3.2.1. Operating system
ROS is the operating system of the autonomous driving car and it’s the basis of 
the whole project. It is installed on the Laptop and on the RaspberryPi. The ROS 
system needs a master,  where all  devices are registered and where they can 
publish their data and receive new one from other nodes. 

In  this  case  this  master  is  running  on  the  laptop  and  both  devices  are 
connected via Wifi in an ad-hoc network to reach the master. The master can be 
started on every free port, in this case the port 44420 is used. The Laptop needs 
to publish the calculated velocity commands, so the RaspberryPi can forward 
them to the Arduino board. The LiDAR sensor publishes its scanned data. All 
algorithms and tools used in this project are based on the ROS system. 

Figure 3.3:  Basic  relation model  of  the  hardware.  This graph shows the relation 
between the different hardware used for the car. 

3.2.2. Mapping
A  SLAM  based  navigation  requires  a  SLAM  map.  It  is  the  basis  of  the 
navigation part. It has to be a detailed map, so the localization algorithm will 
work properly. The maps used in this thesis are all created by the hector_slam 
library. 

This algorithm uses the LiDAR sensor data to create a map of the whole area, 
in which the car should drive afterwards. The approach of this algorithm is to 
do the so called FastSLAM. The whole area is represented as an occupancy 2D 
grid map. Because of the high update rate of the LiDAR sensor it is possible to 
use  only  approximative  data.  The  scanned  endpoint  data  of  the  sensor  is 
converted to a point cloud using the estimated platform orientation and joint 
values.  As  scan  matching  algorithm,  only  filtering  based on  the  endpoint  z 
coordinates is enough, so „only endpoints within a threshold of the intended 
scan plane are used in the scan matching process“[18].  
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Figure 3.4:  Hector_SLAM filter method. „(a) Bilinear filtering of the occupancy 
grid map. Point Pm  is the point whose value shall be interpolated. (b) 
Occupancy grid map and spatial derivatives.“[18] (c) A small zoom 
of the whole grid map.

 The pose estimation of the robot is done by a simple iteration. First project the 
endpoint onto map based on the current pose estimation. Next, estimate map 
occupancy probability gradients at  the scan endpoint.  And last but not least 
perform a Gauss-Newton iteration to refine the pose estimation. [18]

Based on the pose estimation of the robot(5)  and the sensor data it is possible to 
build a well defined map with all obstacles contained in the area. 

3.2.3. Navigation
The first step was to create the SLAM map as basis of the navigation part of this 
thesis. Next step is the navigation itself. The navigation isn’t easy to do, because 
on the  one  hand the  car  has  to  find a  valid  global  plan from its  estimated 
starting point on the map to its destination. On the other hand the car has to 
react to its local environment. For example if an uncharted obstacle appears or 
the  car  has  to  drive  through  a  small  gap.  That’s  why  the  navigation  part 
contains two different planner. One is the so called local planner and one is the 
global planner. 

The global  route  is  calculated by the  global_planner  of  the  navigation_stack 
library in ROS. It is done by the Dijkstra algorithm. It’s an algorithm to find the 
shortest path from a node A to B in a graph. The idea is basically really intuitive. 
At the beginning take a whole graph and set one node as starting point and set 
the distance to all others to ∞.  Now the algorithm contains two queues, one 
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with all the visited nodes which is of course empty at the initialization and one 
with all other nodes expect the starting node. As long as the queue with the 
unvisited nodes isn’t empty select the one with the minimum distance, mark it 
as visited and check if a new shortest path is found. If there is one available set 
it as the new value of the shortest path. 

Figure 3.5: Pseudocode Dijkstra algorithm. This picture shows the implementation 
of the Dijkstra algorithm in pseudocode. [19]

The Dijkstra algorithm can only be used if the whole graph doesn’t contain any 
negative transitions. This is the case on the 2D grid map, created by the SLAM 
algorithm. The whole map can be seen as the graph, with every pixel as a node. 
The transitions between these pixels have always the same values, expect the 
one to obstacles. There aren’t any transitions at all. The set starting point is seen 
as  the  starting  node  and the  destination  as  the  end node.  In  this  way it  is 
possible to get shortest route for the car over the whole map. 

The next  thing,  which is  needed to  navigate  the  autonomous driving car 
correctly is the local planner to specify the local route. The global planner only 
plans the shortest route from A to B based on the recorded map, but if there will 
be any uncharted obstacles on this route the car would crash into. One more 
thing to care about is the Ackermann steering of the car, so it has a minimum 
turning radius. The car used in this thesis has something like two meters. The 
global planner doesn't care about and calculates like the robot is able to turn on 
spot and it also doesn't care about the cars’ dimension. To fix this problem the 
teb_local_planner, a ROS library for the navigation stack especially for car like 
robots with Ackermann steering,  is  used.  The teb_local_planner integrates the 
LiDAR sensor data in its algorithm to detect uncharted obstacles during the 
driving,  so  it  spontaneously  recalculates  the  local  path  if  needed.  The  local 
planner also computes the velocity commands based on its path. This planner 
needs a lots of configuration, because it requires many different information as 
input,  who all  affect  the  result  and  the  performance  of  the  calculation.  For 
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example  the  minimum  steering  angle,  the  speed  of  the  car  and  also  its 
dimension  to  know  how  far  the  route  has  to  be  away  from  obstacles.  For 
performance improvements the size of the temporary map and its resolution 
can be defined too, but the less the resolution of the map is, the less obstacles 
can be detected. A full documentation of the teb_local_planner parameters is 
available on its section in the ROS wiki.[8] The configuration values used for 
this thesis can be found in the Appendix B chapter.

Figure 3.5 Examples of some teb_local_planner arguments. This picture shows a few 
of the required parameters for the teb_local_planner

3.2.4. Localization
To succeed a well performed navigation the autonomous driving car needs to 
get localized within the map correctly. From the very beginning and the whole 
way  of  the  drive,  the  cars’  odeometry  is  calculated  based  on  the  velocity 
command  like  the  speed  and  the  steering  angle.  But  the  car  begins  on  an 
estimation point so its odeometry isn’t exact at all.  That’s why a localization 
algorithm is required to get a more precise position of the car within map. This 
maximize the perfect building of a correct route by the local planner.

To  achieve  this,  the  adaptive  Monte  Carlo  localization  (amcl)  is  taken  as 
approach. It’s an algorithm to localize a robot in a map using a particle filter 
implemented for ROS. The algorithm requires a known map created by a laser 
sensor, like it’s done with the hector_slam library and the task is to estimate the 
pose of the car within the map based on its motion and sensing. The algorithm 
starts with the initial beliefe of the robot’s pose, what’s in this case the estimated 
starting point of the car. The state of the robot needs to get estimated at every 
current  time-step  k.  This  problem  “is  an  instance  of  the  Bayesian  filtering 
problem, where we are interested in constructing the posterior density p(xk|Zk)  
of the current state conditioned on all measurements“[20] with x as state vector. 
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In the specific case of using the Monte Carlo filter the density is represented by 
a set of N random particles[20]:

For a proper localization it’s required to recursively compute the density at each 
time step. This is done in two phases, the predication phase and the update 
phase. 

In  the  prediction  phase  a  motion  model,  is  used  to  predict  the  current 
position  of  the  robot.  The  state  x  of  the  time-step  k  is  only  decent  on  the 
previous time-step k-1 with a known control input uk-1. The motion model is 
presented as a conditional density[20]:

In the Bayesian filtering the predictive density over the state vector xk is then 
calculated by integration:

The Monte Carlo localization starts with the set of particles Sk-1, computed in 
the previous time-step and apply the motion model  to  each particle  sik-1  by 
sampling from the density p(xk|sik-1 , uk-1). So for each particle sik-1 a sample s’ik 
is drawn[20]. 

In the update phase a measurement model is used to integrate information 
from  the  sensors  to  obtain  the  density  function  described  in  (6).  Each 
measurement zk is conditionally independent of earlier measurements and the 
measurement model is given in terms of a likelihood. It means that the robot 
observers zk at the given location xk[20].

The posterior density over xk is now obtained using the Bases theorem:

The Monte Carlos localization algorithm takes into account the measurement zk 
and weight each of the samples S’k created in the first phase, by the weight mik: 
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p(xk|Zk) (6)

p(xk|xk�1, uk�1) (8)

p(xk|Zk�1) =

Z
p(xk|xk�1, uk�1)p(xk�1|Zk�1)dxk�1 (9)

Sk = {sik; i = 1..N} (7)

p = (zk|xk) (10)

p = (xk|Zk) =
p(zk|xk)p(xk|Zk�1)

p(zk|Zk�1)
(11)



Then a sample sjk from {s’ik , mik} is drawn for each j = 1..N. The whole algorithm 
is computed recursively. To initialize the filter k = 0 with a random samples S0 = 
{s0i} from the prior p(x0).  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4. Results

4.1. The map
I  tested  the  map  algorithm  in  different  indoor  environments  with  different 
methods to control the LiDAR sensor. The most important thing to care about is, 
that the laser sensor always have the position, or the pose estimation and the 
map building will fail. I tried to build a map by holding the sensor in my hands 
and run around in the area, but I wiggled too much to create an accurate map.  
The problem is that the sensor is just scans one layer,  so if  its position isn’t 
straight  the matching part  does not  work.  With a  well  fixed position of  the 
LiDAR sensor  it  works  perfectly  to  create  accurate  SLAM maps of  a  whole 
indoor area. Another problem is that an obstacle like a glass door isn’t detected 
as one. The size of the map in pixels needs to be defined before starting the 
algorithm.

Figure 4.1: SLAM map of a main floor. The map shows the main floor of my home. 
The  stripes  on  the  right  side  of  the  picture  shows  perfectly  the 
problem of a glass door as obstacle.

All the obstacles are presented as black pixels and all free space, where the car is 
able to drive are the wide light grey areas. My home is just a small example of a 
SLAM map. I recorded it by fixing the LiDAR sensor and the laptop on top of a 
chair and then I moved it around. The stripes on the right of the picture show 
perfect what happened if the sensor should detect a glass door as an obstacle. It 
doesn’t get detected, because the laser beams aren’t reflected by this type of 
surface.

Next test was to record a map with the LiDAR fixed in the car. Because for 
the navigation part  afterwards the map needs to be recorded on the correct 
height, so all the obstacles can be rematched in the amcl algorithm. To build the 
map I moved the car by a hand control. 
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Figure 4.2: SLAM map of TUM rooms. These tow pictures present the slam map 
of the (a) robotic lab of the chair VI and of the (b) hall of the FMI 
building of the Technical University Munich.

The map of the lab is just one room and was only to test the attachment and the 
position  of  the  LiDAR.  The  big  map  of  the  hall  is  the  evidence,  that  the 
algorithm also works well in huge indoor areas. It shows all obstacles like the 
two famous slides and all meal benches for the students very precisely. This 
map is the basis of all the on going tests of the navigation and the localization 
part. It suits perfect as testing area, because of its huge size with lots of obstacle, 
but without any critical stuff like expensive things that can be broken in case of 
some test failures. 
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4.2. The route planning
The whole navigation is tested based on the map of the FMI hall (Fig.4.2(b)), 
because this is a huge area with lots of space. I tested the calculation of different 
global routes. I tried long routes, short ones, with lots of obstacles and much 
free space on the track.  

Figure 4.3: Global routes. Here are some global routes presented. The green lines 
are the calculated routes from the estimated starting point (arrows 
with peak to the lines) to the set goal (arrows with peak away from 
the  lines).  The  arrow peaks  also  show the  front  of  the  car  at  the 
beginning and the end.

All  the  tested  global  routes  are  valid  and  the  car  is  able  to  follow  them. 
Compared to the whole map (Fig.4.2(b)) these routes don’t contain any weird 
ways  and are  really  good ones  to  drive.  So  the  global  planner  does  a  very 
accurate job and is fully compatible to the topic of this thesis. With this accurate 
results the goal of the global route planning is achieved perfectly. 

The  more  complicated  planner  was  the  local  one.  It  needs  lots  of 
configuration to calculate accurate and usable results. I tested many different 
routes in many different constellations of charted and uncharted obstacles to 
adjust all the required parameters.  
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Figure 4.4: Local routes. The picture shows four different local routes. Picture (a) 
and (b) shows the difference between the local and the global route. 
The green line is the global route and the green line with the red 
arrows on it  is  the local  route.  In (c)  the local  route is  nearly the 
global route.  In (d) they are exactly the same. The red squares are 
detected obstacles.

All  the  tested are  all  valid  but  they are  not  the  perfect  one.  Sometimes the 
planner calculates routes with many switches of forward and backward driving 
(Fig.4.4(a)(b)) instead of just driving a longer curve. The planner also sometimes 
starts  a  recalculation of  the  path although the path before  was valid.  These 
failures happen a small amount of times, but they are still there. To fix them it 
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still needs more specific adjustment of the planner. In the end the local planner 
is working and the car reaches its goal, although it sometimes maneuvering a 
lot to surround obstacles or to go through a gap. The planner isn’t optimal to 
use it for a speed cup or in critical areas like in real road traffic, but in this thesis 
to control n autonomous driving model car it is sufficient. 

4.3. Localization within the map
The  Monte  Carlo  localization  were  tested  on  every  try  run  of  the  car 
automatically,  because the whole driving wouldn’t  work without it.  The car 
needs to know where it all the time during its drive. 

Figure 4.5:  Localization array.  The picture shows the step by step localization 
during the car’s  driving.  At the beginning the estimation cloud is 
very big,  but as soon as the car starts  driving the estimation gets 
more precise.

The amcl algorithm works good to estimate the portion of the car within the 
map. But to do so, it is recommended to record the map on the same height as 
the LiDAR is used to navigate through it. So if the LiDAR is fixed 10 cm above 
the ground on the car,  the map should also be build from this position too. 
Another important thing I recognized during the tests is, that the speed of the 
car needs to get published accurate, because the LiDAR measurement is based 
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on the motion model of the car, like it’s described in the section 3.2.4. Expect 
these two things the localization algorithm works very precisely and is a very 
good choice. The cars pose within the map is estimated in just a few time steps, 
so it is also good to use in small environments.  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5. Conclusion

In this thesis a fully autonomous driving model car is implemented with ROS 
as operating system. The whole navigation of the car is based on a recorded 
SLAM map.  The car  is  able  to navigate through an area with the help of  a 
LiDAR sensor and the map. It can successfully find a valid route through the 
map and around all charted obstacle. Additionally it is able to spontaneously 
react to uncharted obstacle during its drive and replay the route if needed.

The map is a 2D grid based SLAM map created by the hector_slam library for 
ROS. It is based on the LiDAR sensor data and an approximative position of the 
robot. 

The whole navigation part of the car is divided into two different planner. 
One  is  the  global  planner  to  calculate  the  shortest  path  from  an  estimated 
starting point to a set goal.  The calculation is based on all  charted obstacles 
within the recorded map and the Dijkstra algorithm. The second planner is the 
local planner to find the best route at the current incidents. It will replan the 
local route if the LiDAR sensor will detect uncharted obstacle. It will also replan 
the path if it isn’t possible to follow the path without ranking. The local planner 
calculates the velocity commands too. 

To localize the  robot within the map and during the whole drive a Monte 
Carlo localization algorithm is used. It is scanning the environment and check if 
the  measurements  will  match  to  the  charted  obstacles  within  the  map.  The 
matching is based on the motion model of the robot. Based on these data the 
algorithm is able estimate is current position and direction within the map. 

5.1. Future work
The car is doing its job to drive autonomously from the starting point to its 
destination, but the LiDAR sensor is still connected to the laptop via cable and 
placed on the car. It would be better to implement a real time clock server into 
whole system, connect the LiDAR to the RaspberryPi board and publish the 
scanned data via Wifi to the ROS master. So it’s not required to walk behind the 
car during it’s driving.

I did lots of configuration on the local planner parameters, but it still can be 
optimized  to  find  valid  routes  without  ranking  so  much.  With  more 
optimization the car is also able to drive closer to obstacles and will faster reach 
its goal.

A third step that can be done is to test everything in and outdoor area, if the 
different algorithms will also work as good as in indoor areas.  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Appendix A: Installation

This chapter deals with how to install from scratch all the required tools on the 
hardware, needed for the autonomous driving car. It deals with the Laptop and 
the RaspberryPi board. Each section describes what to do, so everyone is able to 
repeat it by itself after reading this chapter. 

1. Laptop
The first thing and the basis of the autonomous driving car is the laptop. It is 
like a command centre of the whole robot. On the laptop the starting point and 
the destination of the car should be set on the map. The route of the car, its 
current position and all obstacles the LiDAR detects will be presented. 

The laptop uses Linux Ubuntu as operating system. In this thesis I used the 
version 14.04, but it is also possible to use the latest current version available, 
Ubuntu 16.04. All tools introduced in this section are available for that version 
too. 

1.1.  ROS
Once Ubuntu is up and running on the laptop, the Robotic Operating System 
must be installed. It is possible to do this with the Linux package list, but the 
laptop has to accept software from packages.ros.org for this purpose. This can 
be done by setting up the source.list by typing the following command into the 
terminal:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release 
-sc) main" > /etc/apt/sources.list.d/ros-latest.list’ [21]

The next step is to set up the connection to the ROS key server, as follows it is 
not possible to download the software:

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net --recv-
key 421C365BD9FF1F717815A3895523BAEEB01FA116 [21]

Afterwards the source.list should be updated to the latest version of all packages 
by typing the basic Linux update command:

sudo apt-get update

After preparing the laptop as described in the last steps, it is possible to install 
ROS just via the source list. On the computer the full desktop version is needed, 
because there is a GUI included called rviz. Rviz is required to show the map of 
the environment, set the starting and the ending point of the car, to portrare the 
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route  and  to  see  all  obstacles  the  LiDAR  sensor  will  detect.  To  start  the 
installation type the following command into the terminal:

sudo apt-get install ros-indigo-desktop [21]

The next step is initializing rosdep, before ROS can be used. “It enables you to 
easily  install  system  dependencies  for  source  you  want  to  compile  and  is 
required to run some core components in ROS“[21]:

sudo rosdep init
rosdep update

It’s  recommended to  install  rosinstall,  a command line  tool,  that  enables  the 
downloading of  ROS packages directly with one command from SCMs (e.g. 
git):

sudo apt-get install python-rosinstall

Now the  full  desktop version of  ROS is  successfully  installed and ready to 
create a catkin workspace for the project. 

First  of  all  create  the  directory,  where  the  workspace  should  be  saved. 
Replace the <path> with the favorite directory and <ws_name> with the name 
of the project:

 mkdir -p <path>/<ws_name>/src

Afterwards  change  the  working  directory  of  the  terminal  to  the  src  folder, 
created in the last step and initialize the workspace: 

cd <path>/<ws_name>/src
catkin_init_workspace

Now go back to the <ws_name> folder and build the workspace with the catkin 
command, so one build and one devel folder appear .The last step is to source the 
bash file: 

cd <path>/<ws_name>/
catkin_make
source devel/setup.bash

The workspace is ready to use and tools needed can be installed.

1.2.  urg_node
The urg_node  can be  installed simply,  by  cloning the  GitHub repository.  All 
nodes in ROS will be saved in the src folder of the catkin workspace. Just open a 
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new terminal, change the directory to the src folder of the workspace created in 
section 2.1.1 and clone the urg_node repository:

cd <path>/<ws_name>/src
git clone https://github.com/ros‐drivers/urg_node.git

After  finishing  the  download,  a  urg_node  folder  will  appear  containing  a 
CMakeLists.txt,  that needs to be edited. Specify additional locations of header 
files by adding one command in the file. First of all go to your new folder and 
start the file with the editor:

cd urg_node
vim CMakeLists.txt

Now add the following line in before the catkin_package(...) command:

include_directories(include ${catkin_INCLUDE_DIRS})

The next step is to modify two lines in the source code, so the LiDAR will work 
correctly.  Therefore move on to the next src folder inside the urg_node folder, 
open the urg_node.cpp with the editor and change the true in line 210 and the 
following, so it looks like this:

 bool publish_intensity;
 pnh.param<bool>("publish_intensity", publish_intensity, false);
 bool publish_multiecho;
 pnh.param<bool>("publish_multiecho", publish_multiecho, false);

Last but not least build the whole workspace and install all nodes located in the 
src  folder  of  the  workspace.  Therefore  change  the  working  directory  of  the 
terminal back to the root of the workspace:

cd <path>/<ws_name>/
catkin_make install

1.3.  hector_slam
The hector_slam package can easily be installed via the source list of the linux 
system by the apt-get install command. Open a new terminal and execute the 
command:

sudo apt‐get install ros‐indigo‐hector‐slam

1.4.  hector_slam_example
The hector_slam_example can be installed like a ROS node into the src folder of 
the  workspace.  Just  clone  the  git  repository,  add  its  path  to  the 
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ROS_PACKAGE_PATH  environment  variable  and  install  it  with  the  rosdep 
command:

cd <path>/<ws_name>/src
git clone https://github.com/DaikiMaekawa/hector_slam_example.git

ROS_PACKAGE_PATH=<path>/<ws_name>/src/hector_slam_example:
$ROS_PACKAGE_PATH 

rosdep install hector_slam_example

1.5.  navigation_stack
The navigation_stack is also rapidly installed via the source list:

sudo apt-get install ros-indigo-navigation

1.6.  teb_local_planner
The teb_local_planner is also installed via the source list:
 
sudo apt-get install ros-indigo-teb-local-planner

2.  RaspberryPi
The RaspberryPi is a small board working directly on the car to communicate 
with the laptop and forward the velocity commands to the motor management.

The  RaspberryPi  uses  Linux  as  operating  system  too.  I  decided  to  use 
Ubuntu  Mate  16.04,  because  it’s  easy  to  install  and  it  has  a  user  friendly 
interface.  I  haven’t  tested  the  tools  on  other  operating  systems,  so  I  would 
advise users to also use this version.  

2.1.  ROS 
Installing the Robot Operating System on the RaspberryPi is the same like on 
the laptop. First of all update the source.list and set up the connection to the key 
server, like it’s done on the laptop. Create a workspace and build it. Detailed 
information how to it check the section 1.1 of the Installation chapter.

2.2.  urg_node
The installation  of  the  urg_node  on the  RaspberryPi  is  the  same like  on the 
Laptop, described in section 2.1.2 of the Installation chapter. Just clone the git 
repository into the workspace and modify the required files. After installing the 
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node on the RaspberryPi the LiDAR can be used directly on the car to scan the 
environment and publish its data. 
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Appendix B: Configuration

The following sections are about all the configurations needs to be done to use 
all  the  tools  presented in  chapter  2.  The  different  parts  describe  the  correct 
utilization of the so called launch files in ROS and show how to set the different 
parameters  for  a  well  navigating  autonomous  car.  It  also  presents  how  to 
configure the wifi connection, so the laptop and the RaspberryPi can publish 
their data to each other. 

1.  Laptop
Most of the libraries and tools being used for the autonomous driving car are 
running on the laptop and all of them needs to get configured. This section is 
about how to setup all of them properly. 

1.1.  ROS
The most important thing in ROS are the nodes and tools getting started to use 
the robot. They get started by the so called launch files. These files contain a 
bunch of all the required tools, libraries and nodes. They are written in XML 
and have to be saved with the suffix .launch. 

In the specific case of the autonomous driving car presented in this thesis, 
two different launch files are required. One starts the urg_node combined with 
the hector_mapping library, to create the 2D map of the environment. The other 
have to load the map, the urg_node, and the whole navigation and movement 
management.  Both of  them also  have to  start  the  user  interface  rviz.  Before 
creating those launch files it’s  recommended to create a new package in the 
workspace to save all the required files. Let’s do it step by step. 

Replace <package_name> with the name the new folder should be called:

cd <path>/<ws_name>/src
catkin_create_pkg <package_name>

Until the command is finished a new folder, containing a CMakeLists.txt and a 
package.xml will appear.  Now it’s time to customize the package, so it will fit 
perfectly to the project. First step is to modify the package.xml file. It saves the 
name, version, maintainer, dependencies and license information as XML tags. 
The file is filled with lots of comments and a few standard tags. Open the file 
and check it:

cd <path>/<ws_name>/src/<package_name>
gedit package.xml
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Let’s  check all  tags step by step.  The <name> tag contains the name of  the 
package:

<name><package_name></name>

The <version> tag shows the version of the package. It’s important to use a 
three dot convention:

<version>0.0.1</version>

The <description> tag can be edited at one’s leisure and should just describe 
what is the package about. It’s just a user information:

<description>Favorite description</description>

Next is the <maintainer> tag, an important and required tag in the XML file. It 
should show others who to contact, if there will be a problem with the package. 
So one tag is required all  other are optional.  It  follows a specific convention 
with the email address as attribute[22]:

 <maintainer email=„email@provider.de“>Name</maintainer>

The <license> tag is also required and save the license used for the package:
 
<license>MIT</license>

Last step is to set the dependencies needed for the autonomous car. These are 
all we want to be available at build and run time. In this case a few ones will be 
set:

<buildtool_depend>catkin</buildtool_depend>
<run_depend>hector_mapping</run_depend>
<run_depend>hector_geotiff</run_depend>
<run_depend>hector_trajectory_server</run_depend>
<run_depend>hector_geotiff_plugins</run_depend>
<run_depend>hokuyo_node</run_depend>
<run_depend>urg_node</run_depend>
<run_depend>depthimage_to_laserscan</run_depend>
<run_depend>tf</run_depend>
<run_depend>rviz</run_depend>

Save and close the file. Now the package.xml file is finished. The <export> tag 
isn't required for this project, so it can stay empty. The file whole I used for the 
project can be checked in the Appendix chapter of the thesis. 

Furthermore a few lines needs to be added in the CMakeLists.txt.  The file is 
located  in  the  same  folder  like  the  package.xml  file  edited  before.  Open  the 
CMakeLists.txt place the following lines among the find_package(catkin Required) 
command:
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catkin_package()
install (DIRECTORY launch 

DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION} 
USE_SOURCE_PERMISSIONS)

After editing these two file it’s finally time to go on with the launch files. At the 
beginning the map of the area in which the car will drive needs to be created, so 
let’s start with the required launch file. 
First of all create a directory in the package folder, where all the files will be 
saved. Then open the new folder, create a file inside and call it mapping.launch. 
Let’s check step by step what to add to the file. All parameters and nodes added 
to the file are between <launch> tags. At the beginning implement the following 
four parameter:

<launch>
<param name=“pub_map_odom_transform“ value=“true“/>
<param name=“map_frame“ value=“map“/>
<param name=“base_frame“ value=“base_frame“/>
<param name=“odom_frame“ value=“odom“/>

To scan the environment the LiDAR sensor data is required, so it’s needed to 
include the urg_node package. The sensor is connected via ethernet, so the IP 
address of the sensor has to be set as node parameter. The address of the sensor 
used in this thesis is set to 192.168.0.10 by the developer: 

<node pkg=“urg_node“ type=“urg_node“ name=“urg_node“>
<param name=“ip_address“ type=“string“ value=“192.168.0.10“/>

</node>

To  create  the  whole  map  a  few  transform  information  are  required.  They 
present  the  distances  from the  center  of  the  car  to  the  LiDAR sensor.  So  it 
basically shows where the sensor is placed in the car.  These information are 
required to work with the mapping library:

<node pkg=“tf“ type=“static_transform_publisher“ name=“map_2_odom“ 
args=“0 0 0 0 0 0 /map /odom 100“/>

<node pkg=“tf“ type=“static_transform_publisher“ 
name=“odom_2_base_footprint“ args=“0 0 0 0 0 0 /odom /base_footpirnt 
100“/>

<node pkg=“tf“ type=“static_transform_publisher“ 
name=“base_footprint_2_base_link“ args=“0 0 0 0 0 0 /base_footprint /
base_link 100“/>

<node pkg=“tf“ type=“static_transform_publisher“ 
name=“base_link_2_base_stabilized_link“ args=“0 0 0 0 0 0 /base_link /
base_stabilized 100“/>
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<node pkg=“tf“ type=“static_transform_publisher“ 
name=“base_frame_2_laser_link“ args=“0 0 0 0 0 0 /base_frame /laser 
100“/> 

<node pkg=“tf“ type=“static_transform_publisher“ 
name=“base_2_nav_link“ args=“0 0 0 0 0 0 /base_frame /nav 100“/> [6]

To  display  the  map  and  see  the  driven  trajectory  the  interface  rviz  is  also 
required.  As  config  for  the  rviz  tool,  it  is  possible  to  use  the  one  from the 
hector_slam_example package:

<node pkg=“rviz“ name=“rviz“ args=“-d $(find hector_slam_example)/
launch/rviz_cfg.rviz“/>

To  finish  this  launch  file  just  two  more  files  need  to  be  included  and  the 
<launch> tag have to get closed:

<include file=“$(find hector_slam_example)/launch/
default_mapping.launch“/>
<include file=“$(find hector_geotiff)/launch/geotiff_mapper.launch“/>
</launch>

The second launch file is to start the autonomous driving car and to load the 
map and all the navigation, movement and localization packages. Create a new 
file  and  name  it  autonomous_drive.launch.  My  launch  file  starts  with  a  map 
server.  It  is  important  because  the  server  is  loading  the  2D  map  of  the 
environment  in  which  the  car  is  driving.  To  start  open  the  still  empty 
autonomous_drive.launch and start editing:

<launch>
<node name=“map_server“ pkg=“map_server“ args=“$(arg map_file)“/>

After loading the map we need to set the parameter the same values as in the 
mapping.launch:

<param name=“pub_map_odom_transform“ value=“true“/>
<param name=“map_frame“ value=“map“/>
<param name=“base_frame“ value=“base_frame“/>
<param name=“odom_frame“ value=“odom“/>

Also the transform nodes are  the same as  in the mapping.launch and can be 
added by copy and paste :

<node pkg=“tf“ type=“static_transform_publisher“ 
name=“base_link_2_base_stabilized_link“ args=“0 0 0 0 0 0 /base_link /
base_stabilized 100“/>

<node pkg=“tf“ type=“static_transform_publisher“ 
name=“base_frame_2_laser_link“ args=“0 0 0 0 0 0 /base_frame /laser 
100“/> 

�32



<node pkg=“tf“ type=“static_transform_publisher“ 
name=“base_2_nav_link“ args=“0 0 0 0 0 0 /base_frame /nav 100“/>[6]

The rest of the launch file needs a configuration of all the packages itself, so it’s 
explained in each subsection what to add. This gives a better understanding 
why everything is added.

1.2.  navigation_stack
The navigation stack includes the two route planners and offer the possibility to 
drive autonomously. First of all the different cost maps needs to be added to the 
workspace.  Create  a  new  folder  called  costmaps  in  the  package  folder  and 
change into the directory:

mkdir <path>/<ws_name>/src/<package_name>/costmaps
cd <path>/<ws_name>/src/<package_name>/costmaps

Create the following 4 .yaml files in the folder:

costmap_common_params.yaml
local_costmap_params.yaml
global_costmap_params.yaml
teb_local_planner_params.yaml

These are the files containing all the parameters for the different manners and 
the  navigation  stack.  Let’s  start  with  the  configuration  of  the 
costmap_common_params.yaml , open the file and add the filling lines:

footprint: [ [-0.1,-0.125], [0.5,-0.125], [0.5,0.125], [-0.1,0.125] ]
transform_tolerance: 0.2
map_type: costmap
obstacle_layer:
 enabled: true
 obstacle_range: 3.0
 raytrace_range: 3.5
 inflation_radius: 0.2
 track_unknown_space: false
 combination_method: 1
 observation_sources: laser_scan_sensor
 laser_scan_sensor: {sensor_frame: base_link, data_type: LaserScan, 
topic: scan, marking: true, clearing: true}
inflation_layer:
  enabled:              true
  cost_scaling_factor:  10.0  # exponential rate at which the obstacle 
cost drops off (default: 10)
  inflation_radius:     0.5  # max. distance from an obstacle at which 
costs are incurred for planning paths.
static_layer:
  enabled:              true
  map_topic:            "/map"
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Then open the local_costmap_params.yaml and fill in the following:

local_costmap:
  global_frame: /map
  robot_base_frame: base_link
  update_frequency: 3.0
  publish_frequency: 2.0
  static_map: false
  rolling_window: true
  width: 4
  height: 4
  resolution: 0.1
  transform_tolerance: 10
  
  plugins:
   - {name: static_layer,        type: "costmap_2d::StaticLayer"}
   - {name: obstacle_layer,      type: "costmap_2d::ObstacleLayer"}

Go on with the global_costmap_params.yaml and add the following:

global_costmap:
  global_frame: /map
  robot_base_frame: base_link
  update_frequency: 5.0
  publish_frequency: 3.0
  static_map: true
 
  transform_tolerance: 30

And  last  but  not  least  open  the  teb_local_planner_params.yaml  and  add  the 
following:

TebLocalPlannerROS:
 odom_topic: /odom
 map_frame: /map   
 # Trajectory
 teb_autosize: True
 dt_ref: 0.4
 dt_hysteresis: 0.1
 global_plan_overwrite_orientation: True
 max_global_plan_lookahead_dist: 3.0
 feasibility_check_no_poses: 2
 allow_init_backward_motion: false   
 # Robot       
 max_vel_x: 0.4
 max_vel_x_backwards: 0.2
 max_vel_theta: 0.3 # the angular velocity is also bounded by 
min_turning_radius in case of a carlike robot (r = v / omega)
 acc_lim_x: 0.5
 acc_lim_theta: 0.5
 # ***************** Carlike robot parameters ********************
 min_turning_radius: 2.7       # Min turning radius of the carlike 
robot (compute value using a model or adjust with rqt_reconfigure 
manually)
 wheelbase: 0.55                 # Wheelbase of our robot
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cmd_angle_instead_rotvel: True # stage simulator takes the angle 
instead of the rotvel as input (twist message)
 footprint_model: # types: "point", "circular", "two_circles", "line", 
"polygon"
   type: "line"
   #radius: 0.2 # for type "circular"
   line_start: [-0.55, 0.0] # for type "line"
   line_end: [0.0, 0.0] # for type "line"
   #front_offset: 0.32 # for type "two_circles"
   #front_radius: 0.27 # for type "two_circles"
   #rear_offset: -0.25 # for type "two_circles"
   #rear_radius: 0.27 # for type "two_circles"
   #vertices: [ [0.25, -0.05], [0.18, -0.05], [0.18, -0.18], [-0.19, 
-0.18], [-0.25, 0], [-0.19, 0.18], [0.18, 0.18], [0.18, 0.05],
[0.25,0.2] # for type "polygon"
 # GoalTolerance    
 xy_goal_tolerance: 0.5
 yaw_goal_tolerance: 0.3
 free_goal_vel: False   
 # Obstacles   
 min_obstacle_dist: 0.25 # This value must also include our robot's 
expansion, since footprint_model is set to "line".
 include_costmap_obstacles: True
 costmap_obstacles_behind_robot_dist: 1.5
 obstacle_poses_affected: 30
 costmap_converter_plugin: ""
 costmap_converter_spin_thread: True
 costmap_converter_rate: 5
 # Optimization   
 no_inner_iterations: 3
 no_outer_iterations: 3
 optimization_activate: True
 optimization_verbose: False
 penalty_epsilon: 0.1
 weight_max_vel_x: 2
 weight_max_vel_theta: 1
 weight_acc_lim_x: 1
 weight_acc_lim_theta: 1
 weight_kinematics_nh: 1000
 weight_kinematics_forward_drive: 100
 weight_kinematics_turning_radius: 1
 weight_optimaltime: 1
 weight_obstacle: 50
 weight_dynamic_obstacle: 10 # not in use yet
 # Homotopy Class Planner
 enable_homotopy_class_planning: True
 enable_multithreading: True
 simple_exploration: False
 max_number_classes: 4
 selection_cost_hysteresis: 1.0
 selection_obst_cost_scale: 1.0
 selection_alternative_time_cost: False
 roadmap_graph_no_samples: 15
 roadmap_graph_area_width: 5
 h_signature_prescaler: 0.5
 h_signature_threshold: 0.1
 obstacle_keypoint_offset: 0.1
 obstacle_heading_threshold: 0.45
 visualize_hc_graph: False
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These are all the parameters, who affect the result and the performance of the 
local planner described in the thesis.  After creating all  these parameter files, 
they need to get added to the .launch of the robot:

<node pkg="move_base" type="move_base" respawn="false" 
name="move_base" output="screen">
            
<rosparam file="$(find <package_name>)/costmaps/
costmap_common_params.yaml“ command="load" ns="global_costmap" />
           
<rosparam file="$(find <package_name>)/costmaps/
costmap_common_params.yaml“ command="load" ns="local_costmap" />
          
<rosparam file="$(find <package_name>)/costmaps/
local_costmap_params.yaml“ command="load" />
         
 <rosparam file="$(find find <package_name>)/costmaps/
global_costmap_params.yaml“ command="load" />
          
<rosparam file="$(find find <package_name>)/costmaps/
teb_local_planner_params.yaml“ command="load" />

<param name="base_local_planner" value="teb_local_planner/
TebLocalPlannerROS" />
        <param name="controller_frequency" value="5.0" />
        <param name="controller_patience" value="10.0" />

<param name="clearing_rotation_allowed" value="false" />
</node>

Now the navigation_stack is fully implemented.

1.3.  amcl
For the localization part an odeometry publisher is needed. So first of all create 
a source folder in your package folder:

mkdir <path>/<ws_name>/src/<package_name>/src

First create a file called odom_publish.cpp and fill it with the following lines of 
code.  This  code work with  the  car  used in  this  thesis.  It  need to  be  edited 
specific for the car used:

#include <ros/ros.h>
#include <tf/transform_broadcaster.h>
#include <nav_msgs/Odometry.h>
#include <geometry_msgs/Twist.h>
float velocity;
float angle;
void vel_sub (const geometry_msgs::Twist::ConstPtr& vel_msg) {
     velocity = vel_msg->linear.x;
    angle = vel_msg->angular.z;
}
double dt;
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double delta_x;
double delta_y;
double delta_th;
int main(int argc, char** argv){
  ros::init(argc, argv, "odometry_publisher");
  ros::NodeHandle n;
  ros::Publisher odom_pub = n.advertise<nav_msgs::Odometry>("odom", 
50);
  tf::TransformBroadcaster odom_broadcaster;
    geometry_msgs::Twist vel_cmd;
    ros::Subscriber cmd_vel=n.subscribe("cmd_vel" , 10 , vel_sub);
  double x = 0.0;
  double y = 0.0;
  double th = 0.0;
  double vx = velocity;
  double vy = -0.0;
  double vth = angle;
  ros::Time current_time, last_time;
  current_time = ros::Time::now();
  last_time = ros::Time::now();
  ros::Rate r(50);
  while(n.ok()){
    ros::spinOnce();               // check for incoming messages
    current_time = ros::Time::now();
    //compute odometry in a typical way given the velocities of the 
robot
    if(velocity > 0){
     dt = (current_time - last_time).toSec();
     delta_x = (0.45 * cos(th) - vy * sin(th)) * dt;
     delta_y = (0.45 * sin(th) + vy * cos(th)) * dt;
     delta_th = angle * dt;
}
    else if(velocity < 0){
     dt = (current_time - last_time).toSec();
     delta_x = (-0.55 * cos(th) - vy * sin(th)) * dt;
     delta_y = (-0.55 * sin(th) + vy * cos(th)) * dt;
     delta_th = angle * dt;
}
    else {
         dt = (current_time - last_time).toSec();
         delta_x = (velocity * cos(th) - vy * sin(th)) * dt;
     delta_y = (velocity * sin(th) + vy * cos(th)) * dt;
     delta_th = angle * dt;
}
    x += delta_x;
    y += delta_y;
    th += delta_th;
//since all odometry is 6DOF we'll need a quaternion created from yaw
    geometry_msgs::Quaternion odom_quat = 
tf::createQuaternionMsgFromYaw(th);
    //first, we'll publish the transform over tf
    geometry_msgs::TransformStamped odom_trans;
    odom_trans.header.stamp = current_time;
    odom_trans.header.frame_id = "odom";
    odom_trans.child_frame_id = "base_link";
    odom_trans.transform.translation.x = x;
    odom_trans.transform.translation.y = y;
    odom_trans.transform.translation.z = 0.0;
    odom_trans.transform.rotation = odom_quat;
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    //send the transform
    odom_broadcaster.sendTransform(odom_trans);
    //next, we'll publish the odometry message over ROS
    nav_msgs::Odometry odom;
    odom.header.stamp = current_time;
    odom.header.frame_id = "odom";
    //set the position
    odom.pose.pose.position.x = x;
    odom.pose.pose.position.y = y;
    odom.pose.pose.position.z = 0.0;
    odom.pose.pose.orientation = odom_quat;
    //set the velocity
    odom.child_frame_id = "base_link";
    odom.twist.twist.linear.x = vx;
    odom.twist.twist.linear.y = vy;
    odom.twist.twist.angular.z = vth;
    //publish the message
    odom_pub.publish(odom);
    last_time = current_time;
    r.sleep();
  }
}

Now it’s required to add the following two lines at the end of the CMakeLists.txt 
of the Package, so the odom_publish.cpp will be build:

add_executable(odom_publish src/odom_publish.cpp)
target_link_libraries(odom_publish ${catkin_LIBRARIES})

Now we need to add amcl and the odom_publish.cpp to the launch file:

<include file="$(find amcl)/examples/amcl_omni.launch" />
<node pkg=“<package_name>" type="odom_publish" name="odom_publish"/> 

At the end build the workspace

2.  RaspberryPi
On  the  RaspberryPi  an  interface  to  forward  the  velocity  commands  to  the 
Arduino board is required. Create a file in a catkin_package and subscribe the 
cmd_vel topic and send the data to the motor management. My code is a python 
script, but on another car of course the interface needs to be adjusted:

import rospy
import serial
from geometry_msgs.msg import Twist
port = '/dev/ttyUSB0'
ard = serial.Serial(port, 19200)
buffer = "||"
def data_to_car(data):
    global buffer
    speed =int(data.linear.x*10)
        angle =(round(data.angular.z, 2)*60)*-1
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        if speed==0.0:
                toAdr = "||||b;" + str(angle) + ";"
        elif speed > 0.0:
                toAdr = "||||" + "8" + ";" + str(angle) + ";"
    else:
        toAdr = "||||" + "-25" + ";" + str(angle) + ";"
    if buffer != toAdr:
        rospy.loginfo("Try to put: " + toAdr);
        ard.write(toAdr)
            ard.flush()
        buffer = toAdr
def listener():
    rospy.init_node('car_interface', anonymous=True)
    rospy.Subscriber("cmd_vel", Twist, data_to_car)
    #ard.close()
    rospy.spin()
if __name__ == '__main__':
    listener()
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