
 

Department of Informatics
Technical University of Munich

Bachelor's Thesis in Informatics

SLAM-Based Navigation of An
Autonomous Driving Car

Felix Feik

 

Department of Informatics
Technical University of Munich

Bachelor's Thesis in Informatics

SLAM-based navigation of an autonomous
driving car

SLAM-basierte Navigation eines autonom
fahrenden Autos

Author: Felix Feik
Supervisor: Prof. Dr. Ing-habil Alois Knoll  
Advisor: Biao Hu
Submission: February 15, 2017

�iii

I confirm that this bachelor’s thesis is my own work and I have documented all

sources and material used.

———————————————
Place, Date

———————————————
Signature

Abstract

In this thesis, an autonomous driving model car is presented, using LiDAR
sensor data and a 2D map to get the shortest path from a designated point to its
destination.

First of all the whole area in which the car is to drive, is scanned with a
LiDAR sensor. A 2D map with all obstacles is created, based on the sensor data.
Afterwards the starting point of the car can be entered on this map and a
destination where it should drive to can be set. The car will find the shortest
path from the starting point to its destination, without crashing into any
obstacles. On its way to the destination the LiDAR sensor is constantly scanning
the local environment, so the car will also be able to detect uncharted obstacles
and will replan the path, if needed.

The creation of the map and the route planning is done on a Laptop and the
LiDAR sensor data is scanned by a RaspberryPi board.  

�iv

Contents

Abstract iv..

Contents v..

List of Abbreviations vi..

List of Figures vii...

1. Introduction 1..
1.1. Motivation 1..
1.2. Related Work 1..
1.3. Problem Statement 2..
1.4. Structure of this thesis 3..

2. Background 4...
2.1. About SLAM 4..

2.1.1. Required hardware 4...
2.1.2. The SLAM process 6..

3. Implementation 9..
3.1. Used Hardware 9..

3.1.1. The car 9..
3.1.2. The laptop 10..
3.1.3. The measurement device 10...

3.2. Software 11..
3.2.1. Operating system 11..
3.2.2. Mapping 11...
3.2.3. Navigation 12...
3.2.4. Localization 14...

4. Results 17..
4.1. The map 17..
4.2. The route planning 19..
4.3. Localization within the map 21..

5. Conclusion 23..
5.1. Future work 23..

Appendix A: Installation 24...

Appendix B: Configuration 29...

Bibliografie 40...

�v

List of Abbreviations

AMCL Adaptive Monte Carlo Localization
CPU Computer Processing Unit
D Dimensional
EKF Extended Kalman Filter
GUI Graphical User Interface
LiDAR Light Detection and Ranging
ROS Robot Operating System
SCM Software Configuration Management
SLAM Simultaneous Localization and Mapping
TUM Technical University Munich
XML Extensible Markup Language  

�vi

List of Figures

2.1 Different LiDAR sensors 5..
2.2 Microsoft Kinect sensor 5..
2.3 Overview of a typical SLAM process 6..
3.1 Autonomous driving car 9..
3.2 Diagram of scanned area 10...
3.3 Basic relation model of the hardware 11..
3.4 Hector_SLAM filter method 12..
3.5 Pseudocode Dijkstra algorithm 13..
3.6 Examples of some teb_local_planner arguments 14...
4.1 SLAM map of a main floor 17..
4.2 SLAM map of TUM rooms 18..
4.3 Global routes 19...
4.4 Local routes 20..
4.5 Localization array 21  ...

�vii

1. Introduction

1.1. Motivation
In the year 1970 the number of people who died in traffic accidents was the
highest in Germany ever. Since that time the death rate strongly decreased,
although the number of road users intensively increased. On the one hand
that’s because of the higher penalties for road delicts like a violation of the
speed limit, but on the other hand, because of the constantly increasing safety of
the automobiles.[1] Nowadays a car is a rolling computer, full of assistance
systems to aid the driver and increase safety. For example a Lane Keeping Assist
to hold the car’s lane or an Active Distance Control to follow a car which is
driving in front, with an optimal safety distance, and also an Emergency Brake
Assist to rapidly stop the car in an emergency situation. A lot of these systems
are only half automated systems, so they still need the driver to implement
them and to do their jobs.

The next step is to develop a fully automated system, driving a car
autonomously and replace the driver completely. This would of course greatly
decrease the accident rate on the basis of human driving errors. The road safety
is the most important criteria of autonomous driving, but there are also a few
more. The traffic flow will also be optimized and time-efficient driving will
become standard. Less traffic jams and thereby the reduction of fuel
consumption and CO2 emissions are positive consequences in times of global
warming problems. It is also an aid for disabled and old people, who aren’t able
to drive by themselves, but have to be mobile.[2]

1.2. Related Work
ROS “A flexible framework for writing robot software. It is a collection of
tools, libraries, and conventions that aim to simplify the task of creating
complex and robust robot behavior across a wide variety of robotic
platforms.“[3] This operating system is the basis of the autonomous driving car.
It runs on the Laptop as a full desktop version and on the raspberry pi as an
embedded version.

urg_node The urg_node is the ROS driver library for the Hokuyo LiDAR sensor
used on the car to scan the environment. This enables using the LiDAR as an
ROS node together with the other tools needed for the project.[4]

hector_slam This is a package including the hector_mapping node to create a 2D
map based on the “high update rate of modern LIDAR systems“ developed for
ROS.[5] It is used to create the 2D map of the environment in which the car

�1

should drive and which is used to plan the shortest route from the designated
point to the destination of the autonomous car.

hector_slam_example It is a bunch of launch files and configuration files to use
the LiDAR sensor to create a SLAM map. Using these files makes it more easier
and faster to create the map.[6]

navigation_stack The navigation stack is a library that includes all important
functions to navigate a ROS running robot through a 2D map with the help of
sensor data. “It needs to be configured for the shape and dynamics of a robot to
perform at a high level“. The library contains the global_planner to find the
shortest route from a starting point to a destination, the move_base package is
designated to give certain velocity commands for the robot’s motor
management based on the route and amcl localizes the car on the 2D map using
the LiDAR sensor data.[7]

teb_local_planner “The teb_local_planner package implements a plugin to the
base_local_planner of the 2D navigation stack.“[8] It enables finding a local route
based on the LiDAR sensor data to avoid obstacles and create velocity
commands optimized for a car-like robot with Ackermann steering.[9] The
teb_local_planner is responsible for replanning the original route of the car,
should the LiDAR sensor detect some uncharted obstacles while the car is
moving.

1.3. Problem Statement
The aim of this work is to demonstrate the development an autonomous
driving car based on a SLAM map with the help of a LiDAR sensor. However,
the goal contains some mechanical and software problems.

On the one hand all components have to be well placed in the car and they
need to be connected correctly. All cables should run through the car without
hanging on the ground or blocking the wheels and all the contacts need to be
well insulated.

On the other hand the car requires some software to control the whole
movement correctly. The first requirement is a software to create the 2D SLAM
map based on the LiDAR sensor data. After that a software is needed that is
able to find the shortest route on the global map and one to spontaneously
avoid local obstacles. Furthermore the software has to connect a management
unit in the car with a laptop via Wifi to exchange all important data. The LiDAR
sensor has to be on top of the car, but the route finding algorithm and the map
of the environment runs on a laptop because of the required CPU performance.

�2

1.4. Structure of this thesis
The next chapter, chapter 2, includes some theoretical background information
about the basic SLAM process and the hardware what is required to create a
SLAM map.

In chapter 3 the implementation of the whole software and hardware used in
this thesis is presented. It includes the different methods and its theory and
functionality is illustrated.
In the last chapter, chapter 4, the results of the implemented method in this
thesis are shown and evaluated.  

�3

2. Background

2.1. About SLAM
The term SLAM is as stated an acronym for Simultaneous Localization And
Mapping. It was primarily developed by Hugh Durrant-Whyte and John J.
Leonard[10] based on earlier work by Smith, Self and Cheeseman[11]. Durrant-
Whyte and Leonard initially termed it SMAL but it was later changed to give a
better impact. SLAM is concerned with the problem of building a map of an
unknown area by a mobile robot while at the same time navigating through the
environment using the map. So the robot starts anywhere in the environment
and needs to know anytime where it currently is relative to the recognized
obstacle.

SLAM can be implemented in lots of ways, with a huge amount of hardware
that can be used. SLAM is more than just one algorithm, it is more like a whole
concept to fix a few problem. It consists multiple parts like "Landmark
extraction, data association, state estimation, state update and landmark
update“[12] Every of these small parts of the concept can be solved by a lot’s of
ways. It depends on the usage, like what robot will be used. In which area will
the robot be driving? Is it a hall with only static objects or is it an urban
crowded street with lots of movement during the building of the map? Do the
robot need a 2D or a 3D vision? Questions like this needs to be answered before
starting to implement the SLAM process. They all influence what hardware
devices and algorithms used to implement a well working SLAM concept. In
the case of this thesis, the autonomous driving car, only a 2D motion is
considered. The area in which the car should drive is exclusively an indoor
environment with static objects.

2.1.1. Required hardware
As important as the choice of good algorithms is the selection of the right
hardware. To do SLAM a mobile robot and a range measurement device is
required.

A robot using SLAM and 2D motion needs to be mobile and “should not
have an error of more than 2 cm per meter moved and 2° per 45° degrees
turned“. [12] In an indoor environment it’s normally a wheel-based robot like
the car used for this thesis. The robot also needs a proper working motor
management to control the car in the area correctly.

To scan the area different devices can be used. In these days normally a
LiDAR sensor or a camera is used. The reason why most of the people doing
SLAM using the LiDAR as measurement device is, that they are very accurate
and the data output does not need a high computing power. A bad thing of the

�4

laser sensors is, that they aren’t able to measure underwater or don’t recognize
some surfaces like glass as an obstacle.[12]

Figure 2.1: Different LiDAR sensors. (a) shows the LiDAR sensor used in the car
presented in this thesis [13] (b) shows a 360 degree LiDAR sensor [14]

Another option is to use a camera as measurement device. It’s also very
accurate, but it needs lots of computing power to handle the big input data.
Also the vision of a camera only works with a well lighted environment, so it is
more prone to errors or certainly does not work anymore if it is used in a dark
room or at night. The camera is better to use for 3D map, because of its 3D
vision. A cheap choice to use is for example the Microsoft Kinect camera. The
best result can be obtained by the combination of both sensor data.[12]

Figure 2.2: Microsoft Kinect sensor. The camera records RGB images and includes
a depth sensor.[15]  

�5

(a) UTM-30LX-EW LiDAR sensor (b) RPLIDAR - 360 degree Laser Scanner

2.1.2. The SLAM process
The aim of SLAM is to create a map of the area in which the robot is moving
around. The basic SLAM process is done by a number of steps. All these steps
can be done in different ways. The following graphic shows an example of such
a SLAM process with use of the extended Kalman filter. The EKF is one of the
first probabilistic SLAM algorithms. It is often picked to explained how the
SLAM process is working, but in reality also some other algorithms can be
used.

Figure 2.3: Overview of a typical SLAM process. The Graph shows the basic
process of SLAM done with the EKF algorithm.[12]

The first step is to scan the environment of the initial pose with the
measurement device and in this case gather the LiDAR sensor data. This data
contains the distance how far a so called landmark is away and also the angle
where it is located, based on the initial position of the robot. These landmarks
are various points like obstacles in the local environment and are combined
with the distances to the robot and their angles most the input of the EKF.

�6

Figure 2.4: Typical SLAM entities.[16] The picture gives a good example how the
sensor information is filled with an angle and a distance to an
obstacle. Robot(1) detects landmark(4) at the initial pose, then it
moves on to robot position (3) and it still detects the landmark (4) but
with another distance and angle.

The EKF is an algorithm to estimate the robots position is at the moment on the
map and update its odeometry if needed. The odeometry data of the robot
contains the position of the robot on the map. This data needs to be very
accurate to build the map correctly. The map is a large state vector stacking
robot and landmark states, where R is the robot and M is the set of landmark
states. The EKF algorithm models the map by a Gaussian variable using the
mean and the covariances matrix of the state vector, denoted by x and P. The
aim of SLAM and EKF is to keep this map up to date at all time. [16]

At the beginning the map starts without any landmarks and the initial robot
pose is set to the origin of the map, so n = 0 and x = R.

�7

x =

R

M

�
=

2

6664

R

L1
...
Ln

3

7775
P =

PRR PRM

PMR PMM

�
=

2

6664

PRR PRL1 . . . PRLn

PL1R PL1L1 . . . PL1Ln

...
...

. . .
...

PLnR PLnL1 . . . PLnLn

3

7775 (1)

x =

2

4
x

y

✓

3

5 =

2

4
0
0
0

3

5 P =

2

4
0 0 0
0 0 0
0 0 0

3

5 (2)

As soon as the robot starts moving around its odeometry will change. The robot
motion is based on a generic time-update function. Based on the state vector x,
the control vector u and the perturbation vector n.

During the movement and on every new position, the LiDAR collects new data
of the environment. The significant landmarks get extracted again and they get
associated to the landmarks the robot previously has seen. Based on the re-
observated points the robot can update its new position in the EKF. This is
possible because the robot always has a relative distance and angle from its
current position.[12] The observation is based on the generic observation
function where y is the noisy measurement, x is the full state, h() is the
observation function and v is the measurement noise. [16]

�8

x f(x, u, n) (3)

y = h(x) + v (4)

3. Implementation

This chapter is about the implementation of the autonomous driving car. It
shows what hardware is used and what algorithms are used to produce a
functional software to get the car working.

3.1. Used Hardware

3.1.1. The car
The basic of the whole project is of course the car. It is an electric driving car,
constructed with metal and it needs an input voltage of 12 volts. The wheelbase
of the car is 55 centimeters, the whole length is 70 centimeters and the width is
55 centimeters. Its maximum speed is up to 80 km/, but for this project a
maximum velocity of 0,55 m/s is used. It is a good speed to operate safe in an
indoor area, without damaging any obstacles or persons in case of testing
failures.

Figure 3.1: Autonomous driving car. The picture shows in (a) the front of the car
used in this thesis. And (b) shows it from the back.

Like you can see in the pictures the car contains a lots of sensors and other
electronically devices. As motor management the car has a small Arduino board
in it to feed the engine with the required values. It is able to send a PWM signal
in percentage to the engine as a speed value and a degree value to control the
steering angle of the car. It is possible to do forward and backward driving. The
input values are sent by a RaspberryPi board via serial USB.

The RaspberryPi board is also planted in the car. It is running Ubuntu Mate
16.04 as operating system and a ROS distribution is installed. Its job is to
communicate via Wifi with the ROS Master, which is running on a Laptop. The
RaspberryPi board receives the required data, like the steering angles and the

�9

(a) Front of the car (b) Back of the car

speed values, from the master. These data is calculated by the Laptop and the
RaspberryPi board forwards them to the Arduino board.

3.1.2. The laptop
The control basis of the whole project is a customary Sony Vaio laptop. It is
running Linux 14.04 Indigo as operating system and a ROS distribution is
installed too. An Intel Pentium dual core processor is used to execute the route
planning algorithm, present the map and compute the localization needed for
the autonomous driving car. The laptop has all the required tools for the project
installed and the ROS master is running on this machine. The data of all so
called topics like the scan data of the LiDAR and the velocity commands are
published to the ROS master. The whole visualization is done by it too. You can
set the starting point of the car and you can set a goal on the created SLAM
map.

3.1.3. The measurement device
The whole measurement is done by a single LiDAR sensor, the Hokuyo
UTM-30LX-EW (Fig. 2.1(a)). It is placed in front of the car(Fig. 3.1(a)) and scans
the environment with a radius of 270 degree. It has an accurate detection range
from 0.1 to 30 meters with a scanning rate of 25 millisec/scan. The angular
resolution is 0.25 degree.

Figure 3.2: Diagram of scanned area[17]. It shows how the scanning area of the
used LiDAR looks like.

The whole data is transferred via ethernet to the destination device. The output
datatype is an array including the distance values detected from 0 to 270 degree
around the LiDAR. So the LiDAR publishes every 25 milliseconds an array of
270 * 4 = 1080 double values. It is connected directly to the Laptop.[17]

�10

3.2. Software

3.2.1. Operating system
ROS is the operating system of the autonomous driving car and it’s the basis of
the whole project. It is installed on the Laptop and on the RaspberryPi. The ROS
system needs a master, where all devices are registered and where they can
publish their data and receive new one from other nodes.

In this case this master is running on the laptop and both devices are
connected via Wifi in an ad-hoc network to reach the master. The master can be
started on every free port, in this case the port 44420 is used. The Laptop needs
to publish the calculated velocity commands, so the RaspberryPi can forward
them to the Arduino board. The LiDAR sensor publishes its scanned data. All
algorithms and tools used in this project are based on the ROS system.

Figure 3.3: Basic relation model of the hardware. This graph shows the relation
between the different hardware used for the car.

3.2.2. Mapping
A SLAM based navigation requires a SLAM map. It is the basis of the
navigation part. It has to be a detailed map, so the localization algorithm will
work properly. The maps used in this thesis are all created by the hector_slam
library.

This algorithm uses the LiDAR sensor data to create a map of the whole area,
in which the car should drive afterwards. The approach of this algorithm is to
do the so called FastSLAM. The whole area is represented as an occupancy 2D
grid map. Because of the high update rate of the LiDAR sensor it is possible to
use only approximative data. The scanned endpoint data of the sensor is
converted to a point cloud using the estimated platform orientation and joint
values. As scan matching algorithm, only filtering based on the endpoint z
coordinates is enough, so „only endpoints within a threshold of the intended
scan plane are used in the scan matching process“[18].

�11

ROS Master
10.42.1.25144420

Laptop
10.42.1.25

RapsberryPi
10.42.1.3

ve
loc

ity
 co

mman
dssc

an
 data

velocity commands

LiDAR

scan data

Arduino
velocity commands

Figure 3.4: Hector_SLAM filter method. „(a) Bilinear filtering of the occupancy
grid map. Point Pm is the point whose value shall be interpolated. (b)
Occupancy grid map and spatial derivatives.“[18] (c) A small zoom
of the whole grid map.

 The pose estimation of the robot is done by a simple iteration. First project the
endpoint onto map based on the current pose estimation. Next, estimate map
occupancy probability gradients at the scan endpoint. And last but not least
perform a Gauss-Newton iteration to refine the pose estimation. [18]

Based on the pose estimation of the robot(5) and the sensor data it is possible to
build a well defined map with all obstacles contained in the area.

3.2.3. Navigation
The first step was to create the SLAM map as basis of the navigation part of this
thesis. Next step is the navigation itself. The navigation isn’t easy to do, because
on the one hand the car has to find a valid global plan from its estimated
starting point on the map to its destination. On the other hand the car has to
react to its local environment. For example if an uncharted obstacle appears or
the car has to drive through a small gap. That’s why the navigation part
contains two different planner. One is the so called local planner and one is the
global planner.

The global route is calculated by the global_planner of the navigation_stack
library in ROS. It is done by the Dijkstra algorithm. It’s an algorithm to find the
shortest path from a node A to B in a graph. The idea is basically really intuitive.
At the beginning take a whole graph and set one node as starting point and set
the distance to all others to ∞. Now the algorithm contains two queues, one

�12

H =
h
rM(Si(⇠))

@Si(⇠)
@⇠

iT
=

h
rM(Si(⇠))

@Si(⇠)
@⇠

iT
(5)

(a) (b) (c)

with all the visited nodes which is of course empty at the initialization and one
with all other nodes expect the starting node. As long as the queue with the
unvisited nodes isn’t empty select the one with the minimum distance, mark it
as visited and check if a new shortest path is found. If there is one available set
it as the new value of the shortest path.

Figure 3.5: Pseudocode Dijkstra algorithm. This picture shows the implementation
of the Dijkstra algorithm in pseudocode. [19]

The Dijkstra algorithm can only be used if the whole graph doesn’t contain any
negative transitions. This is the case on the 2D grid map, created by the SLAM
algorithm. The whole map can be seen as the graph, with every pixel as a node.
The transitions between these pixels have always the same values, expect the
one to obstacles. There aren’t any transitions at all. The set starting point is seen
as the starting node and the destination as the end node. In this way it is
possible to get shortest route for the car over the whole map.

The next thing, which is needed to navigate the autonomous driving car
correctly is the local planner to specify the local route. The global planner only
plans the shortest route from A to B based on the recorded map, but if there will
be any uncharted obstacles on this route the car would crash into. One more
thing to care about is the Ackermann steering of the car, so it has a minimum
turning radius. The car used in this thesis has something like two meters. The
global planner doesn't care about and calculates like the robot is able to turn on
spot and it also doesn't care about the cars’ dimension. To fix this problem the
teb_local_planner, a ROS library for the navigation stack especially for car like
robots with Ackermann steering, is used. The teb_local_planner integrates the
LiDAR sensor data in its algorithm to detect uncharted obstacles during the
driving, so it spontaneously recalculates the local path if needed. The local
planner also computes the velocity commands based on its path. This planner
needs a lots of configuration, because it requires many different information as
input, who all affect the result and the performance of the calculation. For

�13

example the minimum steering angle, the speed of the car and also its
dimension to know how far the route has to be away from obstacles. For
performance improvements the size of the temporary map and its resolution
can be defined too, but the less the resolution of the map is, the less obstacles
can be detected. A full documentation of the teb_local_planner parameters is
available on its section in the ROS wiki.[8] The configuration values used for
this thesis can be found in the Appendix B chapter.

Figure 3.5 Examples of some teb_local_planner arguments. This picture shows a few
of the required parameters for the teb_local_planner

3.2.4. Localization
To succeed a well performed navigation the autonomous driving car needs to
get localized within the map correctly. From the very beginning and the whole
way of the drive, the cars’ odeometry is calculated based on the velocity
command like the speed and the steering angle. But the car begins on an
estimation point so its odeometry isn’t exact at all. That’s why a localization
algorithm is required to get a more precise position of the car within map. This
maximize the perfect building of a correct route by the local planner.

To achieve this, the adaptive Monte Carlo localization (amcl) is taken as
approach. It’s an algorithm to localize a robot in a map using a particle filter
implemented for ROS. The algorithm requires a known map created by a laser
sensor, like it’s done with the hector_slam library and the task is to estimate the
pose of the car within the map based on its motion and sensing. The algorithm
starts with the initial beliefe of the robot’s pose, what’s in this case the estimated
starting point of the car. The state of the robot needs to get estimated at every
current time-step k. This problem “is an instance of the Bayesian filtering
problem, where we are interested in constructing the posterior density p(xk|Zk)
of the current state conditioned on all measurements“[20] with x as state vector.

�14

In the specific case of using the Monte Carlo filter the density is represented by
a set of N random particles[20]:

For a proper localization it’s required to recursively compute the density at each
time step. This is done in two phases, the predication phase and the update
phase.

In the prediction phase a motion model, is used to predict the current
position of the robot. The state x of the time-step k is only decent on the
previous time-step k-1 with a known control input uk-1. The motion model is
presented as a conditional density[20]:

In the Bayesian filtering the predictive density over the state vector xk is then
calculated by integration:

The Monte Carlo localization starts with the set of particles Sk-1, computed in
the previous time-step and apply the motion model to each particle sik-1 by
sampling from the density p(xk|sik-1 , uk-1). So for each particle sik-1 a sample s’ik
is drawn[20].

In the update phase a measurement model is used to integrate information
from the sensors to obtain the density function described in (6). Each
measurement zk is conditionally independent of earlier measurements and the
measurement model is given in terms of a likelihood. It means that the robot
observers zk at the given location xk[20].

The posterior density over xk is now obtained using the Bases theorem:

The Monte Carlos localization algorithm takes into account the measurement zk
and weight each of the samples S’k created in the first phase, by the weight mik:

�15

x =
⇥
x, y, ✓

⇤T
p(xk|Zk) (6)

p(xk|xk�1, uk�1) (8)

p(xk|Zk�1) =

Z
p(xk|xk�1, uk�1)p(xk�1|Zk�1)dxk�1 (9)

Sk = {sik; i = 1..N} (7)

p = (zk|xk) (10)

p = (xk|Zk) =
p(zk|xk)p(xk|Zk�1)

p(zk|Zk�1)
(11)

Then a sample sjk from {s’ik , mik} is drawn for each j = 1..N. The whole algorithm
is computed recursively. To initialize the filter k = 0 with a random samples S0 =
{s0i} from the prior p(x0).  

�16

mi
k = p(zk|s

0i
k) (12)

4. Results

4.1. The map
I tested the map algorithm in different indoor environments with different
methods to control the LiDAR sensor. The most important thing to care about is,
that the laser sensor always have the position, or the pose estimation and the
map building will fail. I tried to build a map by holding the sensor in my hands
and run around in the area, but I wiggled too much to create an accurate map.
The problem is that the sensor is just scans one layer, so if its position isn’t
straight the matching part does not work. With a well fixed position of the
LiDAR sensor it works perfectly to create accurate SLAM maps of a whole
indoor area. Another problem is that an obstacle like a glass door isn’t detected
as one. The size of the map in pixels needs to be defined before starting the
algorithm.

Figure 4.1: SLAM map of a main floor. The map shows the main floor of my home.
The stripes on the right side of the picture shows perfectly the
problem of a glass door as obstacle.

All the obstacles are presented as black pixels and all free space, where the car is
able to drive are the wide light grey areas. My home is just a small example of a
SLAM map. I recorded it by fixing the LiDAR sensor and the laptop on top of a
chair and then I moved it around. The stripes on the right of the picture show
perfect what happened if the sensor should detect a glass door as an obstacle. It
doesn’t get detected, because the laser beams aren’t reflected by this type of
surface.

Next test was to record a map with the LiDAR fixed in the car. Because for
the navigation part afterwards the map needs to be recorded on the correct
height, so all the obstacles can be rematched in the amcl algorithm. To build the
map I moved the car by a hand control.

�17

Figure 4.2: SLAM map of TUM rooms. These tow pictures present the slam map
of the (a) robotic lab of the chair VI and of the (b) hall of the FMI
building of the Technical University Munich.

The map of the lab is just one room and was only to test the attachment and the
position of the LiDAR. The big map of the hall is the evidence, that the
algorithm also works well in huge indoor areas. It shows all obstacles like the
two famous slides and all meal benches for the students very precisely. This
map is the basis of all the on going tests of the navigation and the localization
part. It suits perfect as testing area, because of its huge size with lots of obstacle,
but without any critical stuff like expensive things that can be broken in case of
some test failures.

�18

(a) Robotics lab of the TUM chair VI

(b) Hall of the FMI building of the TUM

4.2. The route planning
The whole navigation is tested based on the map of the FMI hall (Fig.4.2(b)),
because this is a huge area with lots of space. I tested the calculation of different
global routes. I tried long routes, short ones, with lots of obstacles and much
free space on the track.

Figure 4.3: Global routes. Here are some global routes presented. The green lines
are the calculated routes from the estimated starting point (arrows
with peak to the lines) to the set goal (arrows with peak away from
the lines). The arrow peaks also show the front of the car at the
beginning and the end.

All the tested global routes are valid and the car is able to follow them.
Compared to the whole map (Fig.4.2(b)) these routes don’t contain any weird
ways and are really good ones to drive. So the global planner does a very
accurate job and is fully compatible to the topic of this thesis. With this accurate
results the goal of the global route planning is achieved perfectly.

The more complicated planner was the local one. It needs lots of
configuration to calculate accurate and usable results. I tested many different
routes in many different constellations of charted and uncharted obstacles to
adjust all the required parameters.

�19

Figure 4.4: Local routes. The picture shows four different local routes. Picture (a)
and (b) shows the difference between the local and the global route.
The green line is the global route and the green line with the red
arrows on it is the local route. In (c) the local route is nearly the
global route. In (d) they are exactly the same. The red squares are
detected obstacles.

All the tested are all valid but they are not the perfect one. Sometimes the
planner calculates routes with many switches of forward and backward driving
(Fig.4.4(a)(b)) instead of just driving a longer curve. The planner also sometimes
starts a recalculation of the path although the path before was valid. These
failures happen a small amount of times, but they are still there. To fix them it

�20

(a) (b)

(d)(c)

still needs more specific adjustment of the planner. In the end the local planner
is working and the car reaches its goal, although it sometimes maneuvering a
lot to surround obstacles or to go through a gap. The planner isn’t optimal to
use it for a speed cup or in critical areas like in real road traffic, but in this thesis
to control n autonomous driving model car it is sufficient.

4.3. Localization within the map
The Monte Carlo localization were tested on every try run of the car
automatically, because the whole driving wouldn’t work without it. The car
needs to know where it all the time during its drive.

Figure 4.5: Localization array. The picture shows the step by step localization
during the car’s driving. At the beginning the estimation cloud is
very big, but as soon as the car starts driving the estimation gets
more precise.

The amcl algorithm works good to estimate the portion of the car within the
map. But to do so, it is recommended to record the map on the same height as
the LiDAR is used to navigate through it. So if the LiDAR is fixed 10 cm above
the ground on the car, the map should also be build from this position too.
Another important thing I recognized during the tests is, that the speed of the
car needs to get published accurate, because the LiDAR measurement is based

�21

on the motion model of the car, like it’s described in the section 3.2.4. Expect
these two things the localization algorithm works very precisely and is a very
good choice. The cars pose within the map is estimated in just a few time steps,
so it is also good to use in small environments.  

�22

5. Conclusion

In this thesis a fully autonomous driving model car is implemented with ROS
as operating system. The whole navigation of the car is based on a recorded
SLAM map. The car is able to navigate through an area with the help of a
LiDAR sensor and the map. It can successfully find a valid route through the
map and around all charted obstacle. Additionally it is able to spontaneously
react to uncharted obstacle during its drive and replay the route if needed.

The map is a 2D grid based SLAM map created by the hector_slam library for
ROS. It is based on the LiDAR sensor data and an approximative position of the
robot.

The whole navigation part of the car is divided into two different planner.
One is the global planner to calculate the shortest path from an estimated
starting point to a set goal. The calculation is based on all charted obstacles
within the recorded map and the Dijkstra algorithm. The second planner is the
local planner to find the best route at the current incidents. It will replan the
local route if the LiDAR sensor will detect uncharted obstacle. It will also replan
the path if it isn’t possible to follow the path without ranking. The local planner
calculates the velocity commands too.

To localize the robot within the map and during the whole drive a Monte
Carlo localization algorithm is used. It is scanning the environment and check if
the measurements will match to the charted obstacles within the map. The
matching is based on the motion model of the robot. Based on these data the
algorithm is able estimate is current position and direction within the map.

5.1. Future work
The car is doing its job to drive autonomously from the starting point to its
destination, but the LiDAR sensor is still connected to the laptop via cable and
placed on the car. It would be better to implement a real time clock server into
whole system, connect the LiDAR to the RaspberryPi board and publish the
scanned data via Wifi to the ROS master. So it’s not required to walk behind the
car during it’s driving.

I did lots of configuration on the local planner parameters, but it still can be
optimized to find valid routes without ranking so much. With more
optimization the car is also able to drive closer to obstacles and will faster reach
its goal.

A third step that can be done is to test everything in and outdoor area, if the
different algorithms will also work as good as in indoor areas.  

�23

Appendix A: Installation

This chapter deals with how to install from scratch all the required tools on the
hardware, needed for the autonomous driving car. It deals with the Laptop and
the RaspberryPi board. Each section describes what to do, so everyone is able to
repeat it by itself after reading this chapter.

1. Laptop
The first thing and the basis of the autonomous driving car is the laptop. It is
like a command centre of the whole robot. On the laptop the starting point and
the destination of the car should be set on the map. The route of the car, its
current position and all obstacles the LiDAR detects will be presented.

The laptop uses Linux Ubuntu as operating system. In this thesis I used the
version 14.04, but it is also possible to use the latest current version available,
Ubuntu 16.04. All tools introduced in this section are available for that version
too.

1.1. ROS
Once Ubuntu is up and running on the laptop, the Robotic Operating System
must be installed. It is possible to do this with the Linux package list, but the
laptop has to accept software from packages.ros.org for this purpose. This can
be done by setting up the source.list by typing the following command into the
terminal:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release
-sc) main" > /etc/apt/sources.list.d/ros-latest.list’ [21]

The next step is to set up the connection to the ROS key server, as follows it is
not possible to download the software:

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net --recv-
key 421C365BD9FF1F717815A3895523BAEEB01FA116 [21]

Afterwards the source.list should be updated to the latest version of all packages
by typing the basic Linux update command:

sudo apt-get update

After preparing the laptop as described in the last steps, it is possible to install
ROS just via the source list. On the computer the full desktop version is needed,
because there is a GUI included called rviz. Rviz is required to show the map of
the environment, set the starting and the ending point of the car, to portrare the

�24

http://packages.ros.org

route and to see all obstacles the LiDAR sensor will detect. To start the
installation type the following command into the terminal:

sudo apt-get install ros-indigo-desktop [21]

The next step is initializing rosdep, before ROS can be used. “It enables you to
easily install system dependencies for source you want to compile and is
required to run some core components in ROS“[21]:

sudo rosdep init
rosdep update

It’s recommended to install rosinstall, a command line tool, that enables the
downloading of ROS packages directly with one command from SCMs (e.g.
git):

sudo apt-get install python-rosinstall

Now the full desktop version of ROS is successfully installed and ready to
create a catkin workspace for the project.

First of all create the directory, where the workspace should be saved.
Replace the <path> with the favorite directory and <ws_name> with the name
of the project:

 mkdir -p <path>/<ws_name>/src

Afterwards change the working directory of the terminal to the src folder,
created in the last step and initialize the workspace:

cd <path>/<ws_name>/src
catkin_init_workspace

Now go back to the <ws_name> folder and build the workspace with the catkin
command, so one build and one devel folder appear .The last step is to source the
bash file:

cd <path>/<ws_name>/
catkin_make
source devel/setup.bash

The workspace is ready to use and tools needed can be installed.

1.2. urg_node
The urg_node can be installed simply, by cloning the GitHub repository. All
nodes in ROS will be saved in the src folder of the catkin workspace. Just open a

�25

new terminal, change the directory to the src folder of the workspace created in
section 2.1.1 and clone the urg_node repository:

cd <path>/<ws_name>/src
git clone https://github.com/ros‐drivers/urg_node.git

After finishing the download, a urg_node folder will appear containing a
CMakeLists.txt, that needs to be edited. Specify additional locations of header
files by adding one command in the file. First of all go to your new folder and
start the file with the editor:

cd urg_node
vim CMakeLists.txt

Now add the following line in before the catkin_package(...) command:

include_directories(include ${catkin_INCLUDE_DIRS})

The next step is to modify two lines in the source code, so the LiDAR will work
correctly. Therefore move on to the next src folder inside the urg_node folder,
open the urg_node.cpp with the editor and change the true in line 210 and the
following, so it looks like this:

 bool publish_intensity;
 pnh.param<bool>("publish_intensity", publish_intensity, false);
 bool publish_multiecho;
 pnh.param<bool>("publish_multiecho", publish_multiecho, false);

Last but not least build the whole workspace and install all nodes located in the
src folder of the workspace. Therefore change the working directory of the
terminal back to the root of the workspace:

cd <path>/<ws_name>/
catkin_make install

1.3. hector_slam
The hector_slam package can easily be installed via the source list of the linux
system by the apt-get install command. Open a new terminal and execute the
command:

sudo apt‐get install ros‐indigo‐hector‐slam

1.4. hector_slam_example
The hector_slam_example can be installed like a ROS node into the src folder of
the workspace. Just clone the git repository, add its path to the

�26

ROS_PACKAGE_PATH environment variable and install it with the rosdep
command:

cd <path>/<ws_name>/src
git clone https://github.com/DaikiMaekawa/hector_slam_example.git

ROS_PACKAGE_PATH=<path>/<ws_name>/src/hector_slam_example:
$ROS_PACKAGE_PATH

rosdep install hector_slam_example

1.5. navigation_stack
The navigation_stack is also rapidly installed via the source list:

sudo apt-get install ros-indigo-navigation

1.6. teb_local_planner
The teb_local_planner is also installed via the source list:

sudo apt-get install ros-indigo-teb-local-planner

2. RaspberryPi
The RaspberryPi is a small board working directly on the car to communicate
with the laptop and forward the velocity commands to the motor management.

The RaspberryPi uses Linux as operating system too. I decided to use
Ubuntu Mate 16.04, because it’s easy to install and it has a user friendly
interface. I haven’t tested the tools on other operating systems, so I would
advise users to also use this version.

2.1. ROS
Installing the Robot Operating System on the RaspberryPi is the same like on
the laptop. First of all update the source.list and set up the connection to the key
server, like it’s done on the laptop. Create a workspace and build it. Detailed
information how to it check the section 1.1 of the Installation chapter.

2.2. urg_node
The installation of the urg_node on the RaspberryPi is the same like on the
Laptop, described in section 2.1.2 of the Installation chapter. Just clone the git
repository into the workspace and modify the required files. After installing the

�27

https://github.com/DaikiMaekawa/hector_slam_example.git

node on the RaspberryPi the LiDAR can be used directly on the car to scan the
environment and publish its data.

�28

Appendix B: Configuration

The following sections are about all the configurations needs to be done to use
all the tools presented in chapter 2. The different parts describe the correct
utilization of the so called launch files in ROS and show how to set the different
parameters for a well navigating autonomous car. It also presents how to
configure the wifi connection, so the laptop and the RaspberryPi can publish
their data to each other.

1. Laptop
Most of the libraries and tools being used for the autonomous driving car are
running on the laptop and all of them needs to get configured. This section is
about how to setup all of them properly.

1.1. ROS
The most important thing in ROS are the nodes and tools getting started to use
the robot. They get started by the so called launch files. These files contain a
bunch of all the required tools, libraries and nodes. They are written in XML
and have to be saved with the suffix .launch.

In the specific case of the autonomous driving car presented in this thesis,
two different launch files are required. One starts the urg_node combined with
the hector_mapping library, to create the 2D map of the environment. The other
have to load the map, the urg_node, and the whole navigation and movement
management. Both of them also have to start the user interface rviz. Before
creating those launch files it’s recommended to create a new package in the
workspace to save all the required files. Let’s do it step by step.

Replace <package_name> with the name the new folder should be called:

cd <path>/<ws_name>/src
catkin_create_pkg <package_name>

Until the command is finished a new folder, containing a CMakeLists.txt and a
package.xml will appear. Now it’s time to customize the package, so it will fit
perfectly to the project. First step is to modify the package.xml file. It saves the
name, version, maintainer, dependencies and license information as XML tags.
The file is filled with lots of comments and a few standard tags. Open the file
and check it:

cd <path>/<ws_name>/src/<package_name>
gedit package.xml

�29

Let’s check all tags step by step. The <name> tag contains the name of the
package:

<name><package_name></name>

The <version> tag shows the version of the package. It’s important to use a
three dot convention:

<version>0.0.1</version>

The <description> tag can be edited at one’s leisure and should just describe
what is the package about. It’s just a user information:

<description>Favorite description</description>

Next is the <maintainer> tag, an important and required tag in the XML file. It
should show others who to contact, if there will be a problem with the package.
So one tag is required all other are optional. It follows a specific convention
with the email address as attribute[22]:

 <maintainer email=„email@provider.de“>Name</maintainer>

The <license> tag is also required and save the license used for the package:

<license>MIT</license>

Last step is to set the dependencies needed for the autonomous car. These are
all we want to be available at build and run time. In this case a few ones will be
set:

<buildtool_depend>catkin</buildtool_depend>
<run_depend>hector_mapping</run_depend>
<run_depend>hector_geotiff</run_depend>
<run_depend>hector_trajectory_server</run_depend>
<run_depend>hector_geotiff_plugins</run_depend>
<run_depend>hokuyo_node</run_depend>
<run_depend>urg_node</run_depend>
<run_depend>depthimage_to_laserscan</run_depend>
<run_depend>tf</run_depend>
<run_depend>rviz</run_depend>

Save and close the file. Now the package.xml file is finished. The <export> tag
isn't required for this project, so it can stay empty. The file whole I used for the
project can be checked in the Appendix chapter of the thesis.

Furthermore a few lines needs to be added in the CMakeLists.txt. The file is
located in the same folder like the package.xml file edited before. Open the
CMakeLists.txt place the following lines among the find_package(catkin Required)
command:

�30

catkin_package()
install (DIRECTORY launch

DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
USE_SOURCE_PERMISSIONS)

After editing these two file it’s finally time to go on with the launch files. At the
beginning the map of the area in which the car will drive needs to be created, so
let’s start with the required launch file.
First of all create a directory in the package folder, where all the files will be
saved. Then open the new folder, create a file inside and call it mapping.launch.
Let’s check step by step what to add to the file. All parameters and nodes added
to the file are between <launch> tags. At the beginning implement the following
four parameter:

<launch>
<param name=“pub_map_odom_transform“ value=“true“/>
<param name=“map_frame“ value=“map“/>
<param name=“base_frame“ value=“base_frame“/>
<param name=“odom_frame“ value=“odom“/>

To scan the environment the LiDAR sensor data is required, so it’s needed to
include the urg_node package. The sensor is connected via ethernet, so the IP
address of the sensor has to be set as node parameter. The address of the sensor
used in this thesis is set to 192.168.0.10 by the developer:

<node pkg=“urg_node“ type=“urg_node“ name=“urg_node“>
<param name=“ip_address“ type=“string“ value=“192.168.0.10“/>

</node>

To create the whole map a few transform information are required. They
present the distances from the center of the car to the LiDAR sensor. So it
basically shows where the sensor is placed in the car. These information are
required to work with the mapping library:

<node pkg=“tf“ type=“static_transform_publisher“ name=“map_2_odom“
args=“0 0 0 0 0 0 /map /odom 100“/>

<node pkg=“tf“ type=“static_transform_publisher“
name=“odom_2_base_footprint“ args=“0 0 0 0 0 0 /odom /base_footpirnt
100“/>

<node pkg=“tf“ type=“static_transform_publisher“
name=“base_footprint_2_base_link“ args=“0 0 0 0 0 0 /base_footprint /
base_link 100“/>

<node pkg=“tf“ type=“static_transform_publisher“
name=“base_link_2_base_stabilized_link“ args=“0 0 0 0 0 0 /base_link /
base_stabilized 100“/>

�31

<node pkg=“tf“ type=“static_transform_publisher“
name=“base_frame_2_laser_link“ args=“0 0 0 0 0 0 /base_frame /laser
100“/>

<node pkg=“tf“ type=“static_transform_publisher“
name=“base_2_nav_link“ args=“0 0 0 0 0 0 /base_frame /nav 100“/> [6]

To display the map and see the driven trajectory the interface rviz is also
required. As config for the rviz tool, it is possible to use the one from the
hector_slam_example package:

<node pkg=“rviz“ name=“rviz“ args=“-d $(find hector_slam_example)/
launch/rviz_cfg.rviz“/>

To finish this launch file just two more files need to be included and the
<launch> tag have to get closed:

<include file=“$(find hector_slam_example)/launch/
default_mapping.launch“/>
<include file=“$(find hector_geotiff)/launch/geotiff_mapper.launch“/>
</launch>

The second launch file is to start the autonomous driving car and to load the
map and all the navigation, movement and localization packages. Create a new
file and name it autonomous_drive.launch. My launch file starts with a map
server. It is important because the server is loading the 2D map of the
environment in which the car is driving. To start open the still empty
autonomous_drive.launch and start editing:

<launch>
<node name=“map_server“ pkg=“map_server“ args=“$(arg map_file)“/>

After loading the map we need to set the parameter the same values as in the
mapping.launch:

<param name=“pub_map_odom_transform“ value=“true“/>
<param name=“map_frame“ value=“map“/>
<param name=“base_frame“ value=“base_frame“/>
<param name=“odom_frame“ value=“odom“/>

Also the transform nodes are the same as in the mapping.launch and can be
added by copy and paste :

<node pkg=“tf“ type=“static_transform_publisher“
name=“base_link_2_base_stabilized_link“ args=“0 0 0 0 0 0 /base_link /
base_stabilized 100“/>

<node pkg=“tf“ type=“static_transform_publisher“
name=“base_frame_2_laser_link“ args=“0 0 0 0 0 0 /base_frame /laser
100“/>

�32

<node pkg=“tf“ type=“static_transform_publisher“
name=“base_2_nav_link“ args=“0 0 0 0 0 0 /base_frame /nav 100“/>[6]

The rest of the launch file needs a configuration of all the packages itself, so it’s
explained in each subsection what to add. This gives a better understanding
why everything is added.

1.2. navigation_stack
The navigation stack includes the two route planners and offer the possibility to
drive autonomously. First of all the different cost maps needs to be added to the
workspace. Create a new folder called costmaps in the package folder and
change into the directory:

mkdir <path>/<ws_name>/src/<package_name>/costmaps
cd <path>/<ws_name>/src/<package_name>/costmaps

Create the following 4 .yaml files in the folder:

costmap_common_params.yaml
local_costmap_params.yaml
global_costmap_params.yaml
teb_local_planner_params.yaml

These are the files containing all the parameters for the different manners and
the navigation stack. Let’s start with the configuration of the
costmap_common_params.yaml , open the file and add the filling lines:

footprint: [[-0.1,-0.125], [0.5,-0.125], [0.5,0.125], [-0.1,0.125]]
transform_tolerance: 0.2
map_type: costmap
obstacle_layer:
 enabled: true
 obstacle_range: 3.0
 raytrace_range: 3.5
 inflation_radius: 0.2
 track_unknown_space: false
 combination_method: 1
 observation_sources: laser_scan_sensor
 laser_scan_sensor: {sensor_frame: base_link, data_type: LaserScan,
topic: scan, marking: true, clearing: true}
inflation_layer:
 enabled: true
 cost_scaling_factor: 10.0 # exponential rate at which the obstacle
cost drops off (default: 10)
 inflation_radius: 0.5 # max. distance from an obstacle at which
costs are incurred for planning paths.
static_layer:
 enabled: true
 map_topic: "/map"

�33

Then open the local_costmap_params.yaml and fill in the following:

local_costmap:
 global_frame: /map
 robot_base_frame: base_link
 update_frequency: 3.0
 publish_frequency: 2.0
 static_map: false
 rolling_window: true
 width: 4
 height: 4
 resolution: 0.1
 transform_tolerance: 10

 plugins:
 - {name: static_layer, type: "costmap_2d::StaticLayer"}
 - {name: obstacle_layer, type: "costmap_2d::ObstacleLayer"}

Go on with the global_costmap_params.yaml and add the following:

global_costmap:
 global_frame: /map
 robot_base_frame: base_link
 update_frequency: 5.0
 publish_frequency: 3.0
 static_map: true

 transform_tolerance: 30

And last but not least open the teb_local_planner_params.yaml and add the
following:

TebLocalPlannerROS:
 odom_topic: /odom
 map_frame: /map
 # Trajectory
 teb_autosize: True
 dt_ref: 0.4
 dt_hysteresis: 0.1
 global_plan_overwrite_orientation: True
 max_global_plan_lookahead_dist: 3.0
 feasibility_check_no_poses: 2
 allow_init_backward_motion: false
 # Robot
 max_vel_x: 0.4
 max_vel_x_backwards: 0.2
 max_vel_theta: 0.3 # the angular velocity is also bounded by
min_turning_radius in case of a carlike robot (r = v / omega)
 acc_lim_x: 0.5
 acc_lim_theta: 0.5
 # ***************** Carlike robot parameters ********************
 min_turning_radius: 2.7 # Min turning radius of the carlike
robot (compute value using a model or adjust with rqt_reconfigure
manually)
 wheelbase: 0.55 # Wheelbase of our robot

�34

cmd_angle_instead_rotvel: True # stage simulator takes the angle
instead of the rotvel as input (twist message)
 footprint_model: # types: "point", "circular", "two_circles", "line",
"polygon"
 type: "line"
 #radius: 0.2 # for type "circular"
 line_start: [-0.55, 0.0] # for type "line"
 line_end: [0.0, 0.0] # for type "line"
 #front_offset: 0.32 # for type "two_circles"
 #front_radius: 0.27 # for type "two_circles"
 #rear_offset: -0.25 # for type "two_circles"
 #rear_radius: 0.27 # for type "two_circles"
 #vertices: [[0.25, -0.05], [0.18, -0.05], [0.18, -0.18], [-0.19,
-0.18], [-0.25, 0], [-0.19, 0.18], [0.18, 0.18], [0.18, 0.05],
[0.25,0.2] # for type "polygon"
 # GoalTolerance
 xy_goal_tolerance: 0.5
 yaw_goal_tolerance: 0.3
 free_goal_vel: False
 # Obstacles
 min_obstacle_dist: 0.25 # This value must also include our robot's
expansion, since footprint_model is set to "line".
 include_costmap_obstacles: True
 costmap_obstacles_behind_robot_dist: 1.5
 obstacle_poses_affected: 30
 costmap_converter_plugin: ""
 costmap_converter_spin_thread: True
 costmap_converter_rate: 5
 # Optimization
 no_inner_iterations: 3
 no_outer_iterations: 3
 optimization_activate: True
 optimization_verbose: False
 penalty_epsilon: 0.1
 weight_max_vel_x: 2
 weight_max_vel_theta: 1
 weight_acc_lim_x: 1
 weight_acc_lim_theta: 1
 weight_kinematics_nh: 1000
 weight_kinematics_forward_drive: 100
 weight_kinematics_turning_radius: 1
 weight_optimaltime: 1
 weight_obstacle: 50
 weight_dynamic_obstacle: 10 # not in use yet
 # Homotopy Class Planner
 enable_homotopy_class_planning: True
 enable_multithreading: True
 simple_exploration: False
 max_number_classes: 4
 selection_cost_hysteresis: 1.0
 selection_obst_cost_scale: 1.0
 selection_alternative_time_cost: False
 roadmap_graph_no_samples: 15
 roadmap_graph_area_width: 5
 h_signature_prescaler: 0.5
 h_signature_threshold: 0.1
 obstacle_keypoint_offset: 0.1
 obstacle_heading_threshold: 0.45
 visualize_hc_graph: False

�35

These are all the parameters, who affect the result and the performance of the
local planner described in the thesis. After creating all these parameter files,
they need to get added to the .launch of the robot:

<node pkg="move_base" type="move_base" respawn="false"
name="move_base" output="screen">

<rosparam file="$(find <package_name>)/costmaps/
costmap_common_params.yaml“ command="load" ns="global_costmap" />

<rosparam file="$(find <package_name>)/costmaps/
costmap_common_params.yaml“ command="load" ns="local_costmap" />

<rosparam file="$(find <package_name>)/costmaps/
local_costmap_params.yaml“ command="load" />

 <rosparam file="$(find find <package_name>)/costmaps/
global_costmap_params.yaml“ command="load" />

<rosparam file="$(find find <package_name>)/costmaps/
teb_local_planner_params.yaml“ command="load" />

<param name="base_local_planner" value="teb_local_planner/
TebLocalPlannerROS" />
 <param name="controller_frequency" value="5.0" />
 <param name="controller_patience" value="10.0" />

<param name="clearing_rotation_allowed" value="false" />
</node>

Now the navigation_stack is fully implemented.

1.3. amcl
For the localization part an odeometry publisher is needed. So first of all create
a source folder in your package folder:

mkdir <path>/<ws_name>/src/<package_name>/src

First create a file called odom_publish.cpp and fill it with the following lines of
code. This code work with the car used in this thesis. It need to be edited
specific for the car used:

#include <ros/ros.h>
#include <tf/transform_broadcaster.h>
#include <nav_msgs/Odometry.h>
#include <geometry_msgs/Twist.h>
float velocity;
float angle;
void vel_sub (const geometry_msgs::Twist::ConstPtr& vel_msg) {
 velocity = vel_msg->linear.x;
 angle = vel_msg->angular.z;
}
double dt;

�36

double delta_x;
double delta_y;
double delta_th;
int main(int argc, char** argv){
 ros::init(argc, argv, "odometry_publisher");
 ros::NodeHandle n;
 ros::Publisher odom_pub = n.advertise<nav_msgs::Odometry>("odom",
50);
 tf::TransformBroadcaster odom_broadcaster;
 geometry_msgs::Twist vel_cmd;
 ros::Subscriber cmd_vel=n.subscribe("cmd_vel" , 10 , vel_sub);
 double x = 0.0;
 double y = 0.0;
 double th = 0.0;
 double vx = velocity;
 double vy = -0.0;
 double vth = angle;
 ros::Time current_time, last_time;
 current_time = ros::Time::now();
 last_time = ros::Time::now();
 ros::Rate r(50);
 while(n.ok()){
 ros::spinOnce(); // check for incoming messages
 current_time = ros::Time::now();
 //compute odometry in a typical way given the velocities of the
robot
 if(velocity > 0){
 dt = (current_time - last_time).toSec();
 delta_x = (0.45 * cos(th) - vy * sin(th)) * dt;
 delta_y = (0.45 * sin(th) + vy * cos(th)) * dt;
 delta_th = angle * dt;
}
 else if(velocity < 0){
 dt = (current_time - last_time).toSec();
 delta_x = (-0.55 * cos(th) - vy * sin(th)) * dt;
 delta_y = (-0.55 * sin(th) + vy * cos(th)) * dt;
 delta_th = angle * dt;
}
 else {
 dt = (current_time - last_time).toSec();
 delta_x = (velocity * cos(th) - vy * sin(th)) * dt;
 delta_y = (velocity * sin(th) + vy * cos(th)) * dt;
 delta_th = angle * dt;
}
 x += delta_x;
 y += delta_y;
 th += delta_th;
//since all odometry is 6DOF we'll need a quaternion created from yaw
 geometry_msgs::Quaternion odom_quat =
tf::createQuaternionMsgFromYaw(th);
 //first, we'll publish the transform over tf
 geometry_msgs::TransformStamped odom_trans;
 odom_trans.header.stamp = current_time;
 odom_trans.header.frame_id = "odom";
 odom_trans.child_frame_id = "base_link";
 odom_trans.transform.translation.x = x;
 odom_trans.transform.translation.y = y;
 odom_trans.transform.translation.z = 0.0;
 odom_trans.transform.rotation = odom_quat;

�37

 //send the transform
 odom_broadcaster.sendTransform(odom_trans);
 //next, we'll publish the odometry message over ROS
 nav_msgs::Odometry odom;
 odom.header.stamp = current_time;
 odom.header.frame_id = "odom";
 //set the position
 odom.pose.pose.position.x = x;
 odom.pose.pose.position.y = y;
 odom.pose.pose.position.z = 0.0;
 odom.pose.pose.orientation = odom_quat;
 //set the velocity
 odom.child_frame_id = "base_link";
 odom.twist.twist.linear.x = vx;
 odom.twist.twist.linear.y = vy;
 odom.twist.twist.angular.z = vth;
 //publish the message
 odom_pub.publish(odom);
 last_time = current_time;
 r.sleep();
 }
}

Now it’s required to add the following two lines at the end of the CMakeLists.txt
of the Package, so the odom_publish.cpp will be build:

add_executable(odom_publish src/odom_publish.cpp)
target_link_libraries(odom_publish ${catkin_LIBRARIES})

Now we need to add amcl and the odom_publish.cpp to the launch file:

<include file="$(find amcl)/examples/amcl_omni.launch" />
<node pkg=“<package_name>" type="odom_publish" name="odom_publish"/>

At the end build the workspace

2. RaspberryPi
On the RaspberryPi an interface to forward the velocity commands to the
Arduino board is required. Create a file in a catkin_package and subscribe the
cmd_vel topic and send the data to the motor management. My code is a python
script, but on another car of course the interface needs to be adjusted:

import rospy
import serial
from geometry_msgs.msg import Twist
port = '/dev/ttyUSB0'
ard = serial.Serial(port, 19200)
buffer = "||"
def data_to_car(data):
 global buffer
 speed =int(data.linear.x*10)
 angle =(round(data.angular.z, 2)*60)*-1

�38

 if speed==0.0:
 toAdr = "||||b;" + str(angle) + ";"
 elif speed > 0.0:
 toAdr = "||||" + "8" + ";" + str(angle) + ";"
 else:
 toAdr = "||||" + "-25" + ";" + str(angle) + ";"
 if buffer != toAdr:
 rospy.loginfo("Try to put: " + toAdr);
 ard.write(toAdr)
 ard.flush()
 buffer = toAdr
def listener():
 rospy.init_node('car_interface', anonymous=True)
 rospy.Subscriber("cmd_vel", Twist, data_to_car)
 #ard.close()
 rospy.spin()
if __name__ == '__main__':
 listener()

�39

Bibliografie

[1] Statistisches Bundesamt, Unfallbilanz 2015: Mehr Unfälle und mehr
Verkehrstote. July 2016.

[2] Esser, M., Automated driving. June 2015.
[3] Open Source Robotics Foundation. About ROS. Available from: http://

www.ros.org/about-ros/.
[4] Rockey, C. Package Summary. Available from: http://wiki.ros.org/

urg_node.
[5] Kohlbrecher, S. Package Summary. Available from: http://wiki.ros.org/

hector_mapping.
[6] Maekawa, D. hector_slam_example. Available from: https://github.com/

DaikiMaekawa/hector_slam_example.
[7] Marder-Eppstein, E. Package Summary. Available from: http://wiki.ros.org/

navigation.
[8] Rösmann, C. Package Summary. Available from: http://wiki.ros.org/

teb_local_planner.
[9] Rösmann, C. Planning for car-like robots. Available from: http://

wiki.ros.org/teb_local_planner/Tutorials/Planning%20for%20car-
like%20robots.

[10] Hugh F. Durrant-Whyte, J.J.L., Mobile Robot Localization by Tracking
Geometric Beacons.

[11] Randall Smith, M.S., Peter Cheeseman, Estimating Uncertain Spatial
Relationships in Robotics.

[12] Søren Riisgaard, M.R.B., SLAM for Dummies.
[13] Hokuyo Automatic Co. LTD. UTM-30LX-EW. Available from: http://

www.hokuyo-aut.jp/02sensor/07scanner/download/products/utm-30lx-ew/.
[14] Seeed studio. RPLIDAR - 360 degree Laser Scanner Development Kit.

Available from: https://www.seeedstudio.com/RPLIDAR-360-degree-
Laser-Scanner-Development-Kit-p-1823.html.

[15] Microsoft Corporation. Kinect Sensor. 2012; Available from: https://
msdn.microsoft.com/en-us/library/hh438998.aspx.

[16] Solà, J., Simulataneous localization and mapping with the extended Kalman
filter. 2014.

[17] LTD, H.A.C. Scanning Laser Range Finder UTM-30LX-EW Specification.
2012.

[18] Stefan Kohlbrecher, O.v.S., Johannes Meyer, Uwe Klingauf, A Flexible and
Scalable SLAM System with Full 3D Motion Estimation. Technische
Universität Darmstadt.

[19] Yan, M. Dijkstra Algorithm. Available from: http://math.mit.edu/~rothvoss/
18.304.3PM/Presentations/1-Melissa.pdf.

�40

[20] Frank Dellaert, D.F., Wolfram Burgard, Sebastian Thrun,, Monte Carlo
Localization for Mobile Robots, in Computer Science Department. Carnegie
Mellon University.

[21] Open Source Robotics Foundation. Ubuntu install of ROS Indigo. Available
from: http://wiki.ros.org/indigo/Installation/Ubuntu.

[22] Open Source Robotics Foundation. CreatingPackage. Available from:
http://wiki.ros.org/ROS/Tutorials/catkin/CreatingPackage.

�41

