Robotics and Embedded Systems Bachelor/Master Thesis Cooperative Control Algorithm Design for Opthalmic Microsurgical Robot

Project Description

Currently, it is estimated that 45 million people worldwide are blind, with an increase of 1-2 million each year [1]. Vitreoretinal diseases are important causes of blindness taking up 20%. The physical tremor (about 108 μ m RMS [2]) from microsurgeon's hand limits the performance of clinical treatment. Medical robot is a promising assistant tool to cancel the tremor and complete the microsurgery, e.g. delivering drugs to a retinal vein in 60 μ m diameter. Cooperative control that the surgical tool is controlled by robot arm and operator's hand simultaneously is an efficient method to cancel the tremor and guarantee the quality of surgery.

Your Task

Based on the existing project of iRAM!S [3], this task aims to realize cooperative control by constructing a virtual robot control environment based on dynamical robot experimental tools like Guzebo/V-Rep & testing several control algorithms to find the most dexterity one. These algorithms will be tested and analyzed on the physical robot developed by iRAM!S.

Required Skills

•Interest in robotics and good programming skills in at least one programming language, e.g. MATLAB, C/C++, Python

•Experience with or interest in learning dynamical robot experimental platform

References

- [1] Global estimates of visual impairment: 2010
- [2] Physiological tremor amplitude during retinal microsurgery
- [3] http://www6.in.tum.de/Main/ResearchiRAM!S

Contact

Mingchuan Zhou mingchuan.zhou@in.tum.de MI 03.07.042 +49.89.289.18111 M. Ali Nasseri ali.nasseri@mri.tum.de Kai Huang kai.huang@tum.de

