Matlab Exercises
Lecture 5 — Bayesian tracking with Kalman Filters and Condensation
1) Kalman Filter implementation

Write a Matlab function that implements the two steps of Kalman Filter
(prediction+correction):

A. Prediction: Given a Gaussian motion model with covariance matrix Ay, and linear
matrix A, compute the predicted (prior) state s” and covariance matrix S’

Inputs: Matrix A, covariance Ay, old posterior mean si.; and covariance Si.;
Outputs: new Prior mean and covariances, (s',S)

B. Correction: Given a Gaussian measurement model with covariance matrix Ay, and
linear matrix C, compute the corrected (posterior) state s; and covariance matrix S;

Inputs: Matrix C, covariance A, prior mean s” and covariance S°
Outputs: new posterior mean and covariances, (st,S)

2) Kalman Filter example

With the previously implemented functions, now test the Bayesian tracker (Kalman)
for the following case:

Suppose to have a random point moving on a 2D plane, with a random WNA motion:
St = ASt.1 + W

with A = diag(0,0,1,1) (the noise is only in acceleration, so it goes into the velocity
equations, not in the position!)

Suppose the initial state is also not known, and has a prior probability distribution Py(s)
= Gauss(0,10), that is: the initial state is all zero (2D pose+velocity) both with
uncertainty o°=10.

The measurement z is a position measurement: z = Cs+v, where C = [I 0] is a 4x2
matrix that takes only the upper part of s (i.e. the pose), plus a 2D measurement
uncertainty v=Gauss(0,1).

With the given model, do the following parallel things:

A. Simulate the random process:

- Give a random initial state sp according to Py (use the Matlab function randn() to

generate Gaussian random numbers)
- At time t, apply the motion model (1) by generating a random acceleration w;, and



updating the real state s.

- At time t, simulate also the measurement z; = Csi+v; by generating random 2D
Gaussian number v.

B. Apply the Kalman Filter:

- At time 0, use only the correction function, with the prior knowledge : so- = [0,0], So-
=diag(10,10,10,10)

- At time t, use both prediction+correction functions developed in the previous
exercise.

C. Compare the real state with the Kalman estimation (plot a graph of the state
components in time: x(t), y(t) and x,y velocity)

- At each time, compute the difference between the real state (simulated in A) and the
estimated posterior state obtained in B (the pose only is sufficient)

- Plot the results on a 2D graph: the real trajectory Sp,s1,... and the estimated one
(posterior), again only the pose.

3) Extended Kalman Filter: track a flying ball (DLR system)

Suppose to have two cameras (a stereo system), looking a ball thrown across the room.

The setup is the one described in Exercise 3-Lecture 4, as below indicated
Y

C1

R e

The ball p=(x,y,z) describes a parabolic trajectory during the flight, and its motion model
can be described by a constant gravity acceleration towards the bottom (-g) + a small
random component w (e.g. air resistance in different points of the trajectory).

This motion (described in Lecture 4 - Slide 10) gives a probabilistic state model:

P(syst.1) = Gauss (A si.1+C, BAwB").

with



I 1At 2 - 2
Ao B IAt Co glAt
0 | IAt —glAt
(A s.1+C) is the prediction of s;
g =[0981 0] is the gravity acceleration (y direction)

Aw = diag(0,0,0,1,1,1) is the covariance of motion noise (acceleration noise)
At = 0.1 is the time sampling interval (10 frames/sec).

The state s is a (3+3)-vector (position+velocity), and positions are measured in [mm].
The measurement z (solution of the other exercise) is the collection of two positions
located on the two camera images:

Z = (ps1, Ps2), Which are 4 image coordinates (X1,Y1,X2,Y2).

The measurement model, for a given hypothesis p, gives an expected measurement

Xcl rx ycl ry X I y I
Koy N Yag Iy eI A
psl,exp(pcl) chl 2 Z., 2) psZ,exp(pcz) [Zcz f+ 5 2, f+ 2]
Pey = (XC1’ Yerr ZCl) =T1p Peo = (Xch Yeor Zcz) :TZ p

where p¢; and p, are the coordinates of p in the two cameras (extrinsic transformations
Ty, T2), and Psi.exp, Ps2,exp are the projections on the screens (intrinsic transformation: f, ry,

ry).
The parameters for this example are the following ones:

T1: only translation to the left ty = -100mm

T,: only translation to the right t, = +100mm

f = 1000, ry = 640 pixels, ry = 480 pixels

Ay = covariance of measurement noise = | (1 pixel uncertainty)

The probabilistic measurement model is (nonlinear ze.,+Gaussian), therefore an Extended
Kalman Filter can be used for Bayesian tracking.

0z, . . )
A. Compute the Jacobian matrix J = ——= at given hypothesis s, (write a Matlab
function returning J, with input s)

B. Implement the Extended Kalman Filter (equations in Lecture 5-Slide 19).
NOTE: the motion model is already linear, so the Jacobian is just A.

C. Do a simulated experiment (real vs. estimated state), where the ball is thrown from the
ground:

Real initial state po = [0,0,0] with initial velocity vo = [0, 10, 10] (forward z, up y).
Initial state hypothesis: po = [0,0,0], vo = [0,0,0] (no knowledge).
Perturbation of acceleration during the flight = Gaussian random w, with covariance 1.



Run the EKF, and report the results as for the Kalman filter (trajectories).
4) Particle Filters implementation
Implement a basic Particle Filter, by defining the 3 functions :

A. Re-sample: given a N-particles set (s','), take a new particle set obtained by
sampling N times between (1,...,N) (with evtl. repetitions) with
probabilities (r*,...,7").

B. Move: for every re-sampled particle, apply a motion model s; = g(St.1,w;), for

example a WNA motion with given acceleration covariance. For this purpose,
generate a random acceleration for every particle (hypothesis).

C. Re-weight: give new weights 7' = P(z[s") to the moved particles, by using a
Likelihood function P(z|s) given by the user.

5) Particle Filters example

Apply the Particle Filters implementation to the same example used for Kalman Filter;
here the Likelihood is Gaussian: P(z|s) = Gauss(Cs,Ay).



