
Matlab Exercises

Lecture 5 – Bayesian tracking with Kalman Filters and Condensation

1) Kalman Filter implementation

 Write a Matlab function that implements the two steps of Kalman Filter

(prediction+correction):

A. Prediction: Given a Gaussian motion model with covariance matrix Λw, and linear
matrix A, compute the predicted (prior) state s- and covariance matrix S-

Inputs: Matrix A, covariance Λw, old posterior mean st-1 and covariance St-1
Outputs: new Prior mean and covariances, (s-,S-)

B. Correction: Given a Gaussian measurement model with covariance matrix Λv, and
linear matrix C, compute the corrected (posterior) state st and covariance matrix St

Inputs: Matrix C, covariance Λv, prior mean s- and covariance S-
Outputs: new posterior mean and covariances, (st,St)

2) Kalman Filter example

With the previously implemented functions, now test the Bayesian tracker (Kalman)
for the following case:

Suppose to have a random point moving on a 2D plane, with a random WNA motion:

st = Ast-1 + wt

with Λw = diag(0,0,1,1) (the noise is only in acceleration, so it goes into the velocity
equations, not in the position!)

Suppose the initial state is also not known, and has a prior probability distribution P0(s)
= Gauss(0,10), that is: the initial state is all zero (2D pose+velocity) both with
uncertainty σ2=10.

The measurement z is a position measurement: z = Cs+v, where C = [I 0] is a 4x2
matrix that takes only the upper part of s (i.e. the pose), plus a 2D measurement
uncertainty v=Gauss(0,1).

With the given model, do the following parallel things:

A. Simulate the random process:

- Give a random initial state s0 according to P0 (use the Matlab function randn() to
generate Gaussian random numbers)
- At time t, apply the motion model (1) by generating a random acceleration wt, and

updating the real state st.
- At time t, simulate also the measurement zt = Cst+vt by generating random 2D
Gaussian number v.

B. Apply the Kalman Filter:

- At time 0, use only the correction function, with the prior knowledge : s0- = [0,0], S0-
=diag(10,10,10,10)

- At time t, use both prediction+correction functions developed in the previous
exercise.

C. Compare the real state with the Kalman estimation (plot a graph of the state
components in time: x(t), y(t) and x,y velocity)

- At each time, compute the difference between the real state (simulated in A) and the
estimated posterior state obtained in B (the pose only is sufficient)

- Plot the results on a 2D graph: the real trajectory s0,s1,… and the estimated one
(posterior), again only the pose.

3) Extended Kalman Filter: track a flying ball (DLR system)

Suppose to have two cameras (a stereo system), looking a ball thrown across the room.

The setup is the one described in Exercise 3-Lecture 4, as below indicated

The ball p=(x,y,z) describes a parabolic trajectory during the flight, and its motion model
can be described by a constant gravity acceleration towards the bottom (-g) + a small
random component w (e.g. air resistance in different points of the trajectory).
This motion (described in Lecture 4 - Slide 10) gives a probabilistic state model:
P(st|st-1) = Gauss (A st-1+C, BΛwBT).

with

p

ps2ps1

c2
c1

T1 T2

ry

x
z

rx

y

(A st-1+C) is the prediction of st
g = [0 981 0] is the gravity acceleration (y direction)
Λw = diag(0,0,0,1,1,1) is the covariance of motion noise (acceleration noise)
Δt = 0.1 is the time sampling interval (10 frames/sec).

The state s is a (3+3)-vector (position+velocity), and positions are measured in [mm].
The measurement z (solution of the other exercise) is the collection of two positions
located on the two camera images:
z = (ps1, ps2), which are 4 image coordinates (x1,y1,x2,y2).

The measurement model, for a given hypothesis p, gives an expected measurement

where pc1 and pc2 are the coordinates of p in the two cameras (extrinsic transformations
T1, T2), and ps1,exp, ps2,exp are the projections on the screens (intrinsic transformation: f, rx,
ry).

The parameters for this example are the following ones:

T1: only translation to the left tx = -100mm
T2: only translation to the right tx = +100mm
f = 1000, rx = 640 pixels, ry = 480 pixels
Λv = covariance of measurement noise = I (1 pixel uncertainty)

The probabilistic measurement model is (nonlinear zexp+Gaussian), therefore an Extended
Kalman Filter can be used for Bayesian tracking.

A. Compute the Jacobian matrix J = at given hypothesis s, (write a Matlab
function returning J, with input s)

B. Implement the Extended Kalman Filter (equations in Lecture 5-Slide 19).
NOTE: the motion model is already linear, so the Jacobian is just A.

C. Do a simulated experiment (real vs. estimated state), where the ball is thrown from the
ground:

Real initial state p0 = [0,0,0] with initial velocity v0 = [0, 10, 10] (forward z, up y).
Initial state hypothesis: p0 = [0,0,0], v0 = [0,0,0] (no knowledge).
Perturbation of acceleration during the flight = Gaussian random w, with covariance 1.

p

p

⎥
⎦

⎤
⎢
⎣

⎡

Δ−
Δ−

=⎥
⎦

⎤
⎢
⎣

⎡

Δ
Δ

=⎥
⎦

⎤
⎢
⎣

⎡ Δ
=

tI
tI

C
tI
tI

B
I

tII
A

g
g 22

0

pTzyx

r
f

z
yrf

z
xp

cccc

y

c

cx

c

c
cs

11111

1

1

1

1
1exp,1

),,(
2

,
2

)(

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

s∂
∂zexp

pTzyxp

r
f

z
yrf

z
xpp

ccc

y

c

cx

c

c
cs

22222

2

2

2

2
2exp,2

),,(
2

,
2

)(

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

c

Run the EKF, and report the results as for the Kalman filter (trajectories).

4) Particle Filters implementation

 Implement a basic Particle Filter, by defining the 3 functions :

 A. Re-sample: given a N-particles set (si,πi), take a new particle set obtained by
 sampling N times between (1,…,N) (with evtl. repetitions) with
 probabilities (π1,…,πN).

 B. Move: for every re-sampled particle, apply a motion model st = g(st-1,wt), for
 example a WNA motion with given acceleration covariance. For this purpose,
 generate a random acceleration for every particle (hypothesis).

 C. Re-weight: give new weights πi = P(z|si) to the moved particles, by using a
 Likelihood function P(z|s) given by the user.

5) Particle Filters example

 Apply the Particle Filters implementation to the same example used for Kalman Filter;
 here the Likelihood is Gaussian: P(z|s) = Gauss(Cs,Λv).

