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Abstract. Embedded systems architectures are increasingly becoming
programmable, which means that an architecture can execute a set of ap-
plications instead of only one. This makes these systems cost-effective,
as the same resources can be reused for another application by repro-
gramming the system. To design these programmable architectures, we
present in this article a number of concepts of which one is the Y-chart
approach. These concepts allow designers to perform a systematic explo-
ration of the design space of architectures. Since this design space may
be huge, it is narrowed down in a number of steps. The concepts pre-
sented in this article provide a methodology in which architectures can
be obtained that satisfies a set of constraints while establishing enough
flexibility to support a given set of applications.

Key words: Y-chart approach, Architecture Template, Stack of Y-
charts, Design Space Exploration, Abstraction Pyramid, Embedded Sys-
tems

1 Introduction

The increasing digitalization of information in text, speech, video, audio and
graphics has resulted in a whole new variety of digital signal processing (DSP)
applications like compression and decompression, encryption, and all kinds of
quality improvements. A prerequisite for making these applications available to
the consumer market is the complete embedding of the systems onto a single
chip that is realized in a cost effective way into silicon. This leads to a de-
mand for embedded systems architectures that are increasingly programmable
i.e., architectures that can execute a set of applications instead of only one spe-
cific application. By reprogramming the architecture, they can execute other
applications with the same resources, which makes these programmable systems
cost-effective.

An example of a programmable embedded system is given in Figure 1. It is a
high-performance digital signal processing system that should eventually find its
way into high-end TV-sets or set-top boxes [1]. The architecture consists of one
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Fig. 1. High-performance digital signal processing system.

or more programmable processors (both CPUs and DSPs), some programmable
interconnect, a number of dedicated hardware accelerators (also called processing
elements) and memory, all on a single chip.

The system could be designed by specifying the architecture at a very detailed
level using hardware description languages like VHDL, or Verilog, an approach
called the golden point design [2]. A consequence of this approach is that de-
signers work with very detailed descriptions of architectures. The level of detail
involved limits the design space of the architectures that designers can explore,
which gives them little freedom to make trade-offs between programmability,
utilization of resources, and silicon area. Because designers cannot make these
trade-offs, designs end up underutilizing their resources and silicon area and are
thus unnecessarily expensive, or worse, they cannot satisfy the imposed design
objectives.

Hardware/software codesign [3] is another approach to design the architec-
ture. This design methodology uses a refinement approach in which one ap-
plication description is refined in a number of steps into an architecture. This
refinement approach has proven to be very effective for implementing a single
algorithm into hardware. The approach is, however, less effective for a set of
applications although a first attempt has been addressed in [4]. In general, the
refinement approach lacks the ability to deal effectively with making trade-offs
in favor of the set of applications.

Yet another design methodology is to assume that the architecture shown
in Figure 1, does not represent a single instance, but rather a parameterized
description of an architecture; it is an architecture template1. The architecture
template establishes how the various elements should communicate and what the
overall structure should look like. The number of processing elements to use, the
kind of functionally the processing elements provide etc. is still open. Only by
selecting values for all the parameters is a particular architecture instance cre-
ated. Based on results obtained in general purpose processor design (GPP) [5],

1 Some speak about a platform. We use the term architecture template
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in particular RISC based architectures, we believe that using a template archi-
tecture and exploring this template on the basis of quantitative data is a good
approach to design embedded system architectures that are programmable.

Designing architecture instances from an architecture template imposes new
design challenges. Suppose a designer needs to design an architecture for a high-
end TV set, given the template shown in Figure 1. Some of the design choices
are: what the processing elements (PEs) should look like, what kind of control
strategy should be used in the controller of the PEs, and what kind of general
purpose processor should be used. Also, these choices need to be made while
a number of constraints need to be satisfied, like throughput, silicon cost, sili-
con efficiency, and power dissipation, all for a set of applications. In this article
we will present a design methodology, which is based on the Y-chart approach,
which can help designers to explore the design space of the architecture tem-
plate in a systematic way, to design programmable embedded systems that are
programmable and satisfy the design constraints.

The Y-chart approach presented in this article is in itself not new. It has been
introduced for the first time in [6]. However, this article is the first time that we
present the full methodology for designing programmable embedded systems.
In this article, we will present a number of concepts that are part of the de-
sign methodology. The concepts include, for example, the Y-chart approach, but
also design space exploration, stacks of y-charts, mapping, and the abstraction
pyramid.

This article is organized as follows. We start by introducing the Y-chart
approach in section 2. In Section 3, we explain how to perform design space ex-
ploration using the Y-chart. In Section 4, we explain at which level of abstraction
a Y-chart needs to be constructed, leading to a particular design methodology in
which the design space is stepwise reduced. Mapping applications onto architec-
ture instances is central to the Y-chart but in general very difficult. In Section 5,
we propose the basic idea that can help to make the mapping process more
manageable at different levels of abstraction. In Section 6, we put the Y-chart
approach in context of the design of both general purpose and application-specific
processors. In Section 7, we conclude this article.

2 The Evaluation of Alternative Architectures

The problem designers face when working with an architectural template is the
many architectural choices involved. In the context of the architecture template,
on what basis should designers decide that one architectural choice is better than
another? We somehow have to provide designers with a basis on which they can
compare architectural choices in an objective way.

The ranking of architectural alternatives should be based on evaluation of
performance models of architecture instances. A performance model expresses
how performance metrics like utilization and throughput relate to design param-
eters of the architecture instance. The evaluation of performance models results
in performance numbers that provide designers with quantitative data. This data
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Fig. 2. The Y-chart approach.

serves as the basis on which a particular architectural choice is preferred above
another architectural choice in an objective and fair manner.

We propose a general scheme with which to obtain the quantitative data, as
shown in Figure 2. This scheme, which we refer to as the Y-chart, provides an
outline for an environment in which designers can exercise architectural design
and was presented for the first time in [6]. In this environment, the performance
of architectures is analyzed for a given set of applications. This performance
analysis provides the quantitative data that designers use to make decisions and
to motivate particular choices. One should not confuse the Y-chart presented
here with Gajski and Kuhn’s Y-chart [7], which presents the three views and
levels of abstraction in circuit design 2. We used the term “Y-chart” for the
scheme shown in Figure 2 for the first time in [8]. A similar design approach was
described independently of this work in [9].

We described the Y-chart approach concept as

Concept 1. The Y-chart Approach is a methodology to provide designers with
quantitative data obtained by analyzing the performance of architectures for a
given set of applications.

The Y-chart approach involves the following. Designers describe a particular
architecture instance (Architecture Instance box) and use performance analysis
(Performance Analysis box) to construct a performance model of this archi-
tecture instance. This performance model is evaluated for the mapped set of
applications (Mapping box and stack of Applications boxes). This yields per-
formance numbers (Performance Numbers box) that designers interpret so that

2 In Gajski and Kuhn’s Y-chart, each axis represents a view of a model: behavioral,
structural, or physical view. Moving down an axis represents moving down in level of
abstraction, from the architectural level to the logical level to, finally, the geometrical
level.
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Fig. 3. The Y-chart with lightbulbs indicating the three areas that influence perfor-
mance of programmable architectures.

they can propose improvements, i.e., other parameter values, resulting in an-
other architecture instance (this interpretation process is indicated in Figure 2
by the lightbulb). This procedure can be repeated in an iterative way until a
satisfactory architecture for the complete set of applications is found. The fact
that the performance numbers are given not merely for one application, but for
the whole set of applications is pivotal to obtaining architecture instances that
are able to execute a set of applications and obey set-wide design objectives.

It is important to notice that the Y-chart approach clearly identifies three
core issues that play a role in finding feasible programmable architectures, i.e., ar-
chitecture, mapping, and applications. Be it individually or combined, all three
issues have a profound influence on the performance of a design. Besides de-
signing a better architecture, a better performance can also be achieved for a
programmable architecture by changing the way the applications are described,
or the way a mapping is performed. These processes can also be represented by
means of lightbulbs and instead of pointing an arrow with a lightbulb only to
the architecture, we also point arrows with lightbulbs back to the applications
and the mapping, as shown in Figure 3. Nevertheless, the emphasis is on the
process represented by the arrow pointing back to the architecture instance box.

Finally, we remark that the Y-chart approach leads to highly tuned archi-
tectures. By changing the set of applications, an architecture can be made very
general or the opposite, very specific. Hence, it is the set of applications that
determines the level of flexibility required by the architecture.

3 Design Space Exploration Using the Y-Chart Approach

The Y-chart approach provides a scheme allowing designers to compare architec-
tural instances based on quantitative data. Using an architecture template [8,10],
we can produce a set of architecture instances: we systematically select for all
parameters p in the parameter set P of the architecture template AT distinct
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Fig. 4. The relationship between a measured performance in the architecture and a
range of parameter values. Point I indicates the best trade-off between a particular per-
formance and parameter values. Point II shows a marginal increase of the performance
at a large cost and point III shows a deterioration of the performance.

values within the allowed range of values of each parameter. Consequently, we
obtain a (large) finite set I of points I.

I = {I0, I1, ..., In} (1)

Each point I leads to an architecture instance. Using the Y-chart, we map on
each and every architecture instance the whole set of applications and measure
the performance using particular performance metrics, a process we repeat until
we have evaluated all architecture instances resulting from the set I. Because the
design space of the architecture template AT is defined by the set of parameters
of AT , in the process described above we explore the design space D of AT .

Concept 2. The exploration of the design space D of the architecture template
AT is the systematic selection of a value for all parameters Pj ∈ D such that
a finite set of points I = {I0, I1, . . . In} is obtained. Each point I leads to an
architecture instance for which performance numbers are obtained using the Y-
chart approach.

When we plot the obtained parameter numbers for each architecture instance
versus the set of systematically changed parameter values, we obtain graphs such
as shown in Figure 4. Designers can use these graphs to balance architectural
choices to find a feasible design.

Some remarks are in order in relation to Figure 4. Whereas the figure shows
only one parameter, the architecture template contains many parameters. Find-
ing the right trade-off is a multi-dimensional problem. The more parameters in-
volved, the more difficult it will be. Note also that the curve shown in the graph
is smooth. In general, designers cannot assume that curves are smooth because
the interaction between architecture and applications can be very capricious. Fi-
nally, the curve in the figure shows a continuous line, whereas the performance
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numbers are found only for distinct parameter values. Simple curve fitting might
give the wrong impression.

4 Levels of Abstraction

We have not said anything yet about the abstraction level at which a Y-chart
should be constructed. If, however, we observe the Y-chart, it is the performance
analysis that determines at what level the Y-chart should be constructed. Within
performance analysis, there are interesting trade-offs to be made.

Performance analysis always involves three issues: a modeling effort, an evalu-
ation effort and the accuracy of the obtained results [11,12]. Performance analysis
can take place at different levels of detail, depending on the trade-offs that are
made between these three issues. Very accurate performance numbers can be
achieved, but at the expense of a lot of detailed modeling and long evaluation
times. On the other hand, performance numbers can be achieved in a short time
with modest effort for modeling but at the expense of loss of accuracy. We place
the important relations between these three issues in perspective in a concept
that we call the Abstraction Pyramid.

Concept 3. The Abstraction Pyramid puts the trade-off present in performance
modeling between modeling effort, evaluation effort, and accuracy in perspective
of system level design.

4.1 The Abstraction Pyramid

The abstraction pyramid (see Figure 5) describes the modeling of architectures
at different levels of abstraction in relation to the three issues in performance
modeling. At the top of the pyramid is a designer’s initial rough idea (shown as a
lightbulb) for an architecture in the form of a ‘paper architecture’. The designer
wants to realize this architecture in silicon. The bottom of the pyramid represents
all possible feasible realizations; it thus represents the complete design space of
the designer’s paper architecture. A discussion of the three main elements of the
abstraction pyramid follows including two additional elements: the opportunity
to change models and the different abstraction levels that can be found in system
level design.

Cost of Modeling. Moving down in the pyramid from top to bottom, a designer
defines an increasing expenditure of detail of an architecture using some modeling
formalism. This process proceeds at the cost of an increasing amount of effort, as
indicated on the cost of modeling axis at the right-hand side of the pyramid. As
architectures are described in more detail, the number of architectural choices
(i.e. the number of parameters in the architecture template) increases, expanding
the basis of the pyramid. Each new architectural choice, albeit at a lower level
of detail, thus further broadens the design space of the architecture.
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Fig. 5. The abstraction pyramid represents the trade-off between modeling effort,
evaluation speed, and accuracy, the three elements involved in a performance analysis.

Opportunity to Change. As the designer moves down and includes more
detail using a modeling formalism, the architecture becomes increasingly more
specific. Simply because more design choices have been made, it becomes more
costly to redo these design choices if another architecture is to be considered.
Hence the opportunity to explore other architectures diminishes. This is indi-
cated on the opportunities axis at the left-hand side of the pyramid.

Level of Detail. Lines intersecting the abstraction pyramid horizontally at
different heights represent different abstraction levels found in system level de-
sign. The small circles on such line represent architecture instances modeled
at that abstraction level. At the highest level of abstraction, architectures are
modeled using back-of-the-envelope models. Models become more detailed as the
abstraction pyramid is descended. The back-of-the-envelope models is followed
by estimation models, abstract executable models, cycle-accurate models, and, fi-
nally, by synthesizable VHDL models. This represents the lowest level at which
designers can model architectures.

We use the term back-of-the-envelope model for simple mathematical relation-
ships describing performance metrics of an architecture instance under simple
assumptions related to utilization and data rates (e.g. [5]). Estimation models
are more elaborated and sophisticated mathematical relationships to describe
performance metrics (e.g. [12]). Neither model describes the correct functional
behavior or timing. The term abstract executable model describes the correct
functional behavior of applications and architectures, without describing the be-
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havior related to time (e.g. [13]). The term cycle-accurate model describes the
correct functional behavior and timing of an architecture instance in which a
cycle is a multiple (including a multiple of one), of a clock cycle (e.g. [14,15]).
Finally, the term synthesizable VHDL model describes an architecture instance
in such detail, in both behavior and timing, that the model can be realized in
silicon.

Accuracy. In the abstraction pyramid, accuracy is represented by the gray tri-
angles. Because the accuracy of cycle-accurate models is higher than the accuracy
of estimation models, the base of the triangle belonging to the cycle-accurate
models is smaller than the base of the triangle belonging to the estimation mod-
els. Thus the broader the base, the less specific the statement a designer can
make in general about the final realization of an architecture.

Cost of Evaluation. Techniques to evaluate architectures to obtain perfor-
mance numbers range from back-of-the-envelope models where analytical equa-
tions are solved symbolically, using, for example, Mathematica or Matlab, up to
the point of simulating the behavior in synthesizable VHDL models accurately
with respect to clock cycles. In simulation, the processes that would happen
inside a real architecture instance are imitated. Solving equations only takes a
few seconds, whereas simulating detailed VHDL models may take hours if not
days. The axis at the right-hand side represents both cost of modeling and cost
of evaluation.

4.2 Exploration

The abstraction pyramid shows the trade-offs in performance analysis. When
exploring the design space of an architecture template, designers should make
different trade-offs at different times. Higher up in the pyramid they can explore
a larger part of the design space in a given time. Although it is less accurate,
it helps them to narrow down the design space. Moving down in the pyramid,
the design space that they can consider becomes smaller. The designer can ex-
plore with increased accuracy only at the expense of taking longer to construct,
evaluate, and change models of architecture instances.

The process of exploration and narrowing down on the design space is illus-
trated in the abstraction pyramid by the circles. These circles are drawn at the
level of estimation models and at the level of cycle-accurate models. Each circle
represents the evaluation of a particular architecture instance. An exploration at
a particular abstraction level is thus represented as a set of circles on a particular
horizontal line in the abstraction pyramid.

4.3 Stacks of Y-Chart Environments

Due to the level-dependent trade-off between modeling, evaluation, and accuracy,
designers should use different models at different levels of abstraction when ex-
ploring the design space of architectures. The Y-chart approach used at these
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different levels is, however, invariant: it still consists of the same elements, as
shown in Figure 2. This leads to the following concept of a Y-chart environment:

Concept 4. A Y-chart Environment is a realization of the Y-chart approach
for a specific design project at a particular level of abstraction.

The different levels represented in the abstraction pyramid thus indicate that
more than one Y-chart environment is needed in a design process for architec-
tures. Therefore, different Y-chart environments are needed at different levels of
abstraction, forming a stack as illustrated in Figure 6. This figure shows three
possible Y-chart environments: one at the level of back of the envelope models,
one at the level of cycle accurate models, and on at the level of VHDL models.

In the abstraction pyramid, more than these three levels of abstraction are
given. Nevertheless, we will resort to just three levels from the abstraction pyra-
mid in Figure 5

Back-of-the-Envelope. Early in the design, designers make use of back-of-the-
envelope models and estimation models, to model architecture instances. This
allows them to construct many architecture instances very quickly. Designers
typically employ generic tools like Matlab or Mathematica to evaluate the perfor-
mance of these models by solving analytic equations. These tools can compute
complex equations (symbolically) within a few seconds. The resulting perfor-
mance numbers typically represent rough estimates for throughput, latency, and
utilization. The tools evaluate the performance metrics either numerically or
symbolically.
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Cycle-Accurate. As the design space for the architecture template narrows,
designers use abstract-executable models and cycle-accurate models to describe
architecture instances. At this level of abstraction, designers can compare the
performances of moderately different architectures. Models at this level require
architecture simulators that typically run from minutes to hours to carry out
a simulation. These simulators most likely employ discrete-event mechanisms.
The performance numbers at this level typically represent values for throughput,
latency, and utilization rates for individual elements of architecture instances.
As the models become more accurate, the accuracy of the performance numbers
also becomes higher.

VHDL. Finally, as the design space narrows down further, a designer wants to
be able to compare the performance of slightly different architecture instances
accurately to within a few percent. The designer uses detailed VHDL models to
describe architecture instances, taking significant amounts of time and resources.
Designers can carry out the simulations using standard VHDL simulators. Sim-
ulation time required for these architecture instances can be as much as several
days. The obtained performance numbers are accurate enough that a designer
can compare differences in the performance of architecture instances to within
a few percent.

4.4 Design Trajectory

The abstraction pyramid presents trade-offs between modeling, evaluation, and
accuracy that result in a stack of Y-chart environments being used. This stack
leads to a design trajectory in which designers can model architectures and appli-
cations at various levels of detail. The Y-chart approach and the stack of Y-chart
environments thus structure the design process of programmable embedded ar-
chitectures.

Concept 5. A Stack of Y-charts describes a design trajectory in which different
Y-chart environments are realized at different levels of abstraction, each taking a
different trade-off position in the Abstraction Pyramid, which leads to a stepwise
refinement of the design space of programmable embedded architectures.

Within this design trajectory, designers perform design space exploration at
each level and narrow down the design space containing feasible designs. This
approach differs from the golden point design, which is the design methodology
currently used in the design of complex programmable architectures. Here a
design, the golden point, is modeled directly at low level, i.e., VHDL.

In Figure 7(a), we show the golden point design. Here the golden point is
modeled directly at a low level in the pyramid. Because hardly any exploration
and validation of ideas took place, except for paper exercises and spreadsheets,
it is first of all very much the question whether the selected point results in
a feasible design. Secondly, due to the low level of detail already involved, it
becomes very difficult to explore other parts of the design space, thus leading to
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Fig. 7. (a), the golden point design approach. (b), the design approach in which de-
signers use Y-chart environments.

sub optimal design. Thirdly, it is very likely that designers will be confronted with
unpleasant surprises at late stages in the design process. This can lead to costly
rework and slipping time schedules. In Figure 7(b), the design approach is shown
in which designers use Y-charts at different levels of abstraction. This approach,
we believe, leads to better-engineered architectures and moreover reduces risk.
Each time more resources are committed to the design of an architecture, more
knowledge is available to assess if a feasible design can be accomplished within
its given set of constraints.

5 Mapping

Mapping pertains to conditioning a programmable architecture instance such
that it executes a particular application. It leads to a program that causes the
execution of one application on the programmable architecture. Mapping in-
volves, for example, assigning application functions to processing elements that
can execute these functions. It also involves mapping the communication that
takes place in applications onto communication structures.

Mapping is a difficult problem, but it is essential to the Y-chart approach. To
be able to do mapping, at various levels of abstraction, and to develop a mapping
strategy concurrently with the development of the architecture, we now discuss
the basic concept we use to make mapping as simple as possible. This mapping
concept is also depicted in Figure 8.

Concept 6. In mapping, in context of the Y-chart, we say that a natural fit
exists if the model of computation used to specify applications matches the model
of architecture used to specify architectures and that the data types used in both
models are similar.

To explain the matching of the model of computation with the model of
architecture, we first explain what we means by these terms. Then we look at
the data types found in both applications and architectures and come back to
the notion of the natural fit.
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Fig. 8. A smooth mapping from an application to an architecture only takes place if
the model of computation matches with the model of architecture and when the same
data types are used in both models.

Model of Computation. Applications are specified using some kind of for-
malism that has an underlying model of computation. We define a model of
computation, inspired by [16], as a formal representation of the operational se-
mantics of networks of functional blocks describing computations.

So, the operational semantics of a model of computation governs how the
functional blocks interact with one another realizing computations. Many differ-
ent models of computation already exist that have specific properties. Different
models have proven to be very effective in describing applications in various ap-
plication domains [17]. Some examples of well-known models of computation are:
Dataflow Models, Process Models, Finite State Machine Models, and Imperative
Models.

Model of Architecture. In analogy with a model of computation, we define
the concept of model of architecture as a formal representation of the operational
semantics of networks of functional blocks describing architectures.

In this case, the functional blocks describe the behavior of architectural re-
sources like CPUs, busses, and memory and the operational semantics of a model
of architecture governs how these resources interact with one another. Although
models of architecture are less mature then models of computation, one can iden-
tify characteristics like whether control is centralized or distributed, or whether
there is an emphasis on control flow or data flow.

Data Types. In both applications and architectures, data that is exchanged is
organized in a particular way and has particular properties. A data type describes
these properties. Examples of simple data types are integers, floats, or reals. More
complex data types are streams of integers or matrices.

To realize a smooth mapping, the types used in the applications should match
with the types used in the architecture. If architectures support only streams
of integers, the applications should also use only streams of integers. Suppose
an application uses only matrices whereas an architecture instance on which we
want to map uses only streams of scalars. Because the types do not match, we
can already say that we first have to express the matrices in terms of streams
of scalars. A stream of scalars, however, has very different properties from a
matrix (e.g. a matrix is randomly accessible), having a profound influence on
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how the application executes on the architecture. Consequently, to obtain a
smooth mapping of applications onto architectures, the data types in both the
applications and the architectures should be the same or at least the architecture
should support a more fine-grained data types then the application data types.

5.1 Natural Fit

Given an application that is described using a model of computation and an
architecture instance that is described using a model of architecture, when we
say the application fits naturally onto the architecture instance, we mean that:

1. The architecture instance provides at least primitives similar to those used
in the application. In other words, the grain-size of functions and processing
elements should be the same. For example, a FIR filter functions used in the
application should also be found for example as a FIR processing element in
the architecture instance.

2. The operational semantics of the architecture instance at least matches the
operational semantics of the application. For example, if functions in the
applications behave in a data-driven manner then the processing elements
should also operate in a data-driven manner.

3. The data types used in applications should match the data types available
on the architecture instance. For example, when an application uses only
streams of samples then the architecture instance should at least provide
supports for such streams of samples.

Examples of this ’natural fit’ principle can be found in literature. For exam-
ple, in [18], the CSP model of computation is used for describing applications
that are mapped onto asynchronous hardware. In [19], the cyclo-static dataflow
(CSDF) is used for describing applications that are mapped on one or more VSP
processors, which are real-time programmable video processors. The most well
know example of the presented principle is the imperative C-language that is
mapped onto a micro-processor [5].

Other examples of the ’natural fit’ at higher levels of abstraction, can be
found in the ORAS work [8,10] and SPADE work [13]. In both cases, process
networks are mapped onto abstract models of stream-oriented architectures. An-
other example is the POLIS work [9]. It maps a special kind of Finite State
Machines (FSMs) onto abstract models of microprocessor architectures.

6 Processor Design

In the introduction, we described the problem of finding the correct parameters
to instantiate an architecture instance that satisfies a number of constraints
for a given set of applications. This problem has already been researched for
decades in the realm of general-purpose processor (GPP) design. In this domain,
complex architectures called instruction-set processors or microprocessors are
designed that execute a word-processor application as easily as a spreadsheet
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Fig. 9. The Y-chart used in the construction of the MIPS R4000.

application or even simulate some complex physical phenomenon. Therefore,
designers working in this domain know what programmability implies in terms of
(complex) trade-offs between hardware, software, and compilers. In this section,
we will show that the design of GPPs fits into our Y-chart approach.

6.1 Design of General-Purpose Processors

In the beginning of the 1980s, revolutionary GPPs emerged that were called
RISC microprocessors [20]. These processors were developed in a revolution-
ary way; namely, designers used extensive quantitative analysis of a suite of
benchmarks, which is a set of applications. As a result, these architectures were
smaller, faster, cheaper and easier to program than conventional architectures of
that time. With the advent of the RISC microprocessors, the design of GPPs in
general began to swing away from focusing purely on hardware design. Designers
started to focus more on the quantitative analysis of difficulties encountered in
architecture, mapping (or compiling), and the way benchmarks are written. This
quantitative approach has become the de-facto development technique for the
design of general-purpose processors [21,5].

As we will show, we can in retrospect cast the design of general-purpose pro-
cessor architectures in terms of our Y-chart approach as presented in this article.
We do this first by looking at the design of the MIPS R4000 microprocessor [22]
as depicted in Figure 9. In this Y-chart, the set of applications is described in the
C-language by the SPECmark programs. Using a C-compiler, tuned especially to
reflect the R4000 architecture, and a special architecture simulator called Pixie,
Hennessy et al., evaluated the performance of the applications mapped onto an
instance of the R4000. The Pixstat program interprets the produced performance
numbers. In the given Y-chart, the dashed box represents the fact that the ar-
chitecture is not specified as a separate entity, but that it is hard coded into the
GNU GCC compiler and architecture simulator Pixie.

According to Hennessy et al., the design space of the MIPS R4000 is ex-
tremely large and evaluating alternatives is costly for three reasons: construction



A Methodology to Design Programmable Embedded Systems 33

Table 1. Different Levels of Simulation used in the MIPS R4000 design [22].

Simulator Level of Accuracy Sim. Speed
Pixie Instruction Set > 106 cycles/sec
Sable System Level > 103 cycles/sec
RTL (C-code) Synchronous Register Transfer > 10 cycles/sec
Gate Gate/Switch < 1 cycles/sec
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C++ Sim.
Objects

MOVE GCC
Appl. (C)

Video

Executable 

B

Performance
Numbers

MDF Applications

TmSim

Framework

Comm. Compiler
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Numbers

LISA DSPstone

SuperSim 

GNU GCC

Fig. 10. Y-chart environments used in various design projects.

of accurate performance models, long simulation runs, and tuning of the com-
piler to include architectural changes. Precisely these three issues are expressed
in the Abstraction Pyramid in figure 5.

To narrow down the design space of the R4000, in a stepwise fashion as
shown in Figure 7(b), four different simulators are used at increasing levels of
detail, as shown in Table 1. One can clearly see that the simulation speed drops
dramatically as more detail is added. Interestingly, Hennessy et al. consider
the top two levels of simulation to be the most critical levels in the design of
processors. It allowed for the exploration of a large part of the design space of
the MIPS R4000, helping the designers to make better trade-offs.

6.2 Design of Application-Specific Processors

Next, we show three processor designs that we have put in context of the Y-
chart methodology. In these Y-charts, the selection of benchmarks results in
more application-specific processor architectures.

Wilberg et al. [23] used a Y-chart, as shown in Figure 10(a) for designing
application-specific VLIW (Very Long Instruction Word) architectures for low-
speed video algorithms like JPEG, H.262 and MPEG1. The video applications
written in C are compiled into generic RISC-instructions using the GCC/MOVE
compiler developed by Corporaal et al. [24].

Sijstermans et al. [25] used a Y-chart, as shown in Figure 10(b) to design the
TriMedia programmable multi-media processor TM1000. They compiled a set of
applications that were written in C into object-code, using a commercial com-
piler framework. The architecture simulator tmsim can simulate this object-code
clock-cycle accurately. Both the compiler and the simulator are retargetable for
a class of TriMedia architectures that they describe using a Machine Description
File (MDF).
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Živojnović et al. [26] used a Y-chart, as shown in Figure 10(c) to develop
DSP processors. As a benchmark, they used a special set of C functions called
DSPstone. They mapped the benchmarks onto the retargetable simulator called
SuperSim using a retargetable version of the GNU GCC-compiler. They de-
scribed a class of DSP-architectures using the special language LISA.

So, if the benchmark suite contains very different programs like a word proces-
sor application, a spreadsheet application and a compiler application, a general-
purpose architecture results that is optimized for a broad range of applications.
If, on the other hand, the set of applications contains only video applications,
a dedicated processor architecture results that is optimized for video applica-
tions. The selection of the benchmarks is hence a key decision step in the design
process.

In all the cases presented, designers make refinements to a well-known ar-
chitecture template commonly referred to as load-store architectures [5]. For
these architectures, good detailed models exist as well as good compiler frame-
works. The model of computation underlying the C-language, e.g., imperative
languages, fits naturally with the model of architecture of load-store architec-
tures. Consequently, designers of microprocessors use applications written in
the C-language. To design architectures, they resort to tuning known compiler
frameworks to include architectural changes, to change mapping strategies, or
to rewrite applications.

7 Conclusions

We believe that programmable embedded systems will more and more be de-
signed by means of an architecture template for which designers needs to select
the proper set of parameter values. We assume that different architecture tem-
plates will emerge for different domains like mobile communication, automotive,
and high-performance signal processing. The domain specific templates will be-
come the models of architecture that match the typical characteristics of the
applications that execute within those domains.

As a design approach for programmable embedded systems, we presented the
Y-chart approach. It is a methodology in which designers use quantitative data
that provides them with a sound basis on which to make decisions and motivate
particular design choices. This leads to an environment in which a systematic
exploration of the design space of the architecture template can be performed,
leading to solid engineered systems. Since the design space of an architecture
template is in general huge, a stepwise refinement of the design space is needed.
This leads to the concept of a stack of Y-chart environments, in which each
Y-chart models the system at a different level of abstraction.

In the design of programmable embedded systems, the current practice is still
the golden point design (See Figure 7(a)). Quantifying architectural choices in ar-
chitectures is unfortunately by no means current practice. Yet the RISC architec-
ture development has unmistakably shown that quantifying design choices leads
to well engineered architectures. As shown in this article, the design method-
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ology of RISC processors and other application-specific processors can be cast
into the presented Y-chart approach.

We believe, that the Y-chart approach presents a general and solid method-
ology for designing programmable embedded system architectures. This is re-
inforced by the fact that the methodology has already effected other research
in embedded system design [27,28,29]. Furthermore, at Philips research, the Y-
chart approach has led to the development of YAPI [30], which stands for Y-
chart application programming interface. In addition, the Y-chart approach has
influenced, and has been influenced by, the system level design work described
in [31].

Before we can fully perform design space exploration at various levels of
abstraction, there are still some tough research issues to be tackled. Especially
performing mappings at high abstraction levels is difficult. For some dedicated
systems, we can relay on applications written in ’C’, compilers and architecture
models developed in the realm of general-purpose processors to construct Y-
chart environments. Nonetheless, we believe that new systems on a chip require
new architectural models, new application models, and mapping techniques. The
new systems will for example exploit both task-level parallelism and instruction
level parallelism. Furthermore, they should operate under real-time constraints
and use heterogeneous architectural components (e.g. CPUs, DSPs, dedicated
co-processors, distributed memories). The notion of models of computation and
models of architectures should help us to pave the way to the exploration of
systems at higher levels of abstraction.
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