
Online Verification of Cognitive Car Decisions

Matthias Althoff, Olaf Stursberg and Martin Buss

Abstract— Verifying a safe locomotion of cognitive cars is
indispensable for their participation in road traffic. This paper
suggests an approach for verifying safety by computing reach-
able sets for the position of relevant traffic participants, i.e. a
cognitive car as well as moving objects in its environment. In
order to account for the uncertainty in the behavior of traffic
participants, a stochastic setting is chosen, in which Markov
chains represent the positions probabilistically. An efficient
online algorithm is presented that leads to the result whether
the reachable sets of different traffic participants can intersect,
meaning that the control strategy of the cognitive car is possibly
unsafe.

I. INTRODUCTION

Cognitive cars navigate autonomously through traffic
based on measured information (cameras, lidar, radar,...)
without intervention of human drivers. Analog to human
drivers, cognitive cars need a sense of safety, i.e. they have
to know which behaviors possibly lead to an accident.
Behavior is referred to a computed reference trajectory
that the cognitive car tries to follow. Driving along the
path of the reference trajectory may cause an accident if
the possible behavior of other traffic participants is not
appropriately considered. Additionally, it is important to
account for the deviation between the actual behavior of the
cognitive car and the reference trajectory due to disturbances.

An approach towards collision free path planning in
static environments can be found, e.g. in [1]. For dynamic
environments, current literature shows that safe navigation
of intelligent vehicles is largely an open research problem,
see e.g. [2], [3], [4], and forward collision avoidance
systems still exhibit deficiencies [5]. A novel approach for
safe motion planning is established by avoiding inevitable
collision states in [6]. However, this work differs from the
approach presented here by applying simulation instead of
verification techniques. A major drawback of simulation is
that it can only proof that a system with uncertain behavior
is unsafe, but not that it is safe. This is due to an infinite
number of initial and disturbance values that have to be
simulated if the uncertainties are modeled by sets of initial
and disturbance values.

Algorithmic verification, as it is applied in this work,
has been developed for hybrid systems in recent years.
Hybrid systems evolve according to a mixed discrete and
continuous dynamics. The model framework of hybrid

Research supported by the German Research Council (DFG) through the
Collaborative Research Center SFB-TR 28 (Cognitive Automobiles).

All authors are with the Institute of Automatic Control Engineering (LSR)
, Technische Universität München, 80290 München, Germany.

systems is very useful in the context of traffic modeling:
traffic participants, e.g. cars, trucks and bicycles make logic
decisions, such as lane changing, turning and stopping
which are appropriately modeled by discrete dynamics.
Additionally, the vehicle dynamics is best described by
continuous differential equations. Most hybrid verification
algorithms compute the set of (discrete and continuous)
states which are reachable by the investigated system. If the
set does not intersect sets of unsafe states, safety can be
concluded. However, the verification problem is known to be
decidable for a limited class of hybrid systems only [7]. For
this reason, sets of reachable states are overapproximated
which allows to conclude safety, but possibly leads to
the result of unsafe behavior for safe systems. However,
this conservative approach is suitable in traffic since only
confident trajectories of the cognitive car should be executed.
Prominent verification algorithms using overapproximated
reachable sets compute ellipsoids [8], polytopes [9], oriented
rectangular hulls [10] and zonotopes [11]. In contrast to
the common use of verification techniques for offline safety
analysis, verification algorithms are applied for online safety
analysis in this paper. The online application is necessary as
unsafe states originating from the reachable sets of moving
obstacles (other traffic participants) are not known a priori.
Along with the online application comes the demand for real
time constraints of the verification algorithms. In order to
speed up the verification process for online application, the
continuous system dynamics of the cognitive car and other
traffic participants is abstracted by Markov chains, similar
as used in a different context in [12]. This conservative
transformation is based on a discretization of the state and
input space of the model. However, Markov chains provide
fast and probabilistic computations of reachable sets which
has been shown in [13] and for stochastic aircraft conflict
situations in [14]. The presented approach is an extension
of the previous work in [15] by

• allowing disturbances bounded by hyperrectangles (in-
terval hulls) instead of hypercubes,

• probabilistically modeled disturbances,
• improving the abstraction process from nonlinear to

linear systems,
• more efficient execution of Markov chains due to partial

transition executions,
• advanced construction of reachable sets of other traffic

participants.

In contrast to [15], not only the state space is discretized,
but the input space, too, which allows faster computation of
probabilistic reachable sets.

An overview of the approach from the nonlinear dynamics of
the cognitive car and its surrounding traffic participants to the
probabilistic computation of reachable sets is given in Fig.
1. The offline computation consists of the following steps:
first, the nonlinear continuous dynamics is conservatively
abstracted by a linear differential inclusion (Sec. III).
The linear uncertain model is then further abstracted to
Markov chains for different input and disturbance sets
as well as for discrete time and time intervals (Sec. IV
and V). During online application, the Markov chains
obtained from the offline computation are executed. They
compute the reachable sets of the cognitive car and of other
traffic participants based on behavior assumptions (Sec.
VI) between the time indices l − 1 and l, see Fig. 1. Each
verification process ends with intersecting the reachable sets
of other traffic participants with the one of the cognitive
car as shown exemplarily for a traffic scenario (Sec. VII).
This allows to calculate the probability of a crash and due
to the conservative computation of reachable sets, safety
can be guaranteed if the set intersection is empty. After
the verification process is finished, it is reset and started
with actual sensor values so that the safety of locomotion is
continuously evaluated.

Offline Online

Nonlinear
Model

Abstraction

Linear Model

Discretization

Markov chains

Probability
of Safety

Markov Chain Selection

Markov Chain Execution

Updated probabilities

Intersection

Other
reachable sets
(obtained by the
same method)

l
:=

l
+

1

Input Trajectory

Fig. 1. Verification process overview

II. PROBLEM STATEMENT

At the beginning of each verification process, one has
the following situation: Given are the uncertain positions
and velocities of other traffic participants that are identified
by the cognitive car and modeled by sets. The position,
velocity, direction and angular speed of the cognitive car
are also known but subject to uncertainties. Additionally,
the reference trajectory of the cognitive car is assumed to
be given. The goal of the presented method is to determine
the probability that the cognitive car will crash into another
traffic participant within certain time intervals t ∈ [0, ti],
for a given horizon t ≤ kΔt, k ∈ N+, Δt ∈ R>0 when
following the reference trajectory, see Fig. 2(a). The time
interval Δt specifies the time span after which actual sensor
values are read out and k is the factor for Δt determining
the time horizon. The probability of a crash is computed by
the reachable set of the cognitive car and the ones of other

traffic participants starting from the uncertain initial states
under disturbances. This is illustrated exemplarily for the
cognitive car and one additional traffic participant in Fig.
2(b). If the intersections of the reachable sets are empty,
the trajectory of the cognitive car is safe and otherwise, the
probability of the crash is computed. The verification process
is repeated after each time step Δt using an update of the
dynamic models according to the current sensor readings.
Note that the verification has to be terminated after the time
Δt, i.e. the procedure has to run k times faster than real
time.

time

Probability
of crash

Time horizon
kΔt

t1 t2 t3 t4

(a) Probability of a crash for
the time horizon kΔt

Initial set of
the other car

Reachable
sets

Set intersection

Initial set of
the cognitive car

Reference path

x-position

y-position

(b) Problem setup

Fig. 2. Verification results

III. ABSTRACTION FROM NONLINEAR TO LINEAR

CONTINUOUS DYNAMICS

In order to simplify the computation of the reachable
sets, the dynamics of the nonlinear systems is conservatively
abstracted to linear but uncertain ones, i.e. the reachable
sets of the nonlinear systems are enclosed by the ones of
the uncertain linear systems. In order to apply the presented
abstraction method, the state x of the nonlinear system, the
input u and the disturbance v are limited to sets: x ∈ X ⊂
Rn, u ∈ U ⊂ Rm and v ∈ V ⊂ Rn. In case of the cognitive
car, the input u is interpreted as the reference trajectory, or
respectively, as the acceleration for other cars, see Sec. VII.
The nonlinear system has the following form:

ẋ = f(x, u) + v, x(0) ∈ X, u ∈ U, v ∈ V (1)

For the presented approach it is necessary to discretize the
sets X , U and V . The discretization DX : X → I is a
map which assigns to each value x ∈ X ⊂ Rn an identifier
i ∈ I ⊂ N+ where I is the finite set of identifiers1. The
connected subset that is mapped to an identifier i is denoted
by Xi = {x|DX(x) = i} and referred to as a cell. The state
space is discretized rectangularly and equidistant by DX so
that all cells Xi are interval hulls (]x, x]) of equal lengths
with x, x ∈ Rn. Analogously, there exists a discretization
function DU : U → J that assigns to each identifier j a cell
Uj and another discretization function DV : V → M that
assigns identifiers m to cells Vm. The sets of initial states
x(0), inputs u ∈ Uj , and v ∈ Vm are expressed in terms of

1The discretization can lead to a large number of cells for high-
dimensional systems, requiring to use order reduction techniques.

these cells. This allows to conservatively approximate (1) by
a linear system that is modeled as a differential inclusion:

ẋ ∈Aj
i x + Bj

i u + bj
i + v︸ ︷︷ ︸

1st order Taylor expansion

⊕ Ejm
i︸︷︷︸

Lagrange

remainder

,

x(0) ∈ Xi, u ∈ Uj, v ∈ Vm, t ∈ [0, T]

(2)

Aj
i is the system matrix, Bj

i the input matrix, bj
i is a

constant vector and T is the time horizon for which the
above equation holds. The values Aj

i ,Bj
i ,bj

i are obtained by
a first order Taylor expansion of the nonlinear system (1)
and the indices i and j refer to the indices of the sets X i

and Uj . Note, that bj
i �= 0 as the nonlinear system is not

linearized in a steady state. In order to abstract the nonlinear
dynamics conservatively, the linearization error E jm

i is
added by Minkowski addition2. In contrast to Aj

i ,Bj
i and bj

i ,
the result of Ejm

i also depends on the uncertainty cell Vm.
The set Ejm

i can be obtained by evaluating the Lagrange
remainder of the first order Taylor expansion using interval
arithmetics [16] as shown in [15]. A disadvantage of this
method are the relatively conservative bounds of E jm

i . In
order to tighten these bounds, branch and bound methods
known from global optimization [17] have been applied for
the traffic scenario in this paper. This method is based on
selective division of intervals (branching) so that interval
analysis returns better bounds (bounding).

A remaining task is the proper selection of the linearization
point to reduce the linearization term E jm

i . In order to
suggest a selection of the linearization point, the set of
overapproximated reachable states of (2) in the time interval
[0, T] is introduced. This set is denoted by Rjm

i ([0, T]) and
defined over an auxiliary set Rjm

i (T):

Definition 1: Rjm
i (T) is an overapproximated set of the

exact reachable set Rjm
i (T) at time t = T : Rjm

i (T) =
{x|x(t) is solution of (2), t = T, x(0) ∈ Xi, u ∈ Uj , v ∈
Vm} and Rjm

i (T) ⊃ Rjm
i (T).

Definition 2: Rjm
i ([0, T]) is the union of all overapprox-

imated reachable sets Rjm
i (t) for t ∈ [0, T]: Rjm

i ([0, T]) =⋃
t∈[0,T] R

jm
i (t)

The description of the computation of R jm
i ([0, T]) is given in

Sec. IV. The selection of the linearization error is motivated
by the observation that it usually grows with increasing
distance to the linearization point. As all states are within
Rjm

i ([0, T]), the maximum linearization error is reduced by
the heuristics that the volumetric center of Rjm

i ([0, T]) is
chosen as the linearization point x∗ (this choice is different
from the one in [15]). The linearization point for the input
u∗ is chosen as the center of U .

IV. REACHABILITY

The reachable set of the continuous evolution R jm
i ([0, T])

is computed by zonotopes [11], [15], see Fig. 3(a). Zonotopes

2A ⊕ B = {a + b|a ∈ A, b ∈ B}

are used as they are closed under Minkowski sum which
results in an efficient computation of reachable sets under
uncertain inputs. The difference to [11] and [15] is that the
input Bj

i u + bj
i + v ⊕ Ejm

i ∈ Bj
i Uj ⊕ bj

i ⊕ Vm ⊕ Ejm
i =:

W ∗ is within an hyperrectangle (interval hull) instead of a
hypercube. For further computations, the uncertain input W ∗

is split up into an interval hull W = W ∗ − mid(W ∗) with
the volumetric center at the origin and the constant input
mid(W ∗), where the operator mid() returns the volumetric
center of a set. The reachable set occurring due to the input
W is denoted R̄jm

i ([0, T]) and the reachable set resulting
from the solution of the dynamics for the initial state x(0)
and the constant input mid(W ∗) is denoted R̂jm

i ([0, T]). The
superposition principle allows to compute the reachable set
Rjm

i ([0, T]) of the linear sytstem (2) by Minkowski addition
of R̂jm

i ([0, T]) and R̄jm
i ([0, T]):

Rjm
i ([0, T]) = R̂jm

i ([0, T])⊕ R̄jm
i ([0, T])

The computation of R̂jm
i ([0, T]) is presented in [11], and the

reachable set R̄jm
i ([0, T]) is computed in modal space:

˙̂x ∈ Â
j

i x̂ ⊕ Ŵ

with x̂ = M−1x, Â
j

i = M−1Aj
iM , Ŵ = M−1W and M

is the matrix of eigenvectors of Aj
i . The transformation to

modal coordinates is done as the k-th dimension of the input
Ŵ exclusively affects the k-th component of x̂. The k-th
component of the interval hull, denoted Ŵ k is an interval
[−ŵk, ŵk] with ŵ ∈ Rn. The trace of Â

j

i is represented by
a vector α, and αk is the k-th element of α. The reachable
interval hull F is obtained elementwise by intervals Fk (k-th
dimension of F) by the following estimates:

Fk =
∫ T

0

eαk(t−τ) dτ [−ŵk, ŵk]

‖Fk‖∞ ≤
∫ T

0

‖eαk(t−τ)‖∞ dτ‖[−ŵk, ŵk]‖∞

≤
∫ T

0

e‖αk‖∞(t−τ) dτ‖ŵk‖∞
=‖αk‖−1

∞ (e‖αk‖∞T − 1)‖ŵk‖∞
The norm estimates are necessary as the trace α may contain
conjugate complex values. The infinity norm is chosen as the
set of maximum size fulfilling the infinity norm is an interval
hull: Fk = [−fk, fk] = {x : ‖x‖∞ < fk}. The reachable set
R̄jm

i ([0, T]) results in R̄jm
i ([0, T]) = MF .

V. MARKOV CHAINS

The reachable set Rjm
i ([0, T]) is used to obtain the

transition probabilities of the Markov chain abstracting the
behavior of the linear system. The Markov chain consists of
states i ∈ I which are the cells of the discretized state space,
and pi is the probability that the system is in cell i. The
transition matrix Φ specifies the transitions between states:
p(l + 1) = Φp(l) and p(l) is the probability vector at time
step l. The conversion from continuous dynamics to Markov
chains is based on the assumption that the continuous state

of the linear system is evenly distributed within the reachable
set Rjm

i ([0, T]):

Φjm
oi ([0, T]) =

V (Rjm
i ([0, T]) ∩ Xo)

V (Rjm
i ([0, T])

where V () is an operator determining the volume of a
geometric object. The transition matrix Φjm

oi ([0, T]) contains
the probabilities that a trajectory starting in cell Xi with input
u ∈ Uj and disturbance v ∈ Vm can be found in cell Xo

within the time span [0, T]. This is in contrast to [12], where
time is not explicitly considered. A two dimensional example
of computing probabilistic reachable sets of x =

[
x1 x2

]T

based on the reachable set in Fig. 3(a) is shown in Fig.
3(b). In order to obtain the transition matrix for a certain
input u(t) and disturbance v(t), t ∈ [lT, (l+1)T], additional
probabilities are introduced. The probability that the input is
in cell Uj for t ∈ [lT, (l + 1)T] is denoted by qj(l) and the
probability that the disturbance is in cell Vm is denoted by
cm. In contrast to the probability vector q(l), the probability
vector c is modeled time invariant. Applying the rule for the
computation of unconditional probabilities3, the transition
matrix under input u and disturbance v is computed as:

Φoi([lT, (l + 1)T]) =
|J|∑

j=1

qj(l)
|M|∑

m=1

cmΦjm
oi ([0, T])

The transition probabilities for the time point solution
Φoi(lT) are calculated in an analogous way. The time
point solution is computed in order to provide the initial
probabilistic set for the time interval solution after each
time step. This approach differs from the one in [12] and
improves the accuracy compared to the exclusive use of
Φoi([lT, (l + 1)T]) for two reasons: First, reachable sets
for linear systems at time points without uncertain inputs
can be computed exactly, see e.g. [9]. Consequently, the
worse approximation of the time interval solution is not
propagating as it is computed based on the time point
solution. Second, the computation of R j

i ([0, T]) and hence
for Φoi([lT, (l + 1)T]) is based on an initial set of states
at a time point so that an initial set obtained from a time
interval solution would be more conservative. The equations
for the computation of the probability vector p(l + 1) in the
time interval t ∈ [lT, (l + 1)T] and the auxiliary probability
vector p̃o(l) for the time point t = lT are:

p̃o(l + 1) =Φoi(lT)p̃i(l)
po(l + 1) =Φoi([lT, (l + 1)T])p̃i(l)

(3)

In order to save computation time for evaluating (3),
transitions of the Markov chain are executed depending on
the original continuous system dynamics (1). After defining
θi(T) = max

j,m
‖Ejm

i (T)‖∞, one can choose time constants

Ti = ρT , ρ ∈ N+ that are assigned to cells Xi in order
to ensure that the linearization error stays below a specified
bound θ̄: θi(Ti) < θ̄. The time varying set containing the

3P (β) =
Pb

a=1 P (β|αa)P (αa), where αi are mutually exclusive
events and

Sb
a=1 αa = Ω is the certain event Ω

−0.4 −0.3 −0.2 −0.1

−0.01

0

0.01

0.02

x
1

x 2

Initial cell

Sample trajectories

(a) Reachable sets described by
zonotopes

−0.4 −0.3 −0.2 −0.1

−0.01

0

0.01

0.02

x
1

x 2

Initial cell

Sample trajectories

(b) Probabilistic reachable set

Fig. 3. From zonotopes to transition probabilities

admissible states k at time step l is denoted K(l). Note that
K(l) enables transitions at the beginning of any time interval
[lT, lT + Ti] to ensure conservativeness of the probabilistic
reachable set. The extended probability update function is:

p̃i(l + 1) = Φik(lT)p̃k(l) + p̃m(l)
pi(l + 1) = Φik([lT, (l + 1)T])p̃k(l) + pm(l)

k ∈ K(l), m ∈ I\K(l)

VI. BEHAVIOR MODELING OF OTHER TRAFFIC

PARTICIPANTS

For safety assessment of cognitive cars, prediction of the
behavior of other traffic participants is crucial. Similar to
human driving, the cognitive car expects a certain behavior of
other traffic participants which is addressed in the following.

A. Assumptions

The most important assumption about the behavior of
other road users is that road traffic regulations are met. This
excludes behaviors such that an approaching car from the
opposite lane steers into the cognitive car. If such behavior
is observed, the verification algorithms have to take the
physically possible instead of the permitted behavior of this
traffic participant into account.

B. Path Generation and Path Following

The behavior of other traffic participants is modeled in two
stages: path generation and path following. Possible paths of
traffic participants can be composed by elementary actions
such as lane following, turn left/right or lane changing. This
is illustrated in Fig. 4 for a car approaching a crossing.
The paths consist of clothoid segments [18] of length s or
s ≤ s′ ≤ 2s in front of branching points. In a next step, the
finite set of paths is enhanced by considering deviations from
these which represents an infinite set of possible paths. De-
viation is modeled as a static piecewise constant probability
distribution that varies between road user types. Examples
for these probabilities are given for cars and bicycles in Fig.
5. Path following is also modeled by elementary actions,
like accelerating, braking, stand still and drive at speed
limit. Note that elementary actions cover a set of behaviors,
e.g. accelerating encloses all behaviors in between minimum
and maximum acceleration. An exemplary model of the
longitudinal dynamics along possible paths is presented in
Sec. VII-B.

clothoid segment

branching points:

s s ≤ s′ ≤ 2s

lane following

turn left/right

Fig. 4. Path Generation

car/truck bicycle

left lane right lane

segment length s

path

x
y

p(x, y)

Fig. 5. Deviation probabilities

VII. VERIFICATION OF AN EXEMPLARY TRAFFIC

SCENARIO

To demonstrate the presented method, a typical traffic
scenario is investigated, see Fig. 6. The cognitive car is
controlled along a reference trajectory to avoid the static
obstacle and the oncoming car on the opposite lane. As
discussed before, it is assumed that the other car respects
the traffic regulations, i.e. it does not leave its lane.

other car

reference path

static obstacle

cognitive car

reference point

x1

x2 x3, x4

Fig. 6. Verification scenario

A. Model of the Cognitive Car

The lateral dynamics is modeled by a simplified bicycle
model [19] with yaw angle x3 and yaw rate x4, see Fig. 6.
The position deviation of the center of gravity to the refer-
ence point on the reference path in road-fixed coordinates is
denoted x1 and x2, see Fig. 6. The lateral control is given
as u = w − x3 − 0.1(x2 cos(w) − x1 sin(w)), where u(t) is
the steering wheel angle and w(t) is the orientation of the
reference trajectory. The controlled car model is:

ẋ1 = c3(cos(x4) − cos(w))
ẋ2 = c3(sin(x4) − sin(w))
ẋ3 = x4

ẋ4 =
c1

c3
x4 + c2(w − x3 − 0.1(x2 cos(w) − x1 sin(w)))

The car parameters c1, c2 and the constant speed c3 of the
car can be found in table I.

TABLE I

PARAMETER VALUES

cognitive car other car

c1 160 m
s2·rad

c4 10 m
s2

c2 53 1
s2·rad

c5 60 m
s

c3 15 m
s

c6 15 m
s

p1, p2, p3, p4 0.5 –

B. Model of the Other Car

The longitudinal dynamics of the other car for path fol-
lowing is modeled as a switching system with the modes
standstill, speed limit, brake and accelerate, see Fig. 7.
Invariant sets are denoted by I and transitions by t. The
transition guards or probabilities can be found next to the
transition arrows. When a transition is taken, the continuous
states are not reset. The continuous dynamics is described by

standstill braking

acceleration speed limit

t1 : y2 = c6

t2 : p1

t3 : y2 = 0

t4 : p2

t5 : p3

t6 : p4

I1 : y2 = 0 I2 : 0 < y2 < c6

I3 : 0 < y2 < c6 I4 : y2 = c6

ẏ1 = 0
ẏ2 = 0

ẏ1 = y2
ẏ2 = h1(u)

ẏ1 = y2
ẏ2 = h2(y, u)

ẏ1 = y2
ẏ2 = 0

Fig. 7. Other car model

the position y1 and the velocity y2. The brake model h1(u)
and the acceleration model h2(y, u) are given as

h1(u) = −c4u, u ∈ [0, 1]

h2(y, u) = c4(1 −
√

y2

c5
)u, u ∈ [0, 1]

Note, that the input u of the brake and acceleration model is
uncertain in its bounds. The discrete dynamics of the switch-
ing model also contains uncertainty. In opposite to transitions
t1, t3, all other transitions are taken by probabilities p. It is
believed that the stochastic driver model is best suited as only
few information is available about other traffic participants.

C. Reachable Sets

The parameters for the reachable sets of both cars are
given as follows: The set of initial conditions is listed
in table II. The variables pacc, pbrake, psl, pss refer to the
probability that the discrete state is in acceleration(acc),
brake(brake), speedlimit(sl) or standstill(ss) mode at t = 0.
The state space discretization is summarized in table III

TABLE II

SET OF INITIAL CONDITIONS

cognitive car other car
x1 [−0.3, 0.3] m y1 [90, 95] m
x2 [−0.3, 0.3] m y2 [8, 10] m/s
x3 [−0.05, 0.05] rad pacc, pbrake 0.5 –
x4 [−0.2, 0.2] rad/s psl, pss 0 –

TABLE III

DISCRETIZATION PARAMETERS

variable segment length segments
cognitive car: 512 cells
x1 0.5[m] 4
x2 0.5[m] 4
x3 0.05[rad] 8
x4 0.4[rad/s] 4
other car: 1500 cells
y1 1[m] 100
y2 1[m/s] 15

and the cognitive car is disturbed by ‖v‖∞ < 0.01. The
computation time was 2.7s for the cognitive car and 0.5s
for the other car on a dual core processor (1.66 GHz) for
4s in real time. The probability of a crash is 0.01% for
t ∈ [3, 4]s and 0% for all other times. The probability of
crash is simply determined by the scalar product of the
probability vector of the cognitive and the other car.

The resulting reachable sets of both cars are visualized in
Fig. 8 for four time intervals. The car starting from the right
lane is the cognitive car, the one starting from the left one is
the other car. The green line shows the reference trajectory
of the cognitive car. The red box is a static obstacle on the
road. Dark blue color indicates high probability and light
blue color small probability that a car is located on the
road. Note, that the probabilities refer to the presence of
the whole car and not to its center of mass only (car length:
4m, car width: 2m).

−20 −10 0 10

0

10

20

30

40

50

60

70

80

90

Cognitive
car

Obstacle

Planned
path

Other
car

(a) t=0-1 sec

−20 −10 0 10

0

10

20

30

40

50

60

70

80

90

(b) t=1-2 sec

−20 −10 0 10

0

10

20

30

40

50

60

70

80

90

(c) t=2-3 sec

−20 −10 0 10

0

10

20

30

40

50

60

70

80

90

(d) t=3-4 sec

Fig. 8. Reachable sets of the traffic scenario

VIII. CONCLUSION

It has been shown that the probability of an accident for the
above verification example can be computed faster than real
time (3.2s computation for 4s in real time), resulting in a k-
factor (Sec. II) of k = 1.25 which is planned to be increased
to k ≈ 4. Besides future improvements, the computation time
can be reduced by enlarging the cell size of the discretized
state space at the expense of decreasing accuracy (while
keeping the conservativity of the computation).

REFERENCES

[1] I. Ulrich and J. Borenstein, “Vfh*: Local obstacle avoidance with
look-ahead verification,” in In Proc. of the International Conference
on Robotics and Automation, 2000, pp. 2505–2511.

[2] C. Laugier, S. Petti, D. Vasquez, M. Yguel, T. Fraichard, and
O. Aycard, “Steps towards safe navigation in open and dynamic
environments,” in Autonomous Navigation in Dynamic Environments:
Models and Algorithms. Springer, 2006.

[3] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” in Proc. of the International
Conference on Robotics and Automation, 2006, pp. 2366–2371.

[4] A. E. Broadhurst, S. Baker, and T. Kanade, “A prediction and planning
framework for road safety analysis, obstacle avoidance and driver
information,” in Proc. of the 11th World Congress on Intelligent
Transportation Systems, October 2004.

[5] K. Lee and H. Peng, “Evaluation of automotive forward collision warn-
ing and collision avoidance algorithms,” Vehicle System Dynamics,
vol. 43, no. 10, pp. 735–751, 2005.

[6] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. of the Conference on Intelligent Robots and Systems,
2005.

[7] G. Lafferiere, G. Pappas, and S. Yovine, “A new class of decidable
hybrid systems,” in Hybrid Systems: Computation and Control, ser.
LNCS 1569. Springer, 1999, pp. 137–151.

[8] O. Botchkarev and S. Tripakis, “Verification of hybrid systems with
linear differential inclusions using ellipsoidal approximations,” in Hy-
brid Systems - Computation and Control, ser. LNCS 1790. Springer,
2000, pp. 73–88.

[9] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid
system verification,” in IEEE Transactions on Automatic Control,
vol. 48, no. 1, 2003, pp. 64–75.

[10] O. Stursberg and B. H. Krogh, “Efficient representation and com-
putation of reachable sets for hybrid systems,” in Hybrid Systems -
Computation and Control, ser. LNCS 2623. Springer, 2003, pp. 482–
497.

[11] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in Hybrid Systems : Computation and Control, vol. 3414, 2005, pp.
291–305.

[12] J. Lunze and B. Nixdorf, “Representation of hybrid systems by means
of stochastic automata,” Mathematical and Computer Modeling of
Dynamical Systems, vol. 4, pp. 383–422, 2001.

[13] X. Koutsoukos and D. Riley, “Computational methods for reachability
analysis of stochastic hybrid systems,” in Hybrid Systems: Computa-
tion and Control, 2006, pp. 377–391.

[14] M. Prandini and J. Hu, “A stochastic approximation method for
reachability computations,” Final Report of the Hybridge Project, pp.
115–147, 2005.

[15] M. Althoff, O. Stursberg, and M. Buss, “Safety assessment of au-
tonomous cars using verification techniques,” in to appear in the Proc.
of the American Control Conference, 2007.

[16] L. Jaulin, M. Kieffer, and O. Didrit, Applied Interval Analysis.
Springer, 2006.

[17] E. Hansen, W. Walster, and G. W. Walster, Global Optimization Using
Interval Analysis. CRC Press, 2003.

[18] H. Delingette, M. Hebert, and K. Ikeuchi, “Trajectory generation with
curvature constraint based on energy minimization,” in International
Workshop on Intelligent Robots and Systems, 1991, pp. 206–211.

[19] S. Brennan and A. Alleyne, “Dimensionless robust control with appli-
cation to vehicles,” IEEE Transactions on Control Systems Technology,
vol. 13, no. 4, pp. 624–630, 2005.

