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Abstract— Given an initial set of a nonlinear system with
uncertain parameters and inputs, the set of states that can
possibly be reached is computed. The approach is based on
local linearizations of the nonlinear system, while linearization
errors are considered by Lagrange remainders. These errors are
added as uncertain inputs, such that the reachable set of the
locally linearized system encloses the one of the original system.
The linearization error is controlled by splitting of reachable
sets. Reachable sets are represented by zonotopes, allowing an
efficient computation in relatively high-dimensional space.

I. INTRODUCTION

In order to ensure reliability and safety of technical
systems, one has to ensure that the system works as specified
in all operating conditions. A possibility to find system
failures is given by numeric simulation with changing initial
conditions, inputs, and disturbances. The test by simulation
can be improved by a guided search for simulation runs that
violate the system, see e.g. [1], [2]. The sets of violating or
dangerous states are also referred to as the sets of unsafe
states. A disadvantage of the simulation based techniques is
that they can only conclude that a system (with continuous
or hybrid dynamics) is unsafe, but safety cannot be guar-
anteed. This is because the set of initial states, inputs and
disturbances is continuous, hence infinitely many executions
of the system exist, which cannot be completely checked.
In contrast to simulation techniques, reachability analysis
allows to guarantee safety. A reachable set is the set of
states that can be reached by a system for given sets of
initial states, inputs, and disturbances. If the reachable set
does not intersect with the set of unsafe states, safety can be
guaranteed. In this work, reachable sets are computed for
nonlinear continuous systems. The extension to nonlinear
hybrid systems (i.e. systems with combined discrete and
continuous dynamics, see e.g. [3]) can be accomplished by
methods presented in [4], [5].
It has not yet been shown that the computation of exact
reachable sets for nonlinear continuous systems is possible
[6]. Approximations of reachable sets for nonlinear systems
have been developed e.g. in [7], [8] - they only allow to
conclude safety if an over-approximation of the reachable set
can be guaranteed. This is because one can conclude, that
the exact reachable set does not intersect any unsafe set, if
the over-approximated reachable set does not. A method that
does not explicitly compute reachable sets but leads to over-
approximated bounds on reachable sets are barrier certificates
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[9]. The explicit computation of over-approximated reachable
sets has been performed for polynomial nonlinear systems
using Bézier control nets in [10] and for general nonlinear
systems using global optimization techniques and face lifting
in [11], [12] respectively. These approaches compute the
reachable sets based on the dynamics of the original non-
linear system.
Another research direction is the computation of reachable
sets based on abstracted models. The most common models
used to abstract nonlinear dynamics, are systems with con-
stant bounds on the derivative (ẋ ∈ [a, a], a ≤ a ∈ Rn) and
linear systems (ẋ ∈ Ax + U, A ∈ Rn×n, x ∈ Rn, U ⊂ Rn).
In order to abstract the nonlinear dynamics, the state space
of the system is usually partitioned into regions in which
the nonlinear system is locally abstracted. The partition of
the state space into regions can be performed on-the-fly
depending on the geometry of the reachable set or in advance
with elements of fixed structure (e.g. by hyperrectangles of
fixed size and orientation). The disadvantage of the fixed
partitioning is that it usually imposes stronger limits on
the dimension n of the state space which can be handled:
e.g., a partition of w segments for each dimension results
into wn regions. Basic work for the reachability analysis
using models of constant bounds on the derivatives has been
performed e.g. in [13], [14] which has been advanced in [15]
using on-the-fly partitioning. Abstraction to linear systems
using a fixed partition has been investigated in [16]. For the
abstraction to linear systems using on-the-fly partitioning, the
first approach known by the authors, is described in [17].
In this work, reachable sets of nonlinear systems are also
computed by on-the-fly abstraction to linear systems. How-
ever, this approach differs in the following points from [17]:

• Intervals of the linearization error are computed sepa-
rately for each dimension by evaluating the Lagrange
remainder of the linearized system. In [17], the infinity
norm of the linearization error is computed which has to
be applied to all dimensions equally, resulting in a more
conservative reachable set. The difference is evident for
systems where sensitive inputs1 have small linearization
errors compared to other insensitive inputs. Applying
the infinity norm also to the sensitive inputs, results in
significant over-approximations of the reachable sets.

• Reachable sets of the linearized system are represented
by zonotopes instead of polytopes. Zonotopes have
shown to be a more efficient representation for the

1Small perturbations of the input result in large perturbations of the state
derivatives.



reachability analysis of linear systems, see [18]. Zono-
topes are not closed under intersection and convex hull
computation, resulting in a more conservative computa-
tions of reachable sets, particularly for hybrid systems.
However, it is believed that these disadvantages can
be overcompensated by the efficient representation of
zonotopes.

• Uncertain parameters in the system model are consid-
ered.

• The linearization error is limited by splitting reachable
sets.

II. OBJECTIVE

The objective is to compute the over-approximated reach-
able set of a nonlinear system with uncertain initial states,
parameters, and inputs. The initial state x(0) can take values
from a set X0 ⊂ Rn. The dynamics depends on a set of
model parameters pi(t), bounded by an interval I = [c, d]
with c < d and c, d ∈ R. A parameter pi(t) can vary over
time t within the specified intervals, such that a vector p
of all parameters stays within an interval hull P ∈ I o and
o is the number of parameters. Note that each parameter
may vary independently. The input u takes values from a
set U ⊂ Rm. The evolution of the state x is defined by the
following differential equation:

ẋ = f(x(t), u(t), p(t)), (1)

x(0) ∈ X0 ⊂ Rn, p(t) ∈ P ⊂ Io, u(t) ∈ U ⊂ Rm

where u(t) and p(t) are Lipschitz continuous. The set of
reachable states of (1) at a time point t = r is defined as:

Definition 1: The exact reachable set Re(r) that can be
reached starting from X0 (for t = 0) at time t = r for
p ∈ P and u ∈ U is:

Re(r) = {x|x(t) is a solution of (1), t = r}
An over-approximation of the reachable set at time r is
defined as R(r) ⊇ Re(r). The over-approximated set for
the complete time interval t ∈ [0, r] is defined as the union
of all R(t) for t ∈ [0, r]: R([0, r]) :=

⋃
t∈[0,r] R(t).

III. OVERVIEW OF REACHABLE SET COMPUTATIONS

A brief description of the overall concept of computing
R([0, i · r]) is shown in Fig. 1 where i ∈ N+ is the time
step and r ∈ R+ is the time increment. The reachable set is
iteratively computed for smaller time intervals t ∈ [(k − 1) ·
r, k · r] where k ∈ N+, such that R([0, i · r]) is obtained by
their union: R([0, i · r]) =

⋃
k=1...i R([(k − 1) · r, k · r]).

The reachable sets R(r) and R([0, r]) for the first time step
(k = 1) are computed based on the initial set R(0). First, the
nonlinear system ẋ = f(x, u, p) is linearized on-the-fly to a
system of the form ẋ ∈ flin(x, u, p) = A(p)Δx + B(p)u +
d(p) + L. The matrices A(p), B(p) are matrices of proper
dimension, depending on the parameter vector p, and d(p)
is a vector depending on p. The set L is the set of possible
linearization errors for t ∈ [(k − 1) · r, k · r], which has to
ensure f(x, u, p) ∈ flin(x, u, p), such that the reachable set
is enclosed by the approximation of the linearized system.

Initial set: R(0), time step: k = 1

Linearize System

Compute reachable set Rlin(k · r),
Rlin([(k − 1) · r, k · r]) without linearization error

Obtain set of admissible linearization errors L̄

Compute set of linearization errors L
based on Rlin([(k − 1) · r, k · r]) and L̄

L ⊆ L̄ ?
Split R((k − 1) · r) into two

sets and repeat reachable
set computation

Calculate reachable set Rerr due to
linearization error L

Compute R(k · r) = Rlin(k · r) + Rerr and
R([(k−1)·r, k·r]) = Rlin([(k−1)·r, k·r])+Rerr

Cancellation of redundant reachable sets

Next initial set: R(k · r), time step: k := k + 1

Yes

No

Fig. 1. Computation of reachable sets - overview.

In contrast to the reachable sets, the linearization error is
modeled as a multi-dimensional interval L ∈ In in analogy
to the set of parameters.
In order to compute L, the reachable set R lin(k · r) and
Rlin([(k − 1) · r, k · r]) of flin(x, u, p) without linearization
error (L = 0) is computed first. Due to the superposition
principle of linear systems, the reachable set Rerr due to
the set of linearization errors L can be computed separately
and added to Rlin later. In order to restrict the expansion of
the reachable set due to the linearization error, a set R̄err in
which Rerr has to be enclosed is defined. This set allows to
compute the set L̄ of admissible linearization errors obtained
from the linearized system dynamics flin(x, u, p).
Based on the admissible reachable set Radm([(k − 1) · r, k ·
r]) := Rlin([(k−1) ·r, k ·r])+R̄err, obtained by Minkowski
addition2 of Rlin and R̄err, the set of linearization errors L
can be computed. In case that L � L̄, the linearization error
is not admissible, requiring to split the initial reachable set
R((k−1) · r) of the current time interval into two reachable
sets. This implies to perform the reachable set computation
for both of the newly obtained sets once more. Hence, the
number of reachable set segments for this time interval has
increased by one. If L ⊆ L̄, the linearization error is accepted
and the reachable set is obtained by superposition of the

2Minkowski addition of two sets A, B: A+B = {a+ b|a ∈ A, b ∈ B}



reachable set without linearization error and the one due to
the linearization error: R(k · r) = Rlin(k · r) + Rerr and
R([(k − 1) · r, k · r]) = Rlin([(k − 1) · r, k · r]) + Rerr.
It remains to increase the time step (k := k + 1) and
cancel redundant reachable sets that are already covered
by previously computed reachable sets, which decreases the
number of reachable sets that have to be considered in the
next time interval. The initial set for the next time step is
R(k · r).
Besides the splitting of the reachable set in the state space,
it is also possible to split the input and parameter sets in
an analogous way. However, splitting of the reachable set
is usually most effective as the linearization error is mostly
dominated by the uncertainty of the state, and not by input
or parameter uncertainties.

IV. REACHABLE SET COMPUTATION OF THE

LINEARIZED SYSTEM

This section describes the different steps of the lineariza-
tion procedure in more detail, and explains the basics for the
computation of reachable sets using zonotopes. The local
linearization of the nonlinear system (1) is performed by
a Taylor series. In order to introduce a concise notation,
the state and input vector are combined to a new vector
zT =

[
xT , uT

]
. This allows to formulate a Taylor series

of the nonlinear system dynamics (1) for a p ∈ P as:

ẋi = fi(z, p) =fi(z∗, p) +
∂fi(z, p)

∂z

∣∣∣
z=z∗

(z − z∗)+

1
2
(z − z∗)T ∂2fi(z, p)

∂z2
)
∣∣∣
z=z∗

(z − z∗) + . . .

The infinite Taylor series can be over-approximated by a first
order Taylor series and its Lagrange remainder:

ẋi ∈ fi(z∗, p) +
∂fi(z, p)

∂z

∣∣∣
z=z∗

(z − z∗)︸ ︷︷ ︸
1st order Taylor series

+

1
2
(z − z∗)T ∂2fi(ξ, p)

∂z2
(z − z∗)︸ ︷︷ ︸

Lagrange remainderLi

.

(2)

Let z be restricted to a convex set and let z, z∗ be fixed,
then the Lagrange remainder L can take any value that
results from ξ ∈ {z∗ + α(z − z∗)|α ∈ [0, 1]}, see [19]. The
computation of the set L resulting from the set of possible
values of z and ξ is presented in Sec. V. In order to obtain
the standard notation of the linearized system, the z vector
is separated into the state vector x and the input vector u.

ẋ ∈ f(z∗, p) +
∂f(z, p)

∂z

∣∣∣
z=z∗

(z − z∗) + L

= AΔx + BΔu + f(x∗, u∗, p) + L
(3)

with

Δx = x − x∗, Δu = u − u∗

A =
∂f(x, u, p)

∂x

∣∣∣
x=x∗

, B =
∂f(x, u, p)

∂u

∣∣∣
u=u∗

In case there are no uncertain parameters p, one obtains
matrices A ∈ Rn×n and B ∈ Rn×m where the elements are

real numbers. If the system contains uncertain parameters,
the elements of the matrices are intervals such that A ∈ In×n

and B ∈ In×m.

A. Reachable Set Computations for the Linear System

Reachable sets of linear systems with uncertain parameters
and inputs have been computed in an earlier work of the
authors [20]. The basic steps that are undertaken in order to
compute the reachable set of the linearized system in (3), are
recalled in the following. The reachable set of a time interval
t ∈ [(k − 1) · r, k · r] is obtained by

1) computation of the reachable set R̂ without input at
the time points t = (k − 1) · r and t = k · r,

2) generation of the convex hull of the time point solu-
tions,

3) enlarging of the convex hulls to ensure enclosure of
all trajectories for the current time interval t ∈ [(k −
1) · r, k · r] under all possible inputs.

These basic steps are illustrated in Fig. 2. The same concept
is applied for many algorithms (e.g. [18], [11], [21]) that
compute over-approximated reachable sets.

R̂((k − 1) · r)

R̂(k · r)
Convex
Hull of
R̂((k−1)·r),
R̂(k · r)

R([(k − 1) · r, k · r])

➀ ➁ ➂

enlarging

Fig. 2. Computation of reachable sets for a linear system.

In a first step, this procedure is applied to the linearized
system (3) without considering the linearization error (L =
0) as described in Sec. III. After obtaining the linearization
error L, the reachable set Rerr(t) of the linearized system
(3) resulting from the additional input L is computed. Due
to the applicability of the superposition principle, the overall
reachable set can be obtained by the Minkowski addition of
Rlin(t) and Rerr(t):

R(t) = Rlin(t) + Rerr(t)

Note that R(t) is the over-approximated reachable set of
the original nonlinear system since the Lagrange remainder
contains all possible linearization errors.

B. Representation of Reachable Sets

In this work, reachable sets are represented by zono-
topes. They are chosen because linear transformations and
Minkowski sums can be computed efficiently, allowing to
compute reachable sets for large scale linear systems in
continuous space [18], [20]. In addition, the axis-aligned
bounding box, or so-called interval hull of zonotopes, can
be computed in an efficient way what is advantageous for
the computation of the Lagrange remainder. A zonotope is
defined as follows:



Definition 2 (Zonotope): A zonotope is a set

Z =
{
x ∈ Rn : x = c +

p∑
i=1

β(i) · g(i), −1 ≤ β(i) ≤ 1
}

with c, g(1), . . . , g(p) ∈ Rn. The vectors g(1), . . . , g(p) are
referred to as the generators and c as the center of the
zonotope. The order of a zonotope is q = p

n and the notation
is (c, g(1...p)), where the first element in the parentheses
always refers to the center of the zonotope.

In other words, a zonotope is defined by a center c to which
line segments li = β(i) · g(i), −1 ≤ β(i) ≤ 1 are added
via Minkowski sum. This is illustrated in Fig. 3, where the
final zonotope is generated step by step from left to right
by adding three two-dimensional line segments l1 . . . l3 via
Minkowski addition to the center of the zonotope. Zonotopes
are always centrally symmetric to its center.

0 1 2
0

1

2

c

l1

(a) c + l1

−1 0 1 2 3
−1

0

1

2

3

c

l1 l2

(b) c + l1 + l2

−2 0 2 4
−1

0

1

2

3

c

l1 l2

l3

(c) c + l1 + l2 + l3

Fig. 3. Step-by-step construction of a zonotope from left to right via
Minkowski addition of line segments.

The interval hull η that encloses a zonotope can be
computed as follows (see e.g. [18]):

η = IH(Z) = [η, η] ∈ In

η = c −
p∑

i=1

|g(i)|, η = c +
p∑

i=1

|g(i)| (4)

where IH(Z) is the interval hull operator.

V. COMPUTATION OF THE LINEARIZATION ERROR

As described in the previous section, the linearization
error is obtained by evaluation of the Lagrange remainder.
After defining Ji(ξ, p) := ∂2fi(ξ,p)

∂z2 , where i is the system
dimension of f , one can write the Lagrange remainder in
(2) as

Li =
1
2
(z − z∗)T Ji(ξ, p)(z − z∗),

ξ(z) ∈ {z∗ + α(z − z∗)|α ∈ [0, 1]}
(5)

In order to determine the set Li for the time interval t ∈
[0, r], one has to consider the possible values of z within this
time interval. The values of z are within Z([0, r]) which is
the Cartesian product Z([0, r]) := R([0, r])×U as the state
vector is restricted to x([0, r]) ∈ R([0, r]) and the input u
is restricted to u ∈ U . In order to determine the maximum
absolute values of the Li for z ∈ Z([0, r]) in an efficient
way, the following over-approximation is computed:

Proposition 1: The absolute values of the Lagrange re-
mainder can be over-approximated for z ∈ Z by the
following computations:

|Li| ⊆ [0, L̂i]

with L̂i =
1
2
γT max(|Ji(ξ(z), p)|)γ, z ∈ Z, p ∈ P

and γ = |c − z∗| +
p∑

i=1

|g(i)|

where c is the center and g(i) are the generators of the
zonotope Z . The max-operator and the absolute values are
applied elementwise.

Proof: The following over-approximations apply for the
absolute value of Li:

|Li| =
{1

2
|(z − z∗)T Ji(ξ(z), p)(z − z∗)| ∣∣z ∈ Z, p ∈ P

}

⊆ 1
2
[0, max

(|(z − z∗)T Ji(ξ(z), p)(z − z∗)|)]
⊆ 1

2
[0, max

(|z − z∗|T |Ji(ξ(z), p)||z − z∗|)]
⊆ 1

2
[0, max(|z − z∗|)T max(|Ji(ξ(z), p)|)max(|z − z∗|)]

The expression max(|z − z∗|) can be further rewritten since
z ∈ Z is within a zonotope with center c and generators g (i):

z ∈ Z, x(i) ∈ [−1, 1] : max(|z − z∗|) =

max(|c − z∗ +
p∑

i=1

x(i)g(i)|) ≤ |c − z∗| +
p∑

i=1

|g(i)| = γ

such that the expression of proposition 1 is obtained.

The expression max(|Ji(ξ(z), p|) in proposition 1 is com-
puted via interval arithmetics [22]. To do so, the values of
z have to be over-approximated by an interval vector as
shown in (4): z ∈ IH(Z). From this follows that ξ(z) ∈
{z∗ + α(z − z∗)|α ∈ [0, 1]} also becomes an interval vector
and the values of p are intervals by definition.
The result of proposition 1 also allows to find a linearization
point z∗ that minimizes the values L̂i and thus the set of
Lagrange remainders.

Proposition 2: The bound of the Lagrange remainder L̂
is minimized by choosing z∗ = c as the linearization point.

Proof: The value of γ is minimized by z ∗ = c which
can be directly checked from its computation in proposition
1. By choosing z∗ = c, it follows that {ξ(z)|z ∈ Z} = Z
(which is independent of z∗) , such that max(|Ji(ξ(z), p)|) is
not affected by the linearization point z ∗. From this follows
that z∗ = c minimizes L̂i.

After choosing z∗ = c, it remains to solve the problem that
the center c of Z([0, r]) is not known, since Z([0, r]) is
computed after linearization. As a solution, c is approximated
based on the center ĉ of Z(0):

z∗ = ĉ +
r

2
f(ĉ, mid(p)) ≈ c

The operator mid() returns the center of an interval vector.



VI. RESTRICTION OF THE LINEARIZATION ERROR

It is clear, that the Lagrange remainder strongly depends
on the size and the center of a reachable set of a partial time
interval. In order to deal with the increase of the linearization
error with the size of the reachable set, the linearization
error Rerr is restricted to a multidimensional interval R̄err.
The rate of growth of the admissible expansion of R̄err is
restricted by the expansion vector θ ∈ Rn which has to be
set as a parameter of the reachability computations:

R̄err(r)
!⊆ [−θ · r, θ · r] (6)

The reachable set of the linearized system due to the lin-
earization error L = [−L̂, L̂] is as shown in [20]:

R̄err(r) = A−1(eAr − I)[−L̂, L̂].

After the left multiplication of (eAr−I)−1A and the insertion
of (6), one obtains

(eAr − I)−1A[−θ · r, θ · r] ⊇ [−L̂, L̂],

which is fulfilled if

|(eAr − I)−1A| θ · r =: L̄ ≥ L̂. (7)

The absolute value in the above inequality is obtained
elementwise. In case the constraint L̄ ≥ L̂ is not fulfilled
for the time interval t ∈ [k · r, (k + 1) · r], the reachable set
R(k · r) is split up, as explained below.

A. Splitting of Reachable Sets

One can split a zonotope Z into two zonotopes Z1 and
Z2 by splitting the jth generator of Z:

Proposition 3: A zonotope Z = (c, g (1...p)) is split into
two zonotopes Z1 and Z2 such that Z1 ∪ Z2 = Z and Z1 ∩
Z2 = Z∗ where

Z1 = (c − 1
2
g(j), g(1...j−1),

1
2
g(j), g(j+1...p))

Z2 = (c +
1
2
g(j), g(1...j−1),

1
2
g(j), g(j+1...p))

Z∗ = (c, g(1...j−1), g(j+1...p))

Proof: First, a zonotope (0, g(j)) that consists of the
jth generator only, is generated. This generator can be split
up into two generators:

(0, g(j)) = (−1
2
g(j),

1
2
g(j)) ∪ (

1
2
g(j),

1
2
g(j))

Adding Z∗ to both sides of the above statement yields

Z∗ + (0, g(j)) = Z∗ +
(

(−1
2
g(j),

1
2
g(j)) ∪ (

1
2
g(j),

1
2
g(j))

)

=
(

Z∗ + (−1
2
g(j),

1
2
g(j))

)
∪

(
Z∗ + (

1
2
g(j),

1
2
g(j))

)

as A+(B∪C) = (A+B)∪ (A+C). The addition of zono-
topes is performed by adding the centers and concatenating
the generators (see, e.g. [18]), such that Z = Z ∗ + (0, g(j)),
Z1 = Z∗ + (− 1

2g(j), 1
2g(j)) and Z2 = Z∗ + (1

2g(j), 1
2g(j)),

resulting in Z = Z1 ∪ Z2.
Furthermore, it can be clearly seen that

Z1 ∩ Z2 =(
Z∗ + (−1

2
g(j),

1
2
g(j))

)
∩

(
Z∗ + (

1
2
g(j),

1
2
g(j))

)
= Z∗

as (− 1
2g(j), 1

2g(j)) ∩ (1
2g(j), 1

2g(j)) = {0}.

The higher the order of a zonotope Z is, the bigger is the
overlapping zonotope Z ∗ and consequently, the less effective
is a split. For this reason, zonotopes should be reduced to
a certain order with, e.g., the methods presented in [5].
The order reduction of zonotopes is performed in an over-
approximated way, such that for the reduced zonotope Z red

holds: Zred ⊃ Z . The advantages and disadvantages of
the order reduction are illustrated for a zonotope Z in a
two-dimensional space with 4 generators according to Fig.
4(a). The splitted zonotopes of the original zonotope Z are
denoted Z1, Z2 and the ones of the reduced zonotope Zred

are denoted Z1
red, Z2

red and can be found in Fig 4(b) and Fig.
4(c). The advantage of the split of the unreduced zonotope is
that the splitted zonotopes cover a smaller region: Z 1∪Z2 =
Z ⊂ Zred = Z1

red∪Z2
red. However, Z1 and Z2 overlap more

than Z1
red and Z2

red: Z1 ∩ Z2 = Z∗ ⊃ Z∗
red = Z1

red ∩ Z2
red

and Z∗, Z∗
red are the zonotopes where the splitted generator

is removed as shown in proposition 3. In order to obtain an
optimal result, one has to find a compromise between the
overlapping and the over-approximation of reachable sets.

Z Zred

g(j)

g
(j)
red

(a) Z , Zred

Z1Z2

1
2
g(j)

(b) Z1, Z2

Z1
redZ2

red

1
2
g
(j)
red

(c) Z1
red, Z2

red

Fig. 4. Split of a zonotope and the corresponding reduced zonotope.

It remains to find the j th generator that splits the reachable
set R(k · r) into R1,j(k · r) and R2,j(k · r) in an optimal
way. The indices 1, 2 distinguish the two reachable sets
that result after splitting the j th generator. This requires
a performance index for each split which is based on the
Lagrange remainder. Therefore, the reachable sets R 1,j([k ·
r, (k + 1) · r]) and R2,j([k · r, (k + 1) · r])) for the time
interval are computed based on the corresponding initial sets
R1,j(k · r) and R2,j(k · r). The reachable sets for the time
interval allow to obtain the corresponding linearization error
bounds L̂1,j and L̂2,j . The performance index ρj for the split
of the jth generator is computed as:

ρj = max(L̂1,j/L̄j) · max(L̂2,j/L̄j)

where L̂1,j/L̄j and L̂2,j/L̄j are divided elementwise and
max() returns the maximum value of the resulting vectors.
The component j with the lowest value in the performance



vector ρ returns the generator that has to be split. In case the
lowest performance value is greater than one, the obtained
split sets have to be split again recursively. If the performance
index is less than one, the linearization error limit (7) is
fulfilled, such that the reachable sets for the next time step
can be calculated.

B. Cancellation of Redundant Reachable Sets

After a total number of i splits in the time interval [0, k ·r],
i reachable sets have to be computed for the next time
interval [k·r, (k+1)·r]. Hence, the computational complexity
of reachable sets grows linearly with the number of splits.
This effect can be reduced by cancelling reachable sets that
already have been reached. In order to check if a computed
reachable set has been reached before, the set difference
operation is used. As the set difference of two zonotopes is
no zonotope anymore, the zonotopes are over-approximated
by polytopes as presented in [5]. The over-approximation
is performed for the reachable set segments of the past ζ
time steps, where ζ can be freely chosen. If a polytope of
the current time interval is empty after the set difference
computation with the polytopes of the past ζ time steps, this
reachable set segment is cancelled. After the cancellation,
the remaining polytopes are transformed back to zonotope
representation. As the cancellation of reachable sets leads to
an over-approximation of the reachable set, and in addition is
computationally expensive, the described procedure is only
applied every δ ∈ N+ time steps, which is set by the user.

VII. NUMERICAL EXAMPLES

The approach is demonstrated for two examples. The Van-
der-Pol oscillator is a standard example for nonlinear systems
that have a limit cycle:

ẋ1 = x2

ẋ2 = (1 − x2
1)x2 − x1

The reachable sets are computed with a time step of r =
0.02 and are visualized in Fig. 5(a). The expansion vector
is set to θ = [0.05, 0.05]T and the cancellation of reachable
sets is performed every δ = 100 time steps. The number of
reachable sets that have to be computed for a single time
step is shown in Fig. 5(b). It can be seen that reachable sets
are rejected after 4 and 6 time units. Further, one observes
that the limit cycle is stable as the reachable set after one
cycle is enclosed by the initial reachable set. This example
is implemented in Matlab and the computation time is 76
seconds on a desktop computer with 3.7 GHz.

As a second example, a water tank system with uncertain
inputs and parameters as illustrated in Fig. 5 is considered.
The states xi are the water levels of each tank and u is the
water flow into the system that is controlled by measuring
the water level of the last tank. This example is chosen as it
can be easily formulated for different numbers of states by
adding additional water tanks. The differential equation for
the water level of the first tank is given by Toricelli’s law:

ẋ1 =
1

A1
(u + v − k1

√
2gx1)
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(a) Van-der-Pol oscillator: reachable set.
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Fig. 5. Water tank system.

where A1 and k1 are tank specific parameters, g is the gravity
constant, u is the inflow and v is a disturbance. The inflow
u is chosen as u = 0.1+κ(4−xn) and xn is the water level
of the last tank. The differential equation for the i th tank is

ẋi =
1
Ai

(ki−1

√
2gxi−1 − ki

√
2gxi)

and for simplicity, all Ai are set to Ai = 1. The reachable set
for t ∈ [0, 400] with v ∈ [−0.005, 0.005] and the uncertain
parameters ki ∈ [0.0149, 0.015] for 6 tanks is shown in
Fig. 6 together with exemplary trajectories starting from
the vertices of the initial set 3. The time step is chosen to
r = 4 and the expansion vector is set to θi = 0.001 for
all i. Computational times for different system dimensions
using the same parameters and settings than for the 6-tank
system are presented in Tab. I for the case of uncertain and
certain parameters ki. The values are chosen as ki = 0.015
in the case of certain parameters and ki ∈ [0.0149, 0.015] in
the uncertain case. All computations have been performed
using Matlab on a desktop computer with 3.7 GHz. It can be
observed from Tab. I that the computation time moderately
increases with the system dimension due to the efficient
computation of reachable sets using zonotopes.

3The exemplary trajectories are only computed for constant v and ki
values although the values may be time varying.
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Fig. 6. Reachable sets of the tank system.

TABLE I

COMPUTATIONAL TIMES.

Dimension n 6 12 18 24 30

CPU-time [sec] (no uncer-
tain parameters)

18.1 64.9 170 367 704

CPU-time [sec] (with un-
certain parameters)

26.3 82.6 201 417 796

VIII. CONCLUSIONS

An approach for the efficient computation of reachable sets
of high dimensional nonlinear systems has been presented.
The method performs well, especially for systems with lower
nonlinearity measure. In case of highly nonlinear systems,
such as chaotic systems, the implementation may get stuck
due to numerical problems, which is a challenge for other
algorithms, too. Special characteristics are the consideration
of uncertain parameters, the linearization error evaluation
using the Lagrange remainder, and the possibility of split-
ting reachable sets represented by zonotopes. The presented
approach can be included in algorithms for the reachability
analysis of hybrid systems with nonlinear dynamics.
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