
JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 1

Model-Based Probabilistic Collision Detection in
Autonomous Driving

Matthias Althoff, Olaf Stursberg, Member, IEEE, and Martin Buss, Member, IEEE,

Abstract—Safety of planned paths of autonomous cars with re-
spect to the movement of other traffic participants is considered.
Thereto, the stochastic occupancy of the road by other vehicles
is predicted. The prediction considers uncertainties originating
from the measurements and the possible behaviors of other traffic
participants. In addition, the interaction of traffic participants
as well as the limitation of driving maneuvers due to the road
geometry is considered. The result of the presented approach
is the probability of a crash for a specific trajectory of the
autonomous car. The presented approach is efficient as most
intensive computations are performed offline, resulting in a lean
online algorithm for real-time application.

Index Terms—Safety assessment, threat level, autonomous
cars, behavior prediction, interaction, Markov chains, uncertain
models, reachable sets.

I. INTRODUCTION

IN the past years, new driver assistant systems have
successfully emerged into the market as they compensate

shortcomings of human drivers, such as inevitable reaction
times for emergency brakes or deficiencies for vehicle
stabilization. However, the cognitive capabilities of humans
are excellent and valuable in unexpected driving situations
as well as for the correct interpretation of a traffic situation.
Consequently, the next step towards intelligent vehicles is the
implementation of basic cognitive capabilities as it is tried
in many research projects, among them the collaborative
research center Cognitive Automobiles [29], in which this
work has been carried out.
One of the human abilities in traffic is the estimation of
the threat level of planned actions. Maneuvers, such as
overtaking, lane changing, or intersection crossing, are mainly
evaluated according to a ratio of risk and time efficiency.
As the consequences of a started maneuver affect the future
development of a traffic situation, prediction is inevitable
in order to assess the danger of the taken action. In this
work, a technical realization for the safety assessment of
driving maneuvers of autonomous cars is proposed, which
is based on the prediction of traffic situations. In contrast
to predictive approaches, non-predictive methods are based
on the record and evaluation of traffic situations that have
resulted in dangerous situations, see e.g. [1].
Behavior prediction of human drivers has been widely
investigated, e.g. in [21], [33], [25]. As reported in the
literature, human driver prediction within the ego vehicle (i.e.

All authors are with the Institute of Automatic Control Engineer-
ing (LSR), Technische Universität München, 80290 München, Germany.
{althoff,stursberg,mb}@tum.de

Manuscript received 22. September 2008; revised xxx.

the vehicle for which the safety assessment is performed) can
be conducted with the help of learning mechanisms such as
neural networks or filter techniques as e.g. Kalman filters.
The same approaches can be applied for traffic scenes that
are observed from a fixed location, such as intersections,
allowing to learn typical behavior patterns of the specific
scene, see e.g. [17], [30].
Another possibility to predict traffic situations is to simulate
single behaviors of traffic participants [10], [15], resulting in
measures like time to collision or predicted minimum distance.
Due to the efficiency of single simulations, these approaches
are already widely implemented in cars. However, single
simulations do not consider uncertainties in the measurements
and actions of other traffic participants, which may lead to
unsatisfying collision predictions [20]. A more sophisticated
threat assessment considers multiple simulations of other
vehicles, considering different initial states and changes in
their inputs (steering angle and acceleration). These so called
Monte-Carlo methods have been studied in [11], [12], [14].
Another method to investigate possible behaviors of traffic
participants is reachability analysis, see e.g. [9], [3], [7]. For
a given set of initial states and disturbance values, a reachable
set contains all possible states that the system trajectories can
evolve into. If for a traffic scenario, the reachable positions
of the ego vehicle do not intersect the reachable positions
of another vehicle, these vehicles cannot crash. Reachable
sets for vehicles have been investigated in [27], [31]. It has
been shown that planned paths of autonomous vehicles are
too often evaluated as unsafe by this method, because the
reachable sets of other vehicles rapidly cover all positions the
autonomous vehicle could possibly move to. For this reason,
the reachable sets are enhanced by stochastic information to
so called stochastic reachable sets in previous works of the
authors [4], [2], [6]. The stochastic information allows not
only to check if a planned path of the ego vehicle may result
in a crash, but also with which probability. Consequently,
possible driving strategies of autonomous cars can be
evaluated according to their safety. Stochastic reachable sets
have also been investigated for air traffic safety [16] and fault
diagnosis [28], [23].
It is further emphasized that traffic prediction has to
consider interaction between vehicles. Interaction between
vehicles has been widely studied in microscopic traffic
simulations [24] and within Monte-Carlo techniques [11],
[12], [14]. The problem one faces with interaction is that
the simulations result in a fast growing tree of possible
situations to be considered. If only discrete actions (e.g. lane
change) at discrete points of time are taken into account, the



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 2

Autonomous Car

Environment
Sensors

Trajectory
Planner

Safety Verification

Fig. 1. Conception of the safety assessment.

computational complexity is O(μρ·ν), where μ is the number
of possible actions, ρ is the number of time steps of the
prediction and ν is the number of traffic participants, see
[13]. This worst case complexity, however, can be reduced
by discarding impossible or unrealistic behaviors. The
consideration of interaction also causes additional complexity
for the computation of stochastic reachable sets, however, the
incorporated interaction mechanism of the presented approach
is efficient in the sense that the computations can be applied
online using a desktop PC.

II. MOTIVATION AND PROBLEM STATEMENT

Clearly, autonomous driving requires a control loop con-
taining a perception and planner module, see Fig. 1. The
perception module detects traffic situations and extracts rel-
evant information, such as the road geometry as well as static
and dynamic obstacles. In order to fulfill the driving task, the
planner module computes trajectories that the autonomous car
is tracking with the use of low level controllers. A major
constraint for the trajectory planner is that the generated
trajectories have to be safe, i.e. no static and dynamic obstacles
must be hit. The task of circumventing static obstacles can be
ensured by checking whether the static obstacle intersects with
the vehicle body of the autonomous car following the planned
path. For dynamic obstacles, the safety assessment is much
more intricate as their future actions are unknown. For this
reason, sets of possible behaviors of other traffic participants
are considered, which are checked with the planned path of the
autonomous car in a dedicated safety verification module (see
Fig. 1). Paths that fulfill the safety requirements are executed
and are conservatively replanned otherwise, e.g. by braking
the car.
The safety verification module which is described in this work
requires the description of a traffic situation containing the
following information gathered by the perception module:

• the planned trajectory of the autonomous car,
• the geometric description of the relevant road sections,
• the position and geometry of static obstacles,
• as well as the position, velocity, and classification of

dynamic obstacles.
Static obstacles are a special case of dynamic obstacles with
zero velocity, and for that reason, the discussion is continued
for dynamic obstacles only. The classification groups the

τ1

τ2

Planned path
Other car

Ego car

Stochastic reachable set

Fig. 2. Stochastic reachable sets of traffic participants.

Time t

x(t) Time step i New sensor values

1

2

3

Time horizon tfTime horizon tf

Δt

Stochastic reachable set

Fig. 3. Repetitive computation of reachable sets.

dynamic obstacles (=̂ traffic participants) into cars, trucks,
motorbikes, bicycles, and pedestrians. As the measurement
of positions and velocities of other traffic participants is
uncertain, the presented approach allows the measured data
to be specified by a probability distribution. However, the
minimum requirement is that all relevant traffic participants
are detected at all. The region where the probability density
is non-zero is referred to as the initial set. Given this set,
the future set of positions possibly occupied by the traffic
participant is denoted reachable set. Analogously, given the
initial probability distribution of a traffic participant, the future
probability distribution is also referred to as the stochastic
reachable set.
Reachable sets of other traffic participants allow to guarantee
the safety of the planned trajectory for a prediction horizon
tf if they do not intersect the reachable set of the ego car
within the specified horizon. For the case of a possible crash,
the probability distribution within the reachable set is used
to determine the probability of the crash. This is illustrated
in Fig. 2, where stochastic reachable sets are shown for the
time intervals τ1 = [0, t1], τ2 = [t1, t2] (dark color indicates
high probability density). Within the time interval τ1, a crash
between both cars is impossible, while for the second time
interval τ2, the crash probability is non-zero. It is obvious
that the computation of the crash probability has to be faster
than real-time for online application. In order to update the
crash probability prediction after a time interval Δt based on
new sensor values, its computation has to be faster than real-
time by a factor of tf/Δt. This is illustrated in Fig. 3 for the
reachable set of a single variable x(t).

III. MODELING OF TRAFFIC PARTICIPANTS

This work focuses on the safety assessment of autonomous
cars driving on a road network, i.e. the motion of traffic partic-
ipants is constrained along designated roads. On that account,



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 3

the possible paths of traffic participants are determined by the
finite set of decisions {left turn, right turn, go straight}. The
extension to multi-lane roads with the additional actions {left
lane change, right lane change} is subject to future work. The
deviation along these major paths is modeled by a piecewise
constant probability density function f(δ), where δ is the
lateral deviation from a driving path. Possible driving paths
of a road network section, as well as the deviation probability
distribution f(δ) are shown in Fig. 4. The deviation probability
can be adjusted to different classes of traffic participants:
Bicycle drivers are more likely to be found close to the curb,
whereas cars and trucks are driving more likely in the center of
a lane. For unstructured environments, such as parking spaces
or pedestrians on a square, the motion of vehicles/people
cannot be described along paths. For these kinds of scenarios,
the approach presented in [26] is suggested, which uses the
same mathematical principles as presented in this work.
The longitudinal probability distribution of the position of the
vehicles is obtained by a dynamic model. After denoting the
position of the volumetric center of the vehicles along a path
with s, the velocity with v, and the absolute acceleration with
a, the longitudinal dynamics for the driving input u can be
described as follows:

ṡ = v, v̇ =

⎧⎪⎨
⎪⎩

c1 · (1 − (v/c2)2) · u, u > 0
c1 · u, u ≤ 0
0, v ≤ 0

(1)

subject to the constraint

a ≤ āmax, where a =
√

a2
N + a2

T , aN = v2/ρ(s), aT = v̇.
(2)

The constant c1 models the maximum possible acceleration
due to tire friction and c2 the top speed - these constants are
chosen according to the specific properties of the different
classes of traffic participants. The acceleration input varies
from [−1, 1], where −1 represents full braking and 1 rep-
resents full acceleration. Backwards driving on a lane is not
considered, see (1) (v̇ = 0, v ≤ 0). The function ρ(s) maps the
path coordinate s to the radius of curvature of the path and a N ,
aT is the normal and tangential acceleration respectively. The
constraint in (2) models that the tire friction of a vehicle only
allows a limited absolute acceleration āmax (Kamm’s circle).
In case, a traffic participant is violating the traffic regu-
lations, such as driving on the wrong lane, the approach
for unstructured motion in [26] is applied for this specific
traffic participant. The dynamic equations in (1) are chosen
exemplarily and can be easily exchanged against a different
set of equations. Based on the dynamics specification, the lon-
gitudinal probability distribution f(s) is obtained. Assuming
that the lateral distribution is independent from the longitu-
dinal one, the overall probability distribution is computed as
f(s, δ) = f(s) · f(δ), see also Fig. 4. Thus, the probability
distribution is described in a curved, path-aligned coordinate
system, as also used in e.g. [14].
It is emphasized that the lateral and the longitudinal distri-
bution f(δ) and f(s) refer to the volumetric center of the
vehicles. However, for visualization reasons, all figures in this

work show the vehicle body density which is taking the vehicle
size into account, see Fig. 5.

Path 1

Path 2

Δs

Path
segment

Vehicle

s

f(s)

δ

f(δ)

f(s, δ)

ρ(s)

Df

Fig. 4. Probability distribution of the position of a vehicle along a path-
aligned coordinate system.

−4
00

0

4

2020 4040

vehicle center distr. vehicle body distr.

vehicle size

Fig. 5. Probability distribution of the vehicle center and the vehicle body.

IV. REACHABLE SETS OF TRAFFIC PARTICIPANTS

This section deals with the computation of reachable sets
for traffic participants (no stochastic information). Given the
dynamics of a traffic participant as ẋ = f TP (x(t), u(t)),
where x ∈ R

n is the state and u ∈ U ⊂ R
m is a Lipschitz

continuous input constrained by the set U , the exact reachable
set Re(r) at time t = r can be defined as:

Re(r) =
{
x(r)

∣∣x(r) = x(0) +
∫ r

0

fTP (x(τ), u(τ))dτ,

x(0) ∈ X0, u(τ) ∈ U
}
.

In general, the exact reachable set of a system cannot be
computed [19]. However, one can always compute an over-
approximation, which is denoted R(r) ⊇ Re(r). The over-
approximated reachable set for a time interval is defined as
R([0, r]) :=

⋃
t∈[0,r] R(t).

In this work, over-approximations of reachable sets of nonlin-
ear dynamic systems are computed as presented in [5]. An
example of the over-approximated reachable set of (1) for
u ∈ [0.5, 1] and t ∈ [0, 2] sec is given in Fig. 6 for two
different initial sets. Additionally, sample trajectories starting
from the initial set are shown, where the states at times k ·Δt∗,
k = 0 . . . 4, Δt∗ = 0.5 sec are marked by a circle. If one
is only interested in the reachable interval of the position
and velocity of a vehicle driving along a straight path, the
following special case can be formulated:

Proposition 1: Given is a vehicle driving along a straight
path with dynamics subject to (1) and the initial condition
x(0) ∈ X(0) = S(0) × V (0) where S(0) = [s(0), s(0)] and
V (0) = [v(0), v(0)] are the position and velocity intervals.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 4

The reachable, two-dimensional interval X(t) = [x(t), x(t)]
of position and velocity is given by:

x(t) = x(0) +
∫ t

0

fTP (x(τ), u(τ))dτ, u(τ) = −1

x(t) = x(0) +
∫ t

0

fTP (x(τ), u(τ))dτ, u(τ) = 1. �

The proof is omitted, as it is clear that the greatest position
and velocity is reached when the vehicle starts with the
greatest initial position and velocity within the initial set,
under full acceleration. The analogous argumentation holds for
the lowest position and velocity. Note that this argumentation
is only applicable if there exists an initial state that jointly
contains the maximum initial position and velocity. This is
always the case when the initial set is a two-dimensional
interval, which is in contrast to the left example of Fig. 6,
for which proposition 1 is not applicable. In the left example,
the maximum reachable position at different times is reached
from trajectories starting from different initial states. However,
if one is only interested in the reachable position – and the
initial set is a two-dimensional interval, as shown in the right
example of Fig. 6, the result of proposition 1 results in the
exact reachable interval of the position coordinate.
For the case of a curved path, one has to consider the tire
friction constraint in (2). For a given radius profile ρ(s), the
minimum and maximum admissible input u(s) and u(s) can
be obtained as presented e.g. in [32]. By changing u(τ) = −1
to u(τ) = u(s(τ)) and u(τ) = 1 to u(τ) = u(s(τ)) in
proposition 1, one can compute the reachable positions for a
curved road. Speed limits on a road can be handled by cutting
off the previously computed speed profile v(s) at v max by
assigning u(s) = 0 if v(s) > vmax.

20 40 60 80

5

10

15

20

25

30

35

s [m]
20 40 60

0

10

20

30

40

s [m]

v 
[m

/s
]

Initial set R(0) Initial set R(0)

R([0, r])
R([0, r])

Trajectories x(t) Trajectories x(t)

x(t∗)

x(t∗ + Δt∗)

Fig. 6. Reachable sets of a vehicle for different initial sets.

V. STOCHASTIC REACHABLE SETS OF TRAFFIC

PARTICIPANTS

As stated in the previous section, the exact computation of
reachable sets is only possible for a limited class of systems
[19]. Hence, it is obvious that for the more general problem of
stochastic reachable sets, one has to apply (conservative) ap-
proximation techniques, too. One of the most frequently used
techniques is to approximate stochastic processes by Markov
chains. The techniques for the abstraction to Markov chains
are manifold, where many of them couple the time interval
between the updates of the probability distribution with the

accuracy of the abstraction, see e.g. [16], [18]. However, this
coupling is unfavorable in terms of real-time applicability, as
a required approximation accuracy may lead to short update
times of the probabilities – and consequently to too many
update iterations that cannot be handled in real-time. For this
reason, the update intervals and the approximation accuracy is
decoupled as in [22], [28]. The presented abstraction method
for nonlinear systems with unknown inputs is conservative,
which means that the reachable set of the Markov chain is
an over-approximation of the reachable set of the original
stochastic process. Note that in contrast to the reachable set,
the probability distribution is an approximation as in case of
an over-approximation its integral would be greater than one
and thus destroys an axiom of the probability calculus.
The abstraction of the continuous dynamics of the traffic
participants to Markov chains is computed offline. During
online execution of the algorithm, for each traffic participant,
a Markov chain is instantiated. The interaction between traffic
participants is established by influencing the acceleration prob-
abilities of traffic participants by the state (position, velocity)
and the acceleration of other traffic participants. This means,
that the traffic participants of a traffic situation are not com-
bined in a single Markov chain, but represented by separate
Markov chains. Thus, the complexity of the algorithm is N
times the worst-case complexity of the computation of a single
traffic participant and N is the number of considered traffic
participants.
It is also emphasized, that the abstraction to Markov chains
discussed from Sec.V-A to Sec.V-D is only performed for other
vehicles, as the motion of the ego vehicle is planned within
the vehicle and thus known. The ego vehicle is discussed
separately in Sec. V-E.

A. Abstraction by Markov Chains

A Markov chain is a stochastic dynamic system with
discrete states z ∈ N

+. There are discrete time and continuous
time Markov chains. In this work, discrete time Markov chains
are used, such that t ∈ {t1, t2, . . . , tf} where tf is the
prediction horizon and tk+1 − tk = T ∈ R

+ is the time step
increment. In Markov chains the current state is not exactly
known but probabilities pi = P (z = i) describe that the
system is in state z = i, leading to a probability vector p.
By definition, the probability vector for the next time step
tk+1 is a linear combination of the probability vector of the
previous time step tk:

p(tk+1) = Φ · p(tk), (3)

where Φ is referred to as the transition matrix. The generation
of a Markov chain model can be divided into two steps:
First, the state space of the original continuous system is
discretized into cells representing the discrete states. Second,
the transition probabilities from one cell to another cell have
to be determined, which are stored in the transition matrix of
the Markov chain.

1) Discretization of the State and Input Space: In this
work, a region X ⊂ R

2 of the continuous state space of (1)
is discretized in orthogonal cells of equal size, resulting in



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 5

X1 X2 X3 X4 · · ·
· · ·

...

x1

x2

Φ31

Fig. 7. Discretization of the state space.

rectangular cells with the coordinates x1 := s and x2 := v, see
Fig. 7. This discretization allows to describe the cells Xi (with
index i referring to the represented discrete state) by the two
dimensional interval Xi =]xi, xi], xi, xi ∈ R

2 and X =
⋃

Xi.
In an analogous way, a region U ⊂ R of the input space
of (1) is discretized into intervals U α such that U =

⋃
Uα.

The index α refers to the value of the discrete input, which is
denoted by y. In order to distinguish between indices referring
to states or inputs, state indices are subscripted and Latin,
where input indices are superscripted and Greek.

2) Transition Probabilities of the Markov Chain: The tran-
sition probabilities store the probabilities that the system state
changes from i to j: Φji = P (z(tk+1) = j|z(tk) = i). In
this work, the transition probabilities depend on the discrete
input α, too. For this reason, a different transition probability
matrix Φα is computed for each discrete input α. The value
of a transition probability Φα

ji, is obtained by the reachable
set Rα

i (T ) starting from x(0) ∈ Xi under the effect of the
input u ∈ Uα, where the cells Xi and Uα represent the
corresponding discrete state and input of Φα

ji. Note that the
time T of the reachable set is equal to the time step increment
T of the Markov chain. The probability of reaching cell j
is computed as the volumetric fraction of the reachable set
intersecting with the cell Xj:

Φα
ji(T ) =

V (Rα
i (T ) ∩ Xj)

V (Rα
i (T ))

, (4)

where V () is an operator returning the volume. As soon as a
cell is reached by Rα

i (T ), the probability that the cell can be
reached is non-zero. As only the probability of reaching a cell
is stored, the information is lost which part of the cell can be
reached. For this reason, the reachable cells (cells with non-
zero probability) of the Markov chain over-approximate each
corresponding reachable set Rα

i (T ). The probability values
itself are approximative (in contrast to over-approximative
reachable sets) as an equal distribution of the system state
within the reachable sets is assumed in (4).
In an analogous way, one can compute the transition proba-
bilities Φα

ji([0, T ]) for t ∈ [0, T ] by substituting Rα
i (T ) with

Rα
i ([0, T ]) which is the reachable set for t ∈ [0, T ]. Due

to computational reasons [5], the reachable set Rα
i ([0, T ]) is

obtained from
⋃T/r−1

l=0 Rα
i ([l · r, (l + 1) · r]) where T is a

multiple of r, such that

Φα
ji([0, T ]) =

r

T

T/r−1∑
l=0

Φα
ji([l · r, (l + 1) · r]).

Note that the transition probabilities in Φα
ji(T ) and Φα

ji([0, T ])
are computed offline, such that computationally expensive
operations are performed beforehand. The reachable set of
Rα

i ([0, T ]) is exemplarily shown for the case of T/r = 10 in

Fig. 8(a). The corresponding stochastic reachable set, resulting
from Φα

ji([0, T ]) · p(0) with pm(0) = 0 for m �= i and
pi(0) = 1 (i=̂ Initial cell) is illustrated in Fig. 8(b). The
circles symbolize the discrete states, which are assigned to the
corresponding cells. A transition to a cell is the more likely,
the darker the color of the cell is.

90 95 100
0

2

4

6

8

10

x1

x 2

Initial set

Reachable set
Rj

i ([0, T ])Cells

(a) Reachable set for a time inter-
val.

90 95 100
0

2

4

6

8

10

x1

x 2

Cells Discrete state

Initial cell

(b) Reachable cells for a time in-
terval.

Fig. 8. Reachable set of the original system and the corresponding stochastic
reachable set of the abstracting Markov chain.

B. Computing Stochastic Reachable Sets using Markov Chains

After the discretization of the state space, the stochastic
reachable set can be fully described by the probability vector p
of the Markov chain. For a single Markov chain, the evolution
of the probability vector can be computed as in (3). However,
in this work, Markov chains for different discrete inputs α
as well as for the time point and time interval solution are
computed. Hence, (3) has to be extended. The first extension
is, that the probability distribution within a time interval is
computed based on the distribution at a time point (for a given
input α). Thus, the probability distribution at certain time
points serves as a support for the time interval computations:

p(tk+1) = Φα(T ) · p(tk),
p([tk, tk+1]) = Φα([0, T ]) · p(tk).

(5)

This is justified by the fact that the transition probability
matrix Φα([0, T ]) is also computed based on the initial cell
at the beginning of the considered time interval. Note that the
indices of the matrix Φα and the vector p(tk) are neglected
as commonly done in linear algebra. In (5), the input α is
known and globally applied to all states i of the Markov
chain. For the next extension, the conditional probability
qα
i = P (y = α|z = i) is defined. The joint probability of

the state and input is abbreviated as pα
i := P (z = i, y = α) =

P (y = α|z = i) · P (z = i) = qα
i · pi. It is also clear, that

pi =
∑

α pα
i where

∑
α denotes the sum over all possible

values of α. As a novelty compared to earlier work in [6], the
probability distribution of the input is dynamically changed by
another Markov chain with transition matrix Γ i, depending on
the system state i. This allows a more accurate modeling of
driver behavior by considering how frequently and how intense
the acceleration command is changed. The input probability



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 6

distribution changes instantly at the discrete times tk, which
is indicated by a prime:

qβ
i (tk)′ = Γβα

i · qα
i (tk) → pβ

i (tk)′ = Γβα
i · pα

i (tk). (6)

The mapping has to be performed for each discrete state value
z = i, unless pα

i = 0, ∀α. For a better distinction to Φ, the
indices of Γ describing the input transitions are superscripted
– as also done for the input indices of the probability p.
The introduction of the joint probability pα

i requires a slight
modification of (5), where the joint probabilities pα

i have to be
updated for each input value α instead of only a single input
value:

pα(tk+1) = Φα(T ) · pα(tk),
pα([tk, tk+1]) = Φα([0, T ]) · pα(tk).

In contrast to the computation of the transition matrices Φα

for the states, the transition matrices Γi for the inputs cannot
be computed based on a dynamic model. This is because the
input/driving commands to other vehicles are provided by hu-
mans or complex computer systems (when vehicles will drive
autonomously in the future), for which the system dynamics
is unknown. As a consequence, the transition matrices Γ i

have to be learned by observation or set by a combination of
simulations and heuristics, where the latter is used in this work.
The input transition matrix is composed of an input dynamics
matrix Ψ and a priority vector λ, where the prioritization
results from many aspects, such as speed limits or interaction
with other vehicles. The input dynamics matrix Ψ and the
priority vector λ are combined to the following:

Γβα
i = norm(Γ̂βα

i ) :=
Γ̂βα

i∑
β Γ̂βα

i

,

Γ̂βα
i = diag(λβ

i ) · Ψβα, ∀i :
∑

β

λβ
i = 1, 0 ≤ λβ

i ≤ 1
(7)

The intermediate result Γ̂βα
i is normalized by the sums of

the columns such that they are summing up to 1, in order
to ensure that the sum of the probability vector stays 1 after
the multiplication with Γ, see (6). The state dependence is
modeled by the priority vector λ, while the input dynamics
matrix Ψ is independent of the state. The above formula has
the following special cases:

• λβ
i = 0: Regardless of the input dynamics matrix Ψ,

the input β of state i is prohibited (qβ
i = 0) as the

corresponding row of Γ becomes 0.
• λβ

i = 1
κ , ∀i, β (κ is the number of inputs): No input is

prioritized, such that Γi = Ψ.
• Ψ = I (I is the identity matrix): Γi = I , regardless of λ,

such that the input probability is unchanged.
• Ψ = 1

κ O (O is a matrix of ones): The multiplication
Γi ·qi results into norm

(
diag(λi) 1

κ O
) ·qi = λi. Thus, a

certain input probability distribution q i = λi is enforced,
regardless of the probability distribution of the previous
time step.

In order to discuss the effect of Ψ separately, λ is set to λβ
i =

1
κ , ∀i, β, such that Γi = Ψ, so that the input dynamics matrix
Ψ specifies with which probability the input is changed from

input α to input β, see (6). These transition probabilities are
set according to the heuristics, that the bigger the change of the
input1, the more unlikely is this change. A transition matrix
that considers this aspect and further contains the special cases
of Ψ = I and Ψ = 1

κ O is:

Ψβα(γ) = norm
(
Ψ̂βα(γ)

)
, Ψ̂βα(γ) =

1
(β − α)2 + γ

.

The parameter γ allows to gradually interpolate the extreme
cases Ψ = I and Ψ = 1

κ O, which are represented by the limit
limγ→0 Ψ(γ) = I and the other limit limγ→∞ Ψ(γ) = 1

κ O.
Informally speaking, a low value of γ models drivers that do
not change their input often, whereas a high value models
drivers, that change their input often. The higher the value of
γ, the faster converges the initial input probability distribution
to a steady state distribution, which can be changed by the
priority vector λ. This is illustrated in Fig. 9 for 3 inputs, where
the high input numbers represent high positive acceleration,
such that the first input y = 1 represents full braking and the
last input y = 3 full acceleration. The initial probabilities are
set to P (y = 1) = 0, P (y = 2) = 0.8, P (y = 3) = 0.2 and
the probabilities converge to 1

3 as no prioritization is specified.

0 5 10
0

0.2

0.4

0.6

0.8

Time step

Pr
ob

ab
ili

ty

0 5 10
0

0.2

0.4

0.6

0.8

Time step

Pr
ob

ab
ili

ty

0 5 10
0

0.2

0.4

0.6

0.8

Time step

Pr
ob

ab
ili

ty

γ = 0.01 : γ = 0.2 : γ = 10 :

P (y = 1)

P (y = 2)

P (y = 3)

Fig. 9. Input evolution for γ = 0.01, 0.2, 10.

The effect of the priority vector λ is discussed for
limγ→∞ Ψ(γ), such that λα

i = qα
i = P (y = α|z = i), which

is also the setting used in [2], [6]. The state dependent priority
vectors control the vehicles in a way, such that the constraints
due to other traffic participants or the road geometry are met,
as it is done for controlled Markov chains, see e.g. [8].
In order to break down the effects of the priority vector λ, two
different aspects are considered. One of them is the character-
istic probability distribution m in the absence of constraints,
such that mα

i = λα
i which is modeled as independent of

the state (mα
i = mα

j ∀i, j). However, not all inputs meet
constraints (are drivable), such that the event C of constraint
satisfaction is introduced. Due to the uncertain modeling
of traffic situations, the event of constraint satisfaction C
is subject to probability and stored in the constraint vector
cα
i := P (C|z = i, y = α). As at least the constraints have to

be met, the probability vector cα
i serves as an upper bound for

the priority vector λ:

λβ
i =

{
mβ

i , if mβ
i ≤ cβ

i

cβ
i , otherwise. → mβ−1

i := mβ−1
i + mβ

i − cβ
i

With other words, mβ
i is cut off at cβ

i and the cut-off
probability is added to the next lower acceleration interval, see

1As the discrete inputs are numbered in increasing order according to the
acceleration intervals, the difference between the input numbers is a measure
for the change of the acceleration interval.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 7

−1 0 1
0

0.5

1

u ∈ [−1,1]

pr
ob

ab
ili

tie
s m

c
p

mβ

cβ
i

λβ
i

mβ − cβ
i

u ∈ [−1, 1]

Fig. 10. Combining a probability distribution with a probabilistic constraint.

Fig. 10. This is motivated by the fact that for the considered
situations of vehicle and road following (Sec. V-C and V-D),
drivers have to accelerate less or brake stronger in order to
fulfill the safety constraints.

C. Interaction of Traffic Participants

In this subsection the computation of the constraint vector
cα
i = P (C|z = i, y = α) with respect to the interaction

of two vehicles driving on the same lane is presented. The
state and input of the following vehicle A is denoted z A,
yA and analogously zB , yB for the leading vehicle B. The
constraint for this scenario is that the probability of the
following vehicle crashing into the leading vehicle has to be
less than ε, which is typically very low. Thereto, it is firstly
checked if a certain initial situation results in a crash. As the
probability distribution of vehicles is approximate (in contrast
to the reachable set), the check for a crash under initial states
and inputs chosen from the cells belonging to z A, yA, zB and
yB is also approximately done for a single sample of possible
initial states and inputs:

xA(0) = center(XA
i ), xB(0) = center(XB

j ),

uA(0) = center(UAα
), uB(0) = center(UBβ

),

where center returns the volumetric center of a set. The
single simulation run approximately checking for a crash is
performed as follows:

1) Simulate both vehicles for the time Δt = ν ·T , ν ∈ N
+,

starting from xA(0), xB(0) under the effect of uA, uB.
2) Simulate a sudden brake beginning at t = ν · T of the

leading and following vehicle until the following vehicle
has stopped at t = tS .

3) Check if the following vehicle has crashed into the
leading vehicle for t ∈ [0, tS ].

Events such as zA = i are abbreviated by index notation
as (zA = i)=̂zA

i in the following in order to obtain a
concise notation. The outcome of the simulation determines
the conditional probability for satisfying the constraint that a
crash occurs with probability less than ε which is motivated
by driver inattentiveness:

P (C|zA
i , zB

j , yAα
, yBβ

, Δt = ν · T ) =

{
1, no crash simulated

ε, otherwise

The conditional probabilities P (C|zA
i , zB

j , yAα
, yBβ

, Δt =
ν · T ) can be obtained for different intervals Δt = ν · T
of constant acceleration. Long time intervals Δt model the

behavior of foresighted drivers, who adjust their acceleration
early to changes of other drivers. More sporty drivers change
their acceleration in shorter time intervals Δt. The probability
distribution for time intervals in which the acceleration interval
is unchanged P (Δt = ν · T ) allows to compute

P (C|zA
i , zB

j , yAα
, yBβ

) =∑
ν

P (C|zA
i , zB

j , yAα
, yBβ

, Δt = ν · T ) · P (Δt = ν · T ).

Note that the probability P (Δt = ν · T ) is not obtained
online by observation of other drivers, but set according an
average distribution of all drivers. The conditional probabilities
P (C|zA

i , zB
j , yAα

, yBβ) are computed offline and stored in an
(c × c)-array of (d × d)-matrices Θαβ

ji where c and d are the
numbers of discrete inputs and states. Using the values in Θαβ

ji ,
the constraint vector for vehicle interaction is computed online
as:

Proposition 2: Under the assumption that P (zA
i , yAα) and

P (zB
j , yBβ) are independent, one obtains

cα
i =

∑
j,β

Θαβ
ji pB

j

β
. �

Proof: After defining the events A = (zA
i , yAα) and

Bβ
j = (zB

j , yBβ), one can write:

P (C, A) =
∑
j,β

P (C|A, Bβ
j )P (A, Bβ

j )

independence
=

∑
j,β

P (C|A, Bβ
j )P (A)P (Bβ

j )

→ cα
i =P (C|A) =

P (C, A)
P (A)

=
∑
j,β

P (C|A, Bβ
j )P (Bβ

j )

=
∑
j,β

Θαβ
ji pB

j

β
.

It is clear, that the independence assumption only approxi-
mates the joint probability P (A, Bβ

j ) ≈ P (A)P (Bβ
j ), how-

ever this assumption simplifies the computation and has pro-
duced reasonable results for numerical examples. In traffic
situations with more than two vehicles on a lane, each vehicle
is only interacting with the next nearest vehicle driving in
front, such that the proposed algorithm is simply applied for
each vehicle that follows another vehicle.

D. Behavior Restriction due to Road Geometry and Speed
Limits

Besides the interaction with other vehicles, possible accel-
eration inputs are restricted due to speed limit and the road
geometry in combination with limited tire friction. For these
restrictions, the velocity profile resulting from the minimum
and maximum possible acceleration with respect to (2) is intro-
duced and denoted v(s) and v(s), respectively. An additional
labeling with brackets indicates the maximum absolute accel-
eration, e.g. v(s)[0.5g] is the fastest possible velocity profile
for amax = 0.5g and g is the gravity constant. Exemplary



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 8

0 50 100 150
0

5

10

15

s [m]

v 
[m

/s
]

v(s)[1g]

v(s)[0.2g]

v(s)[0.2g]

v(s)[1g]

Speed limit

x(0) x(T )

Cell

Fig. 11. Velocity profiles for two straights connected by a 90◦ curve (15.5
m radius) and a speed limit of vmax = 16.7 m/s =̂60 km/h.

velocity profiles with a speed limit (possibly greater than the
official speed limit to account for sporty drivers), are shown
in Fig. 11.

The velocity profiles allow to compute the constraint vector
cα
i = P (C|z = i, y = α) with respect to road geometry

and speed limit, where the event C holds when the velocity
is within the velocity profile bounds (v(s) ≤ v ≤ v(s)).
Analogously to the vehicle interaction, the compliance of a
constraint for state z = i, input y = α and given velocity
bounds v(s) and v(s) is approximately checked by a single
simulation run:

1) Simulate the vehicle for the time interval Δt = T ,
starting from x(0) = center(Xi) under the effect of
u = center(Uα).

2) Check whether the velocity is within the minimum and
maximum velocity profile after one time increment T
(see also Fig. 11):

v(s(T ))[a
max
d ] ≤ v(T ) ≤ v(s(T ))[a

max
d ]. (8)

The constraint vector for road geometry and speed limit is
then obtained as:

P (C|zi, y
α, a < amax

d ) =
{

1, if (8) holds
0, otherwise

.

In contrast to the vehicle interaction, the constant ε for
inattentiveness is not applied here as the physical constraint is
either met or not. After introducing the probability distribution
for applied accelerations P (a < amax

d ) among all drivers,
where 0 < amax

d ≤ āmax and āmax is the physically possible
acceleration, the constraint vector is

cα
i = P (C|zi, y

α) =
∑

d

P (C|zi, y
α, a < amax

d )P (a < amax
d ).

It remains to combine the constraint vectors for vehicle
interaction and road geometry/ speed limit, which are denoted
cint,α
i and croad,α

i respectively. As it is sufficient that the most
restrictive constraint is active, the total constraint is computed
as

cα
i = min(cint,α

i , croad,α
i ).

E. Stochastic Reachable Set of the Ego Car

In contrast to other traffic participants, the trajectory of
the ego car is known since the trajectory planner module is

connected to the safety verification module, see Fig. 1. This
means, that for time points tk, the position and velocity is
known up to a certain inaccuracy Λ of the vehicle controller
for trajectory tracking, such that x(t) ∈ x̂(t) + Λ, where
x̂(t) is the planned trajectory and the addition is performed
as a Minkowski sum2. For time intervals t ∈ [tk, tk+1], the
reachable set is given by the two-dimensional interval

R([tk, tk+1]) =
⋃

t∈[tk,tk+1]

x̂(t) + Λ

The reachable set is intersected with the cells of the discretized
state space, similar to (4), in order to obtain the discretized
probability distribution p̂α([tk, tk+1]) of the ego car.

VI. CRASH PROBABILITIES OF THE EGO CAR

The probabilities pα
i ([tk, tk+1]) computed in the previous

section refer to the probability that the continuous state is in
a certain cell Xi, under the effect of the input interval U α.
The total probability without input information is obtained by
summation:

pi([tk, tk+1]) =
∑
α

pα
i ([tk, tk+1]).

Each state space cell i represents a position and velocity
interval Se and Vm (e, m ∈ N

+ indexing position and velocity
segments), such that Xi = Se×Vm, where only the probability
of the position interval Se is of interest for the computation of
crash probabilities. The position probability for a path segment
is obtained from the joint probabilities by summation, resulting
in

ppath
e ([tk, tk+1]) :=P (s ∈ Se, t ∈ [tk, tk+1])

=
∑
m

P (s ∈ Se, v ∈ Vm, t ∈ [tk, tk+1]).

As the deviation probability is piecewise constant, one can
also define intervals Df in which the deviation probability is
constant, see Fig. 4. Introducing the probability for a deviation
segment pdev

f ([tk, tk+1]) = P (δ ∈ Df , t ∈ [tk, tk+1]), the
probability that s ∈ Se and δ ∈ Df is ppos

ef = ppath
e · pdev

f

due to the independency assumption (see Sec. III). The set
obtained from s ∈ Se and δ ∈ Df is a polygon Y (e, f),
which is indexed by its path segment e ∈ N

+ and deviation
segment f ∈ N

+, see Fig. 12.
Without loss of generality, the crash probability is considered
only for the ego car with one other traffic participant for
simplicity in the following. In case there are more traffic par-
ticipants, the following procedure has to be repeated for each
one of them. For a better distinction of variables from the other
vehicle with the ones of the ego car, the variables referring to
the ego car are indexed by a hat (�̂). In order to compute the
crash probability, the pairs of polygons (Y (g, h), Ŷ (g′, h′))
for which the vehicle bodies intersect, have to be determined.
Thereto, the possible set of vehicle bodies B(g, h) for a set of
vehicle centers in a polygon Y (g, h) is introduced, which is
the union of car bodies whose centers are within Y (g, h) and
whose orientation equals the direction of the path segment g,

2Minkowski addition of two sets A, B: A + B = {a + b|a ∈ A, b ∈ B}.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 9

see Fig. 12. In order to efficiently compute the polygon pairs
(Y (g, h), Ŷ (g′, h′)) resulting in intersecting vehicle bodies
(B(g, h) ∩ B̂(g′, h′) �= ∅), three steps are suggested allowing
to efficiently discard non-intersecting pairs:

1) First, it is checked if the vehicle bodies
⋃

f B(e, f) of a
certain path segment e can possibly intersect the vehicle
bodies belonging to a path segment g of the ego car.
Thereto it is checked if the circles enclosing the set of
vehicle bodies intersect, where circles are chosen since
checking for their intersection is computationally cheap.

2) Next, the set of vehicle bodies B(g, h), B̂(g′, h′) be-
longing to pairs of path segments passing the first test,
are again checked for intersection by the same procedure
using enclosing circles.

3) Finally, the polygon pairs passing the two previous
tests are directly checked for intersection. However,
polytope intersection is computationally expensive, such
that look-up tables are generated in advance, which
contain relative positions and angles for which polygons
intersect. There are different look-up tables depending
on checking intersection with a bicycle/bike, a car or a
truck.

The set of combinations of path and deviation segments
resulting in a crash are stored in a list Ω. The crash probability
is obtained by adding the probabilities for the pairs of path and
deviation segments in Ω:

pcrash =
∑

(g,h,e,f)∈Ω

p̂pos
gh · ppos

ef .

Note that the probability of a crash is computed in an over-
approximated way as the sets of vehicle bodies B(g, h) are
over-approximations due to the union of possible vehicle
bodies within the uncertain vehicle center Y (g, h).

Ŷ (g′, h′)

Ŷ (g′, h′)

Y (g, h)

Y (g, h)

B(g, h)

S
f Y (e, f)

S
f B(e, f)

path deviation
segments

path
segm

ents

vehicle
size

vehicle
size

vehicle
size

intersection?

no

yes

➀ ➁

➂

Fig. 12. Crash probability obtained from stochastic reachable sets.

VII. NUMERICAL EXAMPLES

The presented methods for the safety verification of planned
paths of autonomous cars are demonstrated for two traffic
situations. For both examples, the same discretization of the
state and input space is used for all vehicles. The position is
discretized in 40 segments of 5 m length and the velocity is

discretized in 10 segments, each representing an interval of 2.2
m/s. Each vehicle is subject to 5 input intervals and the time
increment of the Markov chains is chosen as T = 0.5 sec. The
γ-value for the input dynamics has been chosen as γ = 0.2 and
the values of the characteristic input probability distribution
are chosen as m1...5 =

[
0.01 0.04 0.5 0.4 0.05

]
.

In the first example, it is checked if the ego car can safely
overtake a bicycle before reaching a T-intersection, where
another car is approaching. The stochastic reachable sets of
the traffic participants are given in Fig. 13. Dark regions
indicate high probability, while bright regions represent areas
of low probability. In order to improve the visualization, the
colors are normalized for each vehicle separately, i.e. the
highest probability value of a vehicle is plotted in black. Note,
that both options, the left and right turn are considered with
probability one each, for the other car. The second example
shows a situation, where the ego car plans to merge into
another road. It is checked if it hits the oncoming cars A,
B and C, see Fig. 14. The stochastic reachable sets also show
the interaction between car B and C, as car C is forced to
brake due to the higher velocity compared to car B. The crash
probabilities for both examples are found in Fig. 15.

200

200

160

160

160160

120

120

120

120

80

80

80

80

40

40

−60 −40 −20 −20−20−20 0 000
0

t ∈ [0, 0.5]
sec:

t ∈ [2.5, 3]
sec:

t ∈ [6.5, 7]
sec:

t ∈ [9.5, 10]
sec:

Other
car

Ego car

Bicycle

Planned
path

Fig. 13. Stochastic reachable sets for the overtaking scenario.

The examples are implemented in C++3 and are computed
on a 3.7 GHz single core desktop computer, for which the
computation times are listed in Tab. I. The η = tf/tc values,
where tf is the time horizon and tc is the computation time,
state how much faster the computation is than real-time. In
addition to the discretization of the state and input space used
so far, a coarser discretization with 6 instead of 10 velocity
intervals and 3 instead of 5 input intervals is computed. The
computation times for the more coarse discretization are also
shown in Tab. I. The difference in accuracy for the high and
low resolution discretization is tried to familiarize with by a
scenario, where a vehicle is driving on a straight and free road.

3For convenience, the plots have been created in Matlab.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 10

150 150 150 150

100 100 100 100

50 50 50 50

−20 −10 55 5−5−5 −5
0 0 0 0

0 00 0

t ∈ [0, 0.5]
sec:

t ∈ [2.5, 3]
sec:

t ∈ [4.5, 5]
sec:

t ∈ [6.5, 7]
sec:

Car A

Car B

Car C

E
go

ca
r

Pl
an

ne
d

pa
th

Fig. 14. Stochastic reachable sets for the merging scenario.

The probability distribution for the high and low resolution
model is shown in Fig. 16. By showing the results for different
initial velocities, it is shown that the accuracy of the coarser
discretization significantly depends on the given situation. The
bigger difference in the probability distributions for the low
initial velocities is due to the fact, that the vehicle is more
likely to reach standstill as the probability for the input interval
including full braking increased after the mapping from 5 to
3 discrete inputs.
Another aspect, which is considered in Tab. I is the necessary
time for the computation of crash probabilities if the trajec-
tory planner forwards a replanned trajectory of the ego car,
while the initial situation of the other traffic participants is
unchanged. This time is referred to as replanning time in Tab.
I and does not account for the time that the planner module
requires for path planning of the ego car. The obtained times
are for the case that the velocity of the ego car has been
decreased by 20 %.

0 5 10
0

0.01

0.02

0.03

Time t [sec]

C
ra

sh
 p

ro
ba

bi
lit

y

(a) Overtaking scenario.

0 2 4 6
0

0.01

0.02

Time t [sec]

C
ra

sh
 p

ro
ba

bi
lit

y

(b) Merging scenario.

Fig. 15. Crash probabilities of the overtaking and merging scenario.

VIII. CONCLUSION

The presented approach allows to assess the safety of
planned trajectories of autonomous cars by predicting the
traffic situation. Uncertainties originating from measurements
of other traffic participants and their unknown intention are
considered in a stochastic way. In order to improve the predic-
tion accuracy, interaction of traffic participants is included. The
resulting crash probabilities of a planned path are conservative,

TABLE I
COMPUTATIONAL TIMES OF THE NUMERICAL EXAMPLES.

Overtaking scenario Merging scenario
Discre- Total Replanning Total Replanning
tization time [sec] time [sec] time [sec] time [sec]

High 0.56 (η : 17.9) 0.127 1.31 (η : 5.30) 0.074

Low 0.28 (η : 35.7) 0.086 0.51 (η : 13.7) 0.053

0 50 100 150
0

0.005

0.01

0.015

0.02

s [m]

f(s
)

Standstill
dip

Low
res.

High
res.

(a) Low initial velocity v(0) ∈
[4, 6].

0 50 100 150
0

0.01

0.02

0.03

s [m]

f(s
)

Low
res.

High
res.

(b) High initial velocity v(0) ∈
[12, 14].

Fig. 16. Comparison of stochastic reachable sets with low/high discretization
resolution.

i.e. if the crash probability is zero, it can be guaranteed that
the ego car will not cause a crash if the traffic participants
stay within the predefined physical bounds, such as maximum
tire friction.
It has been shown that the approach is scalable and can be
applied online. If not much computational power is available,
the discretization resolution can be easily adapted. Further, as
most of the computations are based on matrix multiplications,
a specialized hardware (e.g. graphics chips) could provide a
low cost solution for this approach. This would allow to use
the proposed safety assessment algorithm for driver assistance
systems by substituting the planned path of the autonomous
car with a predicted path of the human driver.

ACKNOWLEDGMENT

The authors gratefully acknowledge the partial financial
support of this work by the Deutsche Forschungsgemeinschaft
(German Research Foundation) within the Transregional Col-
laborative Research Center 28 ”Cognitive Automobiles”.

REFERENCES

[1] M. Abdel-Aty and A. Pande. ATMS implementation system for identi-
fying traffic conditions leading to potential crashes. IEEE Transactions
on Intelligent Transportation Systems, 7(1):78–91, 2006.

[2] M. Althoff, O. Stursberg, and M. Buss. Online verification of cognitive
car decisions. In Proc. of the 2007 IEEE Intelligent Vehicles Symposium,
pages 728–733, 2007.

[3] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of linear
systems with uncertain parameters and inputs. In Proc. of the 46th IEEE
Conference on Decision and Control, pages 726–732, 2007.

[4] M. Althoff, O. Stursberg, and M. Buss. Safety assessment of autonomous
cars using verification techniques. In Proc. of the American Control
Conference, pages 4154–4159, 2007.

[5] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlin-
ear systems with uncertain parameters using conservative linearization.
In Proc. of the 47th IEEE Conference on Decision and Control, pages
4042–4048, 2008.

[6] M. Althoff, O. Stursberg, and M. Buss. Stochastic reachable sets of
interacting traffic participants. In Proc. of the IEEE Intelligent Vehicles
Symposium, pages 1086–1092, 2008.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 11

[7] M. Althoff, O. Stursberg, and M. Buss. Verification of uncertain
embedded systems by computing reachable sets based on zonotopes.
In Proc. of the 17th IFAC World Congress, pages 5125–5130, 2008.

[8] A. Arapostathis, R. Kumar, and S.-P. Hsu. Control of markov chains
with safety bounds. IEEE Transactions on Automation Science and
Engineering, 2(4):333–343, 2005.

[9] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler.
Recent progress in continuous and hybrid reachability analysis. In
Proc. of the 2006 IEEE Conference on Computer Aided Control Systems
Design, pages 1582–1587, 2006.

[10] A. Barth and U. Franke. Where will the oncoming vehicle be the next
second? In Proc. of the IEEE Intelligent Vehicles Symposium, pages
1068–1073, 2008.

[11] A. E. Broadhurst, S. Baker, and T. Kanade. A prediction and planning
framework for road safety analysis, obstacle avoidance and driver
information. In Proc. of the 11th World Congress on Intelligent
Transportation Systems, October 2004.

[12] A. E. Broadhurst, S. Baker, and T. Kanade. Monte carlo road safety
reasoning. In Proc. of the IEEE Intelligent Vehicles Symposium, pages
319–324, 2005.

[13] I. Dagli and D. Reichardt. Motivation-based approach to behavior
prediction. In Proc. of the Intelligent Vehicles Symposium, pages 227–
233, 2002.

[14] A. Eidehall and L. Petersson. Statistical threat assessment for general
road scenes using monte carlo sampling. IEEE Transactions on Intelli-
gent Transportation Systems, 9:137–147, 2008.

[15] J. Hillenbrand, A. M. Spieker, and K. Kroschel. A multilevel collision
mitigation approach - its situation assessment, decision making, and
performance tradeoffs. IEEE Transactions on Intelligent Transportation
Systems, 7:528–540, 2006.

[16] J. Hu, M. Prandini, and S. Sastry. Aircraft conflict detection in presence
of a spatially correlated wind field. IEEE Transactions on Intelligent
Transportation Systems, 6:326–340, 2005.

[17] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A system
for learning statistical motion patterns. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28:1450–1464, 2006.

[18] X. Koutsoukos and D. Riley. Computational methods for reachability
analysis of stochastic hybrid systems. In Hybrid Systems: Computation
and Control, pages 377–391, 2006.

[19] G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decidable
hybrid systems. In Hybrid Systems: Computation and Control, LNCS
1569, pages 137–151. Springer, 1999.

[20] K. Lee and H. Peng. Evaluation of automotive forward collision
warning and collision avoidance algorithms. Vehicle System Dynamics,
43(10):735–751, 2005.

[21] C.-F. Lin, A. G. Ulsoy, and D. J. LeBlanc. Vehicle dynamics and external
disturbance estimation for vehicle path prediction. IEEE Transactions
on Control Systems Technology, 8:508–518, 2000.

[22] J. Lunze and B. Nixdorf. Representation of hybrid systems by means
of stochastic automata. Mathematical and Computer Modeling of
Dynamical Systems, 7:383–422, 2001.

[23] J. Lunze and J. Schröder. Sensor and actuator fault diagnosis of systems
with discrete inputs and outputs. IEEE Transactions on Systems, Man,
and Cybernetics - Part B: Cybernetics, 34(2):1096–1107, 2004.

[24] J. Maroto, E. Delso, J. Flez, and J. M. Cabanellas. Real-time traffic
simulation with a microscopic model. IEEE Transactions on Intelligent
Transportation Systems, 7(4):513–527, 2006.

[25] A. Polychronopoulos, M. Tsogas, A. J. Amditis, and L. Andreone. Sen-
sor fusion for predicting vehicles path for collision avoidance systems.
IEEE Transactions on Intelligent Transportation Systems, 8(3):549–562,
2007.

[26] F. Rohrmüller, M. Althoff, D. Wollherr, and M. Buss. Probabilistic
mapping of dynamic obstacles using markov chains for replanning
in dynamic environments. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2504–2510, 2008.

[27] C. Schmidt, F. Oechsle, and W. Branz. Research on trajectory planning
in emergency situations with multiple objects. In Proc. of the IEEE
Intelligent Transportation Systems Conference, pages 988–992, 2006.

[28] J. Schröder. Modelling, State Observation and Diagnosis of Quantised
Systems. Springer, 2003.

[29] C. Stiller, G. Färber, and S. Kammel. Cooperative cognitive automobiles.
In Proc. of the IEEE Intelligent Vehicles Symposium, pages 215–220,
2007.

[30] N. Sumpter and A. J. Bulpitt. Learning spatio-temporal patterns for
predicting object behaviour. Image and Vision Computing, 18:679–704,
2000.

[31] J. van den Berg. Path Planning in Dynamic Environments. PhD thesis,
Utrecht University, 2007.

[32] E. Velenis and P. Tsiotras. Optimal velocity profile generation for given
acceleration limits: theoretical analysis. In Proc. of the American Control
Conference, pages 1478 – 1483, 2005.

[33] Y. U. Yim and S.-Y. Oh. Modeling of vehicle dynamics from real vehicle
measurements using a neural network with two-stage hybrid learning
for accurate long-term prediction. IEEE Transactions on Vehicular
Technology, 53:1076–1084, 2004.

Matthias Althoff Matthias Althoff received the
diploma engineering degree in Mechanical Engi-
neering in 2005 from the Technische Universität
München, Germany. Currently he is a PhD student at
the Institute of Automatic Control Engineering, Fac-
ulty of Electrical Engineering and Information Tech-
nology, Technische Universität München, Germany.
His research interests include (stochastic) reachabil-
ity analysis of continuous and hybrid systems, and
safety analysis of driving strategies of autonomous
cars.

Olaf Stursberg Olaf Stursberg received a Master
degree in Chemical Engineering from University of
Dortmund (Germany) in 1996 and the PhD degree
from the same university in 2000. He was a postdoc
in the department of Electrical and Computer at
Carnegie Mellon University (USA) in 2001-2002
and a senior researcher and lecturer at University of
Dortmund from 2003 to 2006. Since 2006 he holds
the position of an associate professor in the De-
partment of Electrical Engineering and Information
Technology at the Technische Universität München

(Germany), where he heads the group of industrial automation systems.
His main research interests include the control, optimization and analysis
of automated systems as well as hybrid and discrete event systems, formal
verification, and intelligent and networked control systems.

Martin Buss Martin Buss received the diploma
engineer degree in Electrical Engineering in 1990
from the Technical University Darmstadt, Germany,
and the Doctor of Engineering degree in Electrical
Engineering from the University of Tokyo, Japan,
in 1994. In 2000 he finished his habilitation in the
Department of Electrical Engineering and Informa-
tion Technology, Technische Universität München,
Munich, Germany. In 1988 he was a research student
at the Science University of Tokyo, Japan, for one
year. As a postdoctoral researcher he stayed with

the Department of Systems Engineering, Australian National University,
Canberra, Australia, in 1994/5. From 1995-2000 he has been senior research
assistant and lecturer at the Institute of Automatic Control Engineering,
Department of Electrical Engineering and Information Technology, Technical
University Munich, Germany. He has been appointed full professor, head of
the control systems group, and deputy director of the Institute of Energy and
Automation Technology, Faculty IV – Electrical Engineering and Computer
Science, Technical University Berlin, Germany, from 2000-2003. Since 2003
he is full professor (chair) at the Institute of Automatic Control Engineering,
Faculty of Electrical Engineering and Information Technology, Technische
Universität München, Germany; 2008- also in the medical faculty. Since 2006
he is the coordinator of the DFG Excellence Research Cluster ”Cognition
for Technical Systems” CoTeSys. His research interests include automatic
control, mechatronics, multi-modal human-system interfaces, optimization,
nonlinear, and hybrid discrete-continuous systems.


