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ABSTRACT
This paper presents a method for using set-based approxi-
mations to the Peano-Baker series to compute overapproxi-
mations of reachable sets for linear systems with uncertain,
time-varying parameters and inputs. Alternative represen-
tations for sets of uncertain system matrices are considered,
including matrix polytopes, matrix zonotopes, and interval
matrices. For each representation, the computational ef-
ficiency and resulting approximation error for reachable set
computations are evaluated analytically and empirically. As
an application, reachable sets are computed for a truck with
hybrid dynamics due to a gain-scheduled yaw controller. As
an alternative to computing reachable sets for the hybrid
model, for which switching introduces an additional overap-
proximation error, the gain-scheduled controller is approxi-
mated with uncertain time-varying parameters, which leads
to more efficient and more accurate reachable set computa-
tions.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General; I.6.4 [Simulation

and Modeling]: Model Validation and Analysis

General Terms
Algorithms, Theory, Verification

Keywords
Reachability Analysis, Linear Systems, Uncertain Parame-
ters, Peano-Baker Series, Safety

1. INTRODUCTION
Reachable set computation offers an alternative to numer-

ical simulation for evaluating the correctness of system mod-
els with respect to safety specifications, such as limits on
system state variables. For hybrid dynamic systems, the
principal difficulty is computing the reachable sets for the
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continuous dynamics. Research in this area is extensive,
and, as summarized in the following brief literature review,
a number of approaches have been developed for computing
and estimating reachable states for various classes of con-
tinuous and hybrid dynamic systems. This paper presents a
new method for computing overapproximations of reachable
sets for linear systems with uncertain, time-varying param-
eters and bounded inputs using set-based approximations
to the Peano-Baker series. Various methods for represent-
ing uncertain matrices can be used, allowing for a trade-off
between approximation accuracy and computation time.

The method developed in this paper represents reachable
sets using zonotopes, a class of polyhedra, so we focus most
of our literature review on polyhedra-based methods. For
so-called linear hybrid automata in which the continuous
dynamics are given as constant convex polyhedral bounds
on the derivative of the state vector, the reachable set can
be computed directly using operations on polyhedra [13].
Reachable sets of such systems can be used as a basis for the
reachability analysis of linear or even more complex systems,
such as nonlinear and hybrid systems [7, 14]. The approx-
imation of more complex continuous dynamics, and even
linear dynamics, can lead to a computationally prohibitive
explosion of discrete states, however. Consequently, meth-
ods that deal more directly with the continuous dynamics
are often more efficient when the systems of interest cannot
be modeled immediately using linear hybrid automata.

Since the set of states that can be reached over a time
interval are in general nonconvex for linear dynamic sys-
tems, effective approximations of the reachable sets are con-
structed as unions of convex polyhedra. A number of meth-
ods and tools have been developed to approximate reach-
able sets for continuous dynamic systems [4, 5]. In all of
these methods, a sequence of approximations to the reach-
able sets at discrete points in time (which are convex if the
set of initial states and bounds on the inputs are convex)
are computed and then consecutive sets in the sequence are
wrapped with an enclosing convex polyhedron that accounts
for the state trajectories between the discrete points in time.
When the systems have bounded input signals, the approx-
imation error can grow significantly over time due to the
compounded accumulation of overapproximation added at
each step to account for the effect of the inputs. In [12] it has
been shown that the reachable set of linear time invariant
(LTI) systems can be computed without this wrapping ef-
fect. This wrapping-free method can be implemented using
different set representations, such as ellipsoids [18], poly-
topes [5], oriented rectangular hulls [26], zonotopes [9], or



support functions [10], and is generally superior to methods
based on approximating the system dynamics with deriva-
tive bounds. Level-set methods [27] are often more accurate
than the method developed in [12], but level set methods do
not scale to systems with more than a few continuous state
variables (typically about four).
If uncertain parameters are considered, most algorithms

work with interval methods and multidimensional intervals
(axis-oriented boxes) to represent reachable sets [15,23,24].
Interval methods are also applied in [21] for the rigorous
numerical solution of initial value problems for ordinary dif-
ferential equations. The algorithms in [24] take advantage
of special properties of the system dynamics, such as mono-
tonicity. Interval methods are generally more conservative
than other set representations, however. In [1], reachable
sets for linear systems with uncertain time-invariant param-
eters are computed using zonotopes, which can be much
more accurate than multidimensional intervals. The pro-
cedure presented in this paper to compute reachable sets of
linear systems with time-varying parameters is a non-trivial
extension of [1], since the state-transition matrix is no longer
the matrix exponential for the time-varying case.
Reachability computations for linear systems with uncer-

tain parameters can be applied to analyze nonlinear sys-
tems [2] and hybrid systems [3, 11]. Thus, the reachabil-
ity analysis of linear systems can be seen as a basic mod-
ule for the reachability analysis of more complicated sys-
tem classes. In this paper, we illustrate how linear systems
with time-varying parameters can be used to compute reach-
able sets for nonlinear systems. In addition, we show how
time-varying parameters can be used to eliminate discrete
transitions for some classes of hybrid systems, a procedure
we call continuization, which makes it possible to compute
reachable sets without the errors introduced by set inter-
sections required to deal with transition guards in hybrid
system models.
The following section reviews the overall approach to com-

puting reachable sets for continuous dynamic systems and
formulates the specific problem addressed. Section 3 de-
velops the overapproximation of the state transition matrix
based on overapproximations of matrix operations. This re-
sult is used to compute the reachable sets for systems with-
out inputs and with bounded inputs in Sec. 4. Then we
show how to perform computations with sets of matrices,
using different representations. Section 5 describes matrix-
matrix operations and Sec. 6 focuses on matrix-vector oper-
ations. The usefulness, efficiency, and accuracy of the pro-
posed overapproximations are illustrated with numerical ex-
amples in Sec. 7.

2. PROBLEM FORMULATION
The basic principle of many reachability algorithms, in-

cluding the approach in this paper, is to compute the reach-
able set for consecutive time intervals R([tk−1, tk]), where
tk = k · r, r ∈ R

+ is the time increment, and k ∈ N is the
time step; see [5,6,9,26]. The final reachable set is then given

by R([0, tf ]) =
⋃tf/r

k=1 R([tk−1, tk]), where tf is a multiple of
r. Since this finite union can be represented as an enumera-
tion, this paper focuses on the computation of the reachable
set for a single time interval [0, r]. The basic steps for the
computation of R([0, r]), shown in Fig. 1, are summarized
as follows.

1. Compute the reachable set at t = r, neglecting the
input (the homogeneous solution, Rh(r));

2. Generate the convex hull of the solution at t = r and
the initial set; and

3. Enlarge the convex hull to ensure enclosure of all tra-
jectories for the time interval t ∈ [0, r], including the
effects of inputs.

R(0)

Rh(r)

convex hull

of R(0), Rh(r)

R([0, r])

➀ ➁ ➂

enlargement

Figure 1: Steps in the computation of an overap-

proximation of the reachable set for a given time

interval.

In this paper we consider time-varying linear systems of
the form

ẋ(t) = A(t)x(t) + u(t), x(0) ∈ R
n, t ∈ [0, r], (1)

where for given sets A ⊂ R
n×n and U ⊂ R

n, A : R+ → A
and u : R+ → U are piecewise continuous.

Note that the commonly used input formulation B(t) ũ(t)

with ũ(t) ∈ Ũ and B(t) ∈ B is accommodated by defining

U = {Bũ|ũ ∈ Ũ , B ∈ B}.
Let χ(t;x0, A(·), u(·)), t ∈ [0, r], denote the solution to (1)

for given x(0) = x0, A(·), and u(·). Given a set of initial
states, R(0) ⊂ R

n, our objective is to compute the set of
reachable states

Re([0, r]) =
{

χ (t;x0, A(·), u(·))
∣
∣
∣x0 ∈ R(0), t ∈ [0, r],

∀τ ∈ [0, t]A(τ) ∈ A, u(τ) ∈ U
}

.

The superscript e on Re([0, r]) denotes the exact reachable
set. The exact reachable set for time-varying linear sys-
tems cannot be computed exactly [19]. Therefore, we aim
to compute overapproximations R([0, r]) ⊇ Re([0, r]) that
are as accurate as possible, while at the same time ensuring
that the computations are efficient and scale well with the
system dimension n.

3. OVERAPPROXIMATING THE STATE
TRANSITION MATRIX

We first consider the case when there is no input signal in
(1). In this case, when A(·) is known, the solution is given
by

x(t) = Φ(t, 0)x0,

where the state transition matrix Φ(t, 0) can be computed
by the Peano-Baker series

Φ(t, 0) =I +

∫ t

0

A(σ1)dσ1 +

∫ t

0

A(σ1)

∫ σ1

0

A(σ2) dσ2 dσ1

+

∫ t

0

A(σ1)

∫ σ1

0

A(σ2)

∫ σ2

0

A(σ3) dσ3 dσ2 dσ1 + . . .

(2)



This series converges uniformly and absolutely [25, Chap.
3]. When the system matrix is time invariant A(·) = A, the
solution of Φ(t, 0) is the well-known matrix exponential eAt.
Since we are only interested in solutions starting at t = 0,
we write Φ(t) as a short form of Φ(t, 0) from now on.
To obtain a numerical solution to the Peano-Baker series,

the integrals in (2) can be approximated by Riemann sums

of the form
∫ t

0
A(σi)dσi ≈

∑k
li=1 A(li∆)∆, where ∆ ∈ R

+

is a fixed step size. For conciseness throughout the remain-
der of the paper, A(m) denotes A(m∆) for any integer m.
Applying the Riemann sum approximation to (2) yields

Φ̃(t,∆) :=I +
k∑

l1=1

A(l1)∆ +
k∑

l2=1

l2∑

l1=1

A(l2)A(l1)∆∆

+
k∑

l3=1

l3∑

l2=1

l2∑

l1=1

A(l3)A(l2)A(l1)∆∆∆+ . . .

Therefore, the matrix Φ(t) can be approximated iteratively

by Φ̃i(t,∆), where

Φ̃1(t,∆) = I +
k∑

l1=1

A(l1)∆,

Φ̃i(t,∆) = Φ̃i−1(t,∆) +
k∑

li=1

. . .

l2∑

l1=1

(
i∏

q=1

A(lq)

)

∆i

︸ ︷︷ ︸

,Φ̃δ
i
(t,∆)

.
(3)

We now consider the computation of sets that overap-
proximate the range of state transition matrices that result
when A(t) ∈ A. Towards this end, we introduce the follow-
ing notation and matrix operators. For a set of matrices A,
CH(A) denotes the closed convex hull of A. Given two sets
of matrices, A and B, we denote by A⊕B and A⊗B the sets
resulting from the point-wise sums and products of elements
of A and B, respectively; that is,

A⊕ B = {A+B | A ∈ A, B ∈ B}, and

A⊗ B = {A×B | A ∈ A, B ∈ B}

The point-wise product also holds for the special case
when A or B is a scalar. By an abuse of notation, ⊗ is
sometimes omitted. Considering equation (3), we only know
that every A(lq) belongs to some set A. Thus,

∏m
q=1 A(lq)

belongs to
⊗m

q=1 A, which we will denote by Am in the fol-

lowing,1 and

Φ̃δ
i (t,∆) ∈

k⊕

li=1

. . .

l2⊕

l1=1

Ai∆i. (4)

The following proposition on distributivity of multiplication
by positive scalars over addition for convex matrix sets is
useful to simplify the above expression,

Proposition 1. (Distributivity of Matrix Sets) If A is
convex and a, b ∈ R

+, then

aA⊕ bA = (a+ b)A.

Proof. It is always true that (a+ b)A ⊆ aA⊕ bA, even
if A is not convex. Further, due to the convexity it follows

1Note that Am is {
∏m

q=1 Ai | Ai ∈ A}, which is different

from and larger than {Am | A ∈ A}.

for X1, X2 ∈ A and α ∈ [0, 1] that αX1 + (1 − α)X2 ∈ A.
Making use of a, b ≥ 0, let α = a

a+b
, which gives

a

a+ b
X1 +

b

a+ b
X2 ∈ A.

Thus, aX1 + bX2 ∈ (a + b)A and consequently aA ⊕ bA ⊆
(a+ b)A.

Using this proposition, the following theorem provides an
expression for an overapproximation for the set of possible
state transition matrices Φ(t) .

Theorem 1. (Set of State Transition Matrices) Let
M(t) denote the set of state transition matrices Φ(t) when
A(τ) ∈ A for τ ∈ [0, t]. Then M(t) ⊆ M(t), where

M(t) =

∞⊕

i=0

Mi(t), Mi(t) =
ti

i!
CH(Ai).

Proof. Proposition 1 implies the set in equation (4) is

contained in ∆i
(
∑k

li=1 . . .
∑l2

l1=1 1
)

CH(Ai). The summa-

tion of ones is computed using the formula

k∑

l=1

lm =
km+1

m+ 1
+O(km)

from which the auxiliary results ξm are obtained:

ξ1 =

l2∑

l1=1

1 = l2 +O(l02)

ξ2 =

l3∑

l2=1

ξ1 =

l3∑

l2=1

l2 +O(l02) =
l23
2

+O(l13)

. . .

ξi =

k∑

li=1

. . .

l2∑

l1=1

1 =
ki

i!
+O(ki−1).

From the relation k∆ = t it follows that Φ̃δ
i (t,∆) is in

(
ti

i!
+∆O(ti−1)

)

CH(Ai). Taking the limit as ∆ → 0, the

Riemann sums used to approximate the integrals in (2) con-
verge and therefore

Φδ
i (t) ⊆

ti

i!
CH(Ai).

Note that the computation of M(t) resembles the com-
putation of the set of Taylor expansions of eAt, namely,
{
∑∞

i=0 A
iti/i!|A ∈ A}, except the relationships between the

different occurrences of A are forgotten in Theorem 1 and
the convex hull of Ai has to be computed. We will see in
Sec. 5 that this computation requires no additional work in
our multiplication procedure since we only represent convex
sets.2.

Defining the norm of a set of matrices M as

‖M‖ = sup
{
‖M‖

∣
∣M ∈ M

}
,

2Even if A is convex, A2 might not be, but our approximate
multiplication gives a convex overapproximation of A2, and
thus of CH(A2).



where ‖M‖ denotes a particular matrix norm, the norm of
M(t) is bounded as

‖M(t)‖ ≤ 1 + ‖A‖t+
1

2!
‖A‖2t2 +

1

3!
‖A‖3t3 + . . . = e‖A‖t

which implies that ‖M(t)‖ < ∞ for ‖A‖ < ∞ and t < ∞.
To approximate M(t), the following proposition shows

that we can replace the infinite sum M(t) =
∑∞

i=0 Mi(t)

with a finite sum of η terms,
∑η

i=0 Mi(t), plus a set that
bounds the remaining terms in the infinite sum. For a set of
matrices M, the notation |M| denotes the matrix in which
each element is equal to the supremum of the absolute value
of the corresponding element in each matrix in M. That is,
|M|(i, j) = sup

{
|M(i, j)|

∣
∣M ∈ M

}
.

Proposition 2. (State Transition Remainder) The set of
remainder matrices E(t) is an overapproximation of
⊕∞

i=η+1 Mi(t) computed as

E(t) = [−W (t),W (t)], W (t) = e|A|t −

η∑

i=0

ti

i!
|A|i.

Proof. By induction it follows that |An| ≤ |A|n element
wise. Thus,

∣
∣
∣
∣

∞⊕

i=η+1

ti

i!
CH(Ai)

∣
∣
∣
∣
≤

∞∑

i=η+1

ti

i!
|A|i = et|A| −

η∑

i=0

ti

i!
|A|i.

4. OVERAPPROXIMATING THE REACH-
ABLE SET

For autonomous uncertain time-varying systems, the set
of state transition matrices makes it possible to bound the
state of an autonomous system by x(r) ∈ M(r)x(0) so that
the reachable set is obtained by R(r) = M(r)R(0). In this
section, we first derive an overapproximation for the reach-
able set for a time interval, R([0, r]), for autonomous systems
and then show how to incorporate the effects of uncertain
inputs.
The set Re([0, r]) can be approximated by the convex hull

of R(0) and R(r). To ensure this approximation is an over-
approximation we add an error term F(r) ⊗ R(0) to this
convex hull.
For a given trajectory starting from x0, we know that for

any t in [0, r], x(t) is in M(t)x0. Therefore, Theorem 1
implies there exists a sequence of matrices At,i ∈ CH(Ai)
such that

x(t) =

∞∑

i=0

ti

i!
At,ix0

We approximate x(t) by a point x̂(t) in the convex hull of
x0 and M(r)x0 defined as

x̂(t) = (1−
t

r
)x0 +

t

r

(
∞∑

i=0

ri

i!
At,i

)

x0.

Because of its dependence on t, x̂(t) may not describe a
straight line from x0 and x(r) as t varies from 0 to r, but it
will always stay in the convex hull of x0 and M(r)x0.
We now evaluate the error made when applying this ap-

proximation.

x(t)− x̂(t) =
∞∑

i=0

ti

i!
At,ix0 − (1−

t

r
)x0 −

t

r

(
∞∑

i=0

ri

i!
At,i

)

x0

=

(
∞∑

i=2

(ti − tri−1)

i!
At,i

)

x0

For i > 1, one can show [1] that
{

ti − tri−1 | t ∈ [0, r]
}

=
[(

i
−i
i−1 − i

−1
i−1

)

ri, 0
]

.

Thus, we can define F(r) as

F(r) =

∞⊕

i=2

ri

i!
CH

(

{0} ∪
(

i
i

1−i − i
1

1−i

)

Ai
)

.

And we have R([0, r]) ⊆ CH

(
R(0) ∪M(r)R(0)

)
⊕F(r)R(0).

Similarly to M(r), F(r) can be overapproximated by con-
sidering the sum up to η and overapproximating the remain-
ing terms by E(r). For an efficient evaluation, A is overap-
proximated by an interval matrix (specified later) and inter-
val arithmetic is applied to obtain an overapproximation of
F(r).

We now consider the additional reachable set due to un-
certain inputs. Since the superposition principle for linear
systems can be applied, the reachable set due to the input
can be computed independently of the reachable set for the
autonomous system.

Theorem 2 (Input Solution). The set of reachable
states due to the uncertain input u(t) ∈ U can be overap-
proximated by

P(t) =

η⊕

i=0

(
ti+1

(i+ 1)!
CH(AiU)

)

⊕
t

η + 2
E(t) {|U|} .

Proof. The differential equation ẋ(t) = A(t)x(t) + u(t)
can be rewritten as

d

dt

(
x(t)
1

)

=

(
A(t) u(t)
0 0

)

︸ ︷︷ ︸

Au(t)

(
x(t)
1

)

Based on Theorem 1, the set of points reachable at time t

from (x0, 1)
⊤ is included in

⊕∞
i=0

ti

i!
CH(Ai

u){(x0, 1)
⊤} where

Au =

{(
A u
0 0

) ∣
∣
∣A ∈ A, u ∈ U

}

.

One can show by induction that, for i > 0,

Ai
u =

{(
Ai−1A Ai−1u

0 0

) ∣
∣
∣A ∈ A, Ai−1 ∈ Ai−1, u ∈ U

}

.

Thus, taking x0 = (0, . . . , 0), we have

P(t) =
∞⊕

i=0

ti+1

(i+ 1)!
CH(Ai ⊗ U).

Similarly to Proposition 2, we can compute this infinite sum
up to η and bound the remainder by
∣
∣
∣
∣
∣

∞⊕

i=η+1

ti+1

(i+ 1)!
CH(Ai ⊗ U)

∣
∣
∣
∣
∣
≤

t

η + 2

∞∑

i=η+1

(
η + 2

i+ 1

)
ti

i!
|A|i|U|

≤
t

η + 2
W (t)|U|



If the origin is contained in the set of possible inputs
(0 ∈ U), it holds that P([0, r]) = P(r); see [1]. If this is not
the case, some correction measures have to be applied [1].
Algorithm 1 summarizes the steps for computing R([0, tf ])
under the assumption 0 ∈ U . Note that the error of the com-
putations in Algorithm 1 can be made arbitrarily small when
r → 0 while the computational effort grows. When enforc-
ing an upper bound on the number of parameters describing
the reachable set, the error cannot be made arbitrarily small
since overapproximative order reduction techniques have to
be applied to bound the growing number of set parameters.

Algorithm 1 Compute R([0, tf ])

Require: Initial set R(0), set of state transition matrices
M(r), input set U , set of correction matrices F , time
horizon tf , time step r.

Ensure: R([0, tf ])

H0 = CH(R(0) ∪M(r)R(0))⊕F(r)R(0)
P0 = P(r)
R0 = H0 ⊕ P0

for k = 1 . . . tf/r − 1 do

Rk = M(r)Rk−1 ⊕ P0

end for

R([0, tf ]) =
⋃tf/r

k=1 Rk−1

The proof of Theorem 2 uses the fact that we can express
a d-dimensional system with inputs as a (d+1)-dimensional
autonomous system. By not using this transformation, we
can use different representations and algorithms for the set
of matrices A and the set of inputs U . On a side note, one
can use a similar transformation to ensure that 0 ∈ U .

5. COMPUTING WITH SETS OF MATRI-
CES

The computation of M(t) requires representations of sets
of matrices and methods for computing sums and products
of sets of matrices using these representations. We note that
the space of matrices is itself a vector space, where the inner
product of two matrices A and B in R

m×n can be defined
as

〈A | B〉 =
m∑

i=1

n∑

j=1

aijbij = trace(AB⊤),

A number of representations can be used to characterize
sets of matrices. Here we consider polytopes in vertex rep-
resentation, zonotopes, and interval products. Algorithms
are known for computing the Minkowski sum for each of
these representations; see, e.g., [9]. We describe here how to
over-approximate the product of two sets using each repre-
sentation.

5.1 Matrix Polytopes
We define a matrix polytope, designated by the super-

script [p], as the convex hull of a set of matrix vertices V (i);
that is,

A[p] =
{ rA∑

i=1

αiV
(i)
∣
∣
∣V

(i) ∈ R
n×n, αi ≥ 0,

∑

i

αi = 1
}

.

The multiplication of two matrix polytopes A[p]B[p], where

the matrix vertices of B[p] are denoted by W (i), can be over-
approximated by another matrix polytope C[p] given by

A[p] ⊗ B[p]

=
{

(

rA
∑

i=1

αiV
(i))(

rB
∑

j=1

βjW
(j))

∣

∣

∣
αi, βj ≥ 0,

rA
∑

i=1

αi = 1,

rB
∑

j=1

βj = 1
}

=
{

rA
∑

i=1

rB
∑

j=1

αiβjV
(i)W (j)

∣

∣

∣
αi, βj ≥ 0,

rA
∑

i=1

αi = 1,

rB
∑

j=1

βj = 1
}

⊆
{

rC
∑

i=1

γiX
(i)

∣

∣

∣
γi ≥ 0,

rC
∑

i=1

γi = 1
}

= C[p],

(5)

where

γ1 = α1β1, γ2 = α1β2, . . .

X(1) = V (1)W (1), X(2) = V (1)W (2), . . .
(6)

In order to show that C[p] is an overapproximation, as in-
dicated in (5), it has to be shown that for each αi and βj

value it follows that γi ≥ 0 and that
∑rC

i=1 γi = 1, i.e. for

each matrix A ∈ A[p], B ∈ B[p], it is true that AB ∈ C[p]. In
(6) it can be immediately seen that the first property γi ≥ 0
is always fulfilled. The second property is always true since

rC∑

i=1

γi =

rA∑

i=1

rB∑

j=1

αiβj =

rA∑

i=1

αi

︸ ︷︷ ︸

=1

rB∑

j=1

βj

︸ ︷︷ ︸

=1

= 1.

The reciprocal property that for each C ∈ C[p], there exists
matrices A ∈ A[p], B ∈ B[p] such that AB = C, is not always
true, meaning the C[p] is an overapproximation.

The disadvantage of matrix polytopes is their combinato-
rial complexity. For m vertices, the number of vertices of the
lth power is ml. The Minkowski addition of polytopes up
to order l can be done by adding each vertex of the solution
up to the (l − 1)th order with each vertex of the lth power

resulting in
∏l

i=1 m
i = m

∑l
i=1 i = m0.5(l(l+1)) = O(ml2)

matrices.

5.2 Matrix Zonotopes
Zonotopes, which are polytopes defined as a sum of seg-

ments, are useful for computing reachable sets for high-
dimensional systems; see e.g. [9]. In a vector space V, zono-

topes are specified by a center c ∈ V and generators g(i) ∈ V

as

Z =
{

x = c+
e∑

i=1

βi g
(i)
∣
∣
∣βi ∈ [−1, 1]

}

. (7)

Zonotopes are always centrally symmetric to the center c and
their order is defined by ρ = e

n
(e: number of generators, n:

dimension). Zonotopes are denoted in a short form as Z =

(c, g(1), . . . , g(e)). One can interpret the above definition as

the Minkowski addition of line segments li = βi g
(i), βi ∈

[−1, 1] as illustrated step-by-step in Fig. 2, with V = R
2.

The use of zonotopes, usually in R
n, is justified by the fact

that linear transformation and Minkowski addition, which
are both of great importance for reachability analysis, can
be computed efficiently; see [9, 12]. Given two zonotopes

Z1 = (c1, g
(1), . . . , g(e)) and Z2 = (c2, h

(1), . . . , h(u)),

LZ1 = (Lc1, Lg
(1), . . . , Lg(e)), L ∈ R

n×n

Z1 ⊕ Z2 = (c1 + c2, g
(1), . . . , g(e), h(1), . . . , h(u)).

(8)
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Figure 2: Step-by-step construction of a zonotope

from left to right via Minkowski addition of line seg-

ments.

The Minkowski sum of two zonotopes is simply an addition
of their centers and a concatenation of their generators.
Here we are interested in zonotopes in the space of matri-

ces. We will call them matrix zonotopes and denote them
with a superscript [z]. A matrix zonotope is defined as

A[z] =
{

G(0) +

κA∑

i=1

piG
(i)
∣
∣
∣pi ∈ [−1, 1], G(i) ∈ R

n×n
}

,

and written in short form as (G(0), G(1), . . . , G(κA)), where
the first matrix is referred to as the matrix center and the
other matrices as matrix generators.
The multiplication of two matrix zonotopesA[z]B[z], where

the matrix generators of B[z] are denoted by H(i), can be
overapproximated by another matrix zonotope C[z] given by

A[z]B[z] =

(

G(0) ⊕

κA⊕

i=1

[−1, 1]G(i)

)(

H(0) ⊕

κB⊕

j=1

[−1, 1]H(j)

)

⊆ G(0)H(0) ⊕

κA⊕

i=0

κB⊕

j=0

(i,j) 6=(0,0)

[−1, 1][−1, 1]G(i)H(j)

= I(0) ⊕

κC⊕

i=1

[−1, 1]I(i) = C[z],

(9)

where I(1) = G(0)H(1), I(2) = G(0)H(2), . . .
It can be directly seen that C[z] ⊇ A[z]B[z]. However, the

resulting set of matrices is not exact.
An advantage of matrix zonotopes over matrix polytopes

is that they are much more compact in their representation,
a property inherited from zonotopes; see [3]. Another ad-
vantage is that the Minkowski addition of the two matrix
zonotopes A[z] and B[z] is computationally cheap since one
only has to add their matrix centers and concatenate their
matrix generators. That is,

A[z]⊕B[z] = (G(0)+H(0), G(1), . . . , G(κA), H(1), . . . , H(κB)).

The number of matrix generators for the lth power is (κ +
1)l−1. Thus, the number of matrix generators ofM(t) up to

order l is
∑l

k=0(κ+1)k−1 = (1−(κ+1)l+1)/(−κ)−(l+1) =

O(κl). The computational complexity can be drastically re-
duced by applying order reduction techniques developed for
zonotopes; see [9,17]. Equally powerful reduction techniques
for polytopes are not known to the authors.

5.3 Interval Matrices

An interval matrix is a special case of a matrix zonotope
specified by intervals for each element; that is

A[i] = [A,A], ∀i, j : Aij ≤ Aij , A,A ∈ R
n×n.

The matrix A is referred to as the lower bound and A as the
upper bound of A.

Interval matrix multiplications are performed using inter-
val arithmetic [16]. The addition and multiplication rules
for two real-valued intervals aI = [a, a] and bI = [b, b] are
given by

aI + bI =[a+ b, a+ b],

aI · bI =[min(a b, a b, a b, a b),max(a b, a b, a b, a b)].
(10)

Using the rules in (10), the multiplication of an interval

matrix A[i] with another interval matrix B[i] is computed

elementwise: C
[i]
ij =

∑n
k=1 A

[i]
ikB

[i]
kj . Clearly, the result is an

overapproximation. In contrast to matrix polytopes and ma-
trix zonotopes, where the number of vertices and generators
grow after addition and multiplication, the representation
does not grow for interval matrices.

6. COMPUTATION OF THE REACHABLE
SET

This section shows how the representations defined in the
previous section can be use to compute reachable set approx-
imations. In order to compute M(r)Rk in Algorithm 1, the
multiplication of a matrix zonotope/polytope or an inter-
val matrix with a zonotope has to be computed. For a small
enough time t (as it is typically the case for reachability anal-
ysis), the termsMi(t) for large i values, which are referred to
as higher order terms, contribute less to the computation of
M(t). Thus, one should use sophisticated computations for
the first terms and switch to coarser and more efficient com-
putations for higher order terms. For instance, the first two
terms of a matrix zonotope could be computed using matrix
zonotope computations, while the other terms are computed
via interval matrix overapproximations. Denoting the set of

transition matrices using matrix zonotopes by M
[z]
(t) and

the set using interval matrices by M
[i]
(t), the reachable set

is computed as Rk = M
[z]
(r)Rk−1⊕M

[i]
(r)Rk−1⊕P0. This

technique is preferred over the transformation of the interval
matrix to a matrix zonotope, making it possible to obtain
M(t), since the transformation results in too many genera-
tors, especially in high dimensional spaces.

In order to tightly overapproximate an interval matrix
multiplication, the interval matrix A[i] is split into a real
valued part A[n] ∈ R

n×n and a symmetric interval matrix
S = [−S, S]: A[i]Z ⊆ A[n]Z ⊕ SZ. The following proposi-
tion shows how to compute the symmetric interval matrix
part in the zonotope multiplication (8).

Proposition 3 (Interval Matrix Multiplication).
The multiplication of a symmetric interval matrix S = [−S, S]

with a zonotope Z = (c, g(1), . . . , g(e)) can be overapproxi-
mated by a hyperrectangle (in zonotope notation) with center

0: S Z = (0, v(1), . . . , v(n)), where

v
(i)
j =

{

0, i 6= j

Sj(|c|+
∑e

k=1 |g
(k)|), i = j,



and the subscript j of v
(i)
j denotes the jth element of v(i)

and Sj denotes the jth row of S.

Proof. The multiplication of a symmetric interval ma-
trix S with a zonotope Z is overapproximated by S Z ⊆
S box(Z) and box returns an enclosing axis-aligned box which
is computed as proposed in [9] as

box(Z) = [c−∆g, c+∆g], ∆g =

e∑

i=1

|g(i)|.

It remains to compute S[c − ∆g, c + ∆g], which returns a
symmetric interval vector due to the symmetry of S. The
upper bound is obtained by Smax(|c−∆g|, |c+∆g|). Since
max(|c−∆g|, |c+∆g|) = |c|+ |∆g|, it follows that

S box(Z) = [−S(|c|+ |∆g|), S(|c|+ |∆g|)].

Rewriting this result in zonotope notation with generators
v(i) yields the result of the proposition.

We now consider the application of a set of linear trans-
formations, represented as a matrix zonotope, to a set of
vectors represented as a zonotope.

Proposition 4 (Matrix Zonotope Multiplication).

The product of a matrix zonotope L[z] = {L(0)+
∑κ

i=1 pi L
(i)|

pi ∈ [−1, 1]} and a zonotope Z = (c, g(1), . . . , g(e)) is over-
approximated by

L[z] Z =
⋃

pi∈[−1,1]

(

L(0) Z ⊕

κ⊕

i=1

pi L
(i) Z

)

⊆ (L(0)c, L(0)g(1), . . . , L(0)g(e),

L(1)c, L(1)g(1), . . . , L(1)g(e), . . . ,

L(κ)c, L(κ)g(1), . . . , L(κ)g(e)).

Proof. The result follows directly from the addition and
multiplication rule of zonotopes; see (8).

The multiplication of a matrix polytope with matrix ver-
tices V (1), . . . , V (r) and a zonotopes can be performed as
L[p] Z = CH(V (1)Z, V (2)Z, . . . , V (r)Z). The result is no longer
a zonotope in general, so that it has to be overapproxi-
mated by a zonotope. The overapproximation of polytopes
by zonotopes is computationally expensive (see, e.g., [3]), so
that matrix polytopes should be overapproximated by ma-
trix zonotopes beforehand, making it possible to apply Prop.
4.
In order to quickly estimate the size of the error in the

state transition matrix overapproximation, it is often helpful
to compute with norms instead of applying the previously
introduced computational techniques. In order to obtain a
tight norm bound, the matrix set A is overapproximated
by an interval matrix A[i] which is split into a nominal and
a symmetric3 part: A[i] = A[n] + [−S, S]. The norm of
the distance of the set of state transition matrices to the
exponential matrix of the nominal matrix is computed for

3Symmetric refers here to the set and not to the matrices it
contains.

‖|A[n]|+ S‖ < 2
t
as

‖M(t)− eA
[n]t‖

≤
‖A[n]‖ ‖S‖ t2

2

‖A[n]‖ · ‖|A[n]|+ S‖ t2

4
− (‖A[n]‖+ ‖|A[n]|+ S‖) t

2
+ 1

+
‖S‖t

1− ‖|A[n]|+ S‖ t
2

.

The proof is neglected due to space limitations.

7. NUMERICAL EXAMPLES
In this section we illustrate the proposed methods for com-

puting reachable sets for uncertain time-varying linear sys-
tems. The first example demonstrates the difference in ac-
curacy when computing with matrix zonotopes or interval
matrices. The scalability of the approach is also demon-
strated. The second example shows the usefulness of the
approach for computing reachable sets for a hybrid system
with nonlinear continuous dynamics.

7.1 Five Dimensional Example
We consider a standard example from the literature [9,22].

In [9], there are no uncertain system matrices, in [22] the sys-
tem matrices are bounded by an interval matrix. Here, the
system matrices are bounded by a matrix zonotope, whose
enclosing interval matrix is exactly the one in [22]: ẋ =

A(t)x+ u(t), A(t) ∈ A[z] = (G(0), G(1)), u(t) ∈ U = [−u, u],

where u =
[
0.1 0.1 0.1 0.1 0.1

]T
and

G
(0)

=













−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2













, G
(1)

=













0.1 0.1 0 0 0
0.1 0.1 0 0 0
0 0 0.1 0.1 0
0 0 0.1 0.1 0
0 0 0 0 0.1













.

The reachable set is computed for a step size of r = 0.05
and a time horizon of tf = 5. The number of transition
matrix terms is chosen as η = 4 (the first two using ma-
trix zonotopes, the other 2 using interval matrices), and the
order of the zonotopes is limited to ρ = 20 using the re-
duction technique in [9]. The computation time is 0.16 s in
MATLAB on an i7 Processor and 6GB memory. Plots of
selected projections are shown in Fig. 3. It can be seen that
the computation is tighter when using matrix zonotopes in-
stead of a tightly enclosing interval matrix. It has not been
considered to separate the uncoupled states of this specific
example due to the efficiency of the algorithm.

The scalability of the algorithm is shown by computing
reachable sets for several linear systems generated with ran-
dom parameters. Computation times for system matrices
bounded by interval matrices and matrix zonotopes are shown
in Table 1. Even if the examples contain uncoupled subsys-
tems, the system is computed as if all states are coupled.

7.2 Rollover Verification of a Truck
We consider the problem of determining if a truck will roll

over during a set of maneuvers, where the truck has a yaw
controller to improve cornering performance. The truck dy-
namics is velocity dependent, so the yaw controller is a gain
scheduling controller that switches among several controllers
depending on the velocity. The switching between differ-
ent controllers is instantaneous rather than cross-fading [20].
Thus, the overall system becomes a hybrid system which is
modeled as a hybrid automaton in [3].
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Figure 3: Reachable set of the five-dimensional ex-

ample. The dark gray region shows the reachable set

when computing with the interval matrix A[i], while

the light gray region shows the result when comput-

ing with the original matrix zonotope A[z]. Black

lines show exemplary trajectories and the white re-

gion is the initial set.

Table 1: Computation times.

Dimension n 5 10 20 50 100

Interval matrix
CPU-time [s] 0.10 0.12 0.33 0.82 3.64
Matrix zonotope: Nr of generator matrices κ = 1
CPU-time [s] 0.13 0.17 0.60 2.65 8.72
Matrix zonotope: Nr of generator matrices κ = 2
CPU-time [s] 0.18 0.30 1.13 4.73 18.77
Matrix zonotope: Nr of generator matrices κ = 4
CPU-time [s] 0.34 0.68 2.60 18.07 98.70

We consider two approaches to compute the reachable set.
First, the standard approach to hybrid system reachability
is applied, where the reachable set computation is contin-
ued across discrete transitions using intersections with guard
sets. These intersections can introduce significant overap-
proximation errors; see [3, 11]. Second, as an alternative
to the standard approach, the reachable set is computed un-
der a larger set of parameter uncertainties when intersecting
several invariant sets. The enlarged set of parameter uncer-
tainties is the union of uncertainties within the invariants
the reachable set is intersecting. This makes it possible to
compute the reachable set without any intersection opera-
tion. This approach is referred to as continuization and is
beneficial when the intersection operation is dominant in the
enlargement of the reachable set, while the effect on com-
puting with a larger set of parameter uncertainties is small
as in gain scheduling. This approach is applicable only if
the hybrid automaton has no jumps.
The truck dynamics is described by the following continu-

ous state variables (see Fig. 4): the side-slip angle at center

of mass β, yaw rate Ψ̇, sprung mass roll angle Φ, sprung
mass roll angle rate Φ̇, unsprung mass roll angle of the front
axle Φt,f and the rear axle Φt,r, and velocity v. The input
to the system is the steering angle δ and the longitudinal

acceleration ax. The dynamic equations from [8] are

mv(β̇ + Ψ̇) − mShΦ̈ = Yββ + YΨ̇(v)Ψ̇ + Yδδ

−IxzΦ̈ + IzzΨ̈ = Nββ + NΨ̇(v)Ψ̇ + Nδδ

(Ixx + mSh
2
)Φ̈ − IxzΨ̈ = mSghΦ + mSvh(β̇ + Ψ̇) − kf (Φ − Φt,f )

−bf (Φ̇ − Φ̇t,f ) − kr(Φ − Φt,r) − br(Φ̇ − Φ̇t,r)

−r(Yβ,fβ + YΨ̇,f Ψ̇ + Yδδ) = mu,fv(r − hu,f )(β̇ + Ψ̇) + mu,fghu,fΦt,f

− kt,fΦt,f + kf (Φ − Φt,f ) + bf (Φ̇ − Φ̇t,f )

−r(Yβ,rβ + YΨ̇,rΨ̇) = mu,rv(r − hu,r)(β̇ + Ψ̇) − mu,rghu,rΦt,r

− kt,rΦt,r + kr(Φ − Φt,r) + br(Φ̇ − Φ̇t,r)

v̇ = ax.

x

y
y

z

Φ

Φt,i

β

δ

v

Ψ̇

Figure 4: Truck model.

The parameters are chosen as in [8]. In order to obtain a
controlled system without steady state error, a PI controller
is designed to control the yaw rate Ψ̇. Different controllers
are active in the intervals [10, 20 + ∆v], [20, 30 + ∆v], and
[30,∞[ m/s, where ∆v > 0 models the velocity measurement
uncertainty. Below 10 m/s, no controller is active. Note that
due to the velocity measurement uncertainty, the dynam-
ics is switched in the intervals [10, 10 + ∆v], [20, 20 + ∆v],
[30, 30 + ∆v].

The control error is denoted by e = Ψ̇d − Ψ̇, where Ψ̇d

is the desired yaw rate. The desired yaw rate is computed
by the steady state solution of Ψ̇ when a desired steering
angle δd or desired lateral acceleration ay,d is used, where

Ψ̇d = ay,d/v in the latter case. The PI controller is written
as δ = k1e + k2

∫
e(t) dt, where k1 and k2 are the gains for

the proportional and integral part, respectively, which are
listed in Table 2.

Table 2: Yaw controller gains.

v ∈ [10, 20] m/s [20, 30] m/s [30,∞[ m/s
controller k1 = 0.4 k1 = 0.5 k1 = 0.6

gains k2 = 1.5 k2 = 2 k2 = 2.5

The set of possible system matrices is modeled as a ma-
trix zonotope A[z] and the set of inputs U as a zonotope. In
order to obtain a tight overapproximation of the reachable
set, the sets of possible matrices A[z]([tk, tk+1]) and inputs
U([tk, tk+1]) are updated for each time interval [tk, tk+1]. Af-

ter introducing the state vector x = [β, Ψ̇,Φ, Φ̇,Φt,f ,Φt,r, v,∫
e(t) dt]T and grouping the terms of the controlled truck



dynamics, one can write them in the form

ẋ =(p1Q
(1) + p2Q

(2) + p3Q
(3) + p4Q

(4))x

+(p1R
(1) + p2R

(2))ay,d,
(11)

where for t ∈ [tk, tk+1]

p1 ∈
[ 1

(v)2
,

1

(v)2

]

, p2 ∈
[1

v
,
1

v

]

, p3 = 1 p4 ∈ [v, v],

and v, v are the lower and upper bound of the velocity for
t ∈ [tk, tk+1]. The formulation in (11) gets rid of the nonlin-

earities and makes it possible to obtain the generators G(i)

of the matrix zonotope A[z] as

G(0) =
4∑

i=1

center(pi)Q
(i), for i = 1..4 : G(i) = rad(pi)Q

(i)

and analogously for B[z], where the operators center() and
rad() return the center and radius of an interval. The set of
inputs is obtained as

U([tk, tk+1]) = B[z]([tk, tk+1])
[
[ay,d, ay,d] [ax, ax]

]T
.

In order to compute the reachable set under the changing
parameter intervals, the computation for H0,P0 in Alg. 1
have to be repeated for each time interval instead of only
once as presented in Alg. 1.
The reachable set is computed for a deceleration maneu-

ver with ax = 0.7g, where g is the gravity constant. Due
to limited tire friction, the truck may still perform steering
maneuvers that are uncertain within the corresponding set
of lateral accelerations [−ay,d, ay,d] and ay,d = 0.4g. The
reachable set is computed until it has left the half-space
of velocities above 10 m/s. Below this velocity, no con-
troller is active anymore. Parameters of the reachable set
computation are specified in Table 3. The set of initial
states is x(0) ∈ [0, 0.04]× [0, 0.2]× [−0.1, 0.1]× [−0.1, 0.1]×
[−0.01, 0.01]× [−0.01, 0.01]× [32.75, 33.25]× [−0.1, 0.1].

Table 3: Parameters of the reachable set computa-

tion of the truck.

time step size r = 0.01
maximum zonotope order ρ = 60
Taylor series order η = 4
velocity measurement uncertainty ∆v = [0, 0.5]

The reachable set approximations for the deceleration ma-
neuver using the continuization and the hybrid approach are
shown in Fig. 5. It can be observed that an enlargement
takes place for x8 after passing the 30, 20, and 10 m/s bor-
ders when using the hybrid approach. The reachable set of
x1 and x2 is almost the same, while the one projected onto
x3−x6 is much tighter for the continuization approach. The
computational time for the hybrid approach is 85 s and 38 s
for the continuization approach. The computations have
been performed on an Intel i7 Processor with 6GB memory
in MATLAB. The truck starts to rollover when the dynamic
forces on the rear inner wheel (which is the critical wheel)
overcompensate the force due to gravity, which is the case
for x6 > 0.55. Thus, the continuization approach verifies the
safety of the maneuvers, while the classical approach fails.

The intersection with guard sets has been computed as
presented in [3], where zonotopes are transformed to a half-
space representation in order to perform the intersections
which are later enclosed by a zonotope to continue the com-
putation with zonotopes. A good compromise between accu-
racy and efficiency that works surprisingly well for the truck
example is to overapproximate the zonotopes by boxes to
accelerate the halfspace conversion. The conversion back to
zonotopes is done by enclosing the intersected set with two
zonotopes in order to increase the accuracy (see [3]). One
zonotope is obtained by a principal component technique
presented in [26] and the other one by an axis-aligned box.
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Figure 5: Reachable set of the yaw controlled truck.

The light gray region shows the reachable set for

the continuization approach. The dark gray region

shows the reachable set for the classical hybrid ap-

proach. Black lines show exemplary trajectories of

the system.

8. CONCLUSIONS
Previous methods for the reachability analysis of uncer-

tain linear time-invariant systems have been extended to un-
certain linear time-varying systems. The presented approach
can cope with uncertain system matrices, as well as with ar-
bitrary input trajectories whose values are bounded. In ad-
dition, the proposed algorithms scale well with the number
of continuous state variables. It has also been demonstrated
that the approach can be used for reachability analysis of
nonlinear and hybrid systems. The continuization approach
is promising for hybrid systems with similar continuous dy-
namics in adjacent locations. Extensions of the approach to
better handle nonlinear dynamics are currently being inves-
tigated.
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