Analyzing Reachability of Linear Dynamic
Systems with Parametric Uncertainties
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Abstract As an important approach to analyzing safety of a dynamitesysthis
paper considers the task of computing overapproximatiémsachable sets, i.e.
the set of states which is reachable from a given initial $etates. The class of
systems under investigation are linear, time-invariasteys with parametric un-
certainties and uncertain but bounded input. The poss#hlef system matrices due
to uncertain parameters is represented by matrix zonotpeinterval matrices —
computational techniques for both representations arsepted. The reachable set
is represented by zonotopes, which makes it possible ty dpplapproach to sys-
tems of 100 continuous state variables with computatioesimf a few minutes.
This is demonstrated for randomized examples as well anarigsion line exam-

ple.

1 Introduction

Reachability analysis deals with the problem of finding teed states that a sys-
tem can reach when starting from a specified set of initiaéstan finite or infinite
time. One of the main purposes of reachability analysis @detmonstrate the safe
execution of a system by proving that the system does nohraag unsafe state.
This is illustrated for a two-dimensional example with &4, X2 in Fig. 1. Besides
the safety verification problem, reachability analysis issaful tool for robustness
analysis [1], abstraction of hybrid systems [2], and staianding observers [3].

Matthias Althoff
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh gPmail: malthoff@ece.cmu.edu

Bruce H. Krogh
Carnegie Mellon University, 5000 Forbes Ave, PittsburghgPmail: krogh@ece.cmu.edu

Olaf Stursberg
University of Kassel, Control and System Theory (FB16),A&inshoeher Allee 73, 34121 Kassel,
Germany. e-mail: stursberg@uni-kassel.de



2 Matthias Althoff £), Bruce H. Krogh, and Olaf Stursberg

In this work, an efficient algorithm for computing reachadéts of continuous-
time linear systems with uncertain inputs/disturbances @mnstant but uncertain
parameters is presented. One advantage of the proposeddigthat the computa-
tional complexity is moderate in terms of the system dimamsAs shown by earlier
work, the reachability algorithm for linear systems can kieeded to the analysis
of nonlinear systems [4] and hybrid systems [5]. Thus, tlehability analysis of
linear systems can be seen as a basic module for the reaghabdlysis of more
complicated system classes.

initial set  reachable set < unsafe set

X2

L» X1 trajectory

Fig. 1 An empty intersection of (an overapproximation of) the redate set with an unsafe set of
states verifies system safety

For systems with derivative bounds= P, wherex € R" andP is a bounded
convex polyhedron (polytope) iR", the reachable set can be represented by poly-
hedra [6]. Reachable sets of such systems can be used as &ob#sé reachability
analysis of linear or even more complex systems, such ageanland hybrid sys-
tems [7, 8].

Other work deals directly with linear system@) = Ax(t) +u(t), wherex € R",
uecU CR", A e R™N Exactreachable sets of linear systems can only be obtained
in special cases; in general one has to compute overappatigims to perform sys-
tem verification [9]. Approaches to this class of systems learclassified by the
geometric representation used for the reachable setdopely[10], ellipsoids [11],
oriented rectangular hulls [12], zonotopes [13, 14], oeleets [15]. Support func-
tions [16] unify these methods, except of the use of leved. détuincertain param-
eters are considered, most existing algorithms are basedtenval methods and
multidimensional intervals (hyperrectangles) to repnéseachable sets [17-19].
Similar techniques are used for validated integration w@shof ordinary differ-
ential equations, which are typically applied to smallecemainties in the initial
states [20-22].

Besides the mentioned techniques that are based on gusdesgeintegration,
for which an overview can be found in [23], one can verify thés$y of a system
with barrier certificates [24] or simulation based techeisjLe.g. [25, 26].

Previous work addressed the computation of reachabledete@r systems with
uncertain parameters [27]. Recently, this approach has é&dended to linear sys-
tems with time-varying uncertain parameters [28]. In theseks, the reachable sets
are represented by zonotopes, which offer a more genergsemtation compared
to multidimensional intervals, which are typically used fois class of problems.
Zonotopes are also a more efficient alternative to arbipalytopes for reachability



Analyzing Reachability of Linear Dynamic Systems with Paegric Uncertainties 3

analysis of linear systems [14]. The novelties for the foHop work presented here
are:

e Improved computational techniques: Dependencies betthesriements of state
transition matrices due to common parameters are consid@ren computing
with matrix zonotopes.

e A norm bound for the computation of matrix exponential setddrived.
Performance evaluations of methods for computing matrpoerntial sets are
conducted.

e Properties of a new transmission line example are verified.

This book chapter is organized as follows. In Section 2, tteblem of com-
puting reachable sets is introduced, and a brief descnigtidhe used algorithmic
procedure is given. The formulas for computing reachatiteafdinear systems un-
der uncertain initial states, parameters, and inputs aneedkin Section 3. These
formulas are based on the set of possible state transitidrices of which the
computation is described in Section 4. The usefulness gbitkgented approach is
demonstrated for a transmission line example, and randgerigrated examples in
Section 5.

2 Problem Formulation

We consider time-invariant linear systems of the form
X(t) = AX(t) + U(t), Aed, U() € %O,tf]? X(O) € Zo,te [Oatf]7

whereu(t) : R™ — R"is an input function over timey is the set of system matrices
A, %y is the set of initial states, artd € R is the time horizon. The set of input
functions is defined a®oy,) = {u(-)|u(-) is piecewise continuous(t) € %t €
[0,t¢]}, where% is the set of possible input values. The notatidn) refers to
trajectories rather than the explicit value at timéNote that the commonly used
input formulationB i(t) is included inu(t) when definingzz = {Bii|li € % }.

The objective of this work is to compute the set of reachataitees

#([0.11)) = {x|x = /:(Ax(r)+u(r))dr, Acd,
u(-) € %oy, X(0) € Zo,t € [O,tf]}.

The fact thatZ®([0,t¢]) refers to the exact reachable set is indicated by the super-
scripte. However, the reachable set for uncertain time-invariae#r systems can-
not be computed exactly for arbitrafyandu(-) [9]. Therefore, overapproximations
Z([0,tr]) D %°5(]0,t¢]) are computed in this work. The task is to find algorithms that
bound the overapproximation as tightly as possible, whitb@same time ensuring
that the algorithms are efficient and scale well with theesystlimensiom. Ensur-
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ing tightness of the enclosure is a challenging task duestavtiapping effect, which
is understood as the propagation of overapproximatiormaitiir the computations
of successive time steps [29].

The basic principle of many reachability algorithms, irdithg the approach
presented here, is to compute the reachable set for congedime intervals
% ([tk—1,%]), wherety = k-r andk € N is the time step; see [10,12,14,30]. The com-
plete reachable set is then obtained ([0, tf]) = Uy-1. ; /r Z([tk-1,%]), Where
t¢ is a multiple ofr. Since the union is represented as a list of the &&{&_1,t]),
the focus of this work is on the computation of a single tinterival [0, r]. The basic
steps for the computation o#([0,r]) are shown in Fig. 2 and are summarized as
follows:

1. Computation of the reachable s&f(r) without the input (homogeneous solu-
tion), but with consideration of the set of system matrices;

2. Generation of the convex hull of the solutiort at r and the initial set;

3. Enlargement of the convex hull to ensure enclosure ofsg#¢tories for the time
intervalt € [0,r]. The enlargement compensates for two assumptions made in
steps 1 and 2: The first assumption was that the system haguio The second
one was that trajectories between the initial set and thehedde set’#’(r) are
straight lines for which the convex hull computation woutdufficient.

Z([0,r]) —

enlargement

Fig. 2 Computation of the reachable set for a time interval

Itis guaranteed that the formulas derived below returnhreble sets that enclose
all possible trajectories. The implementation of the athars in this work neglects
the effect of floating-point errors caused by the finite numdfestored digits in
computers. This effect can be taken care of by exchangingrftpaoint arithmetic
by interval arithmetic [31], which propagates the roundéngprs.

3 Overapproximating the Reachable Set

Itis well known that the solution of an autonomous linearimvariant systenmx(=
AX) is provided by the state transition matrit) = ®(t,tg)xo, where®(t,tg) =
e*t-) When the initial state is uncertain withi#(to), the set of reachable states
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at timet is Z(t) = {€At"0)xo|xo € Z(to)}. If additionally, the system matrix is
uncertain, one has to compute the reachable set(fs= {e*0)xg|A € o7 %o €
Z(t0)}. The computation of the set of possible state transitiomioeat is discussed
first. Then, the extensions for reachable sets of time iatef@,r] and under the
influence of uncertain inputs are presented. Without loggeagrality, it is assumed
thattp = O from now on, so tha@®(t) = ®(t,1to).

3.1 Overapproximating the State Transition Matrix

In order to make the computation of the set of state tramsitiatrices{e*|A ¢
</} tractable for matrix zonotopes and interval matrices, ssatéased operations
have to be computed independently. The set computationsetinain dependent are
indicated by a special notation. Lettingdenote either addition or multiplication,
then the exact evaluation is denoted by

[AoAlacy :={AcA|Ac o}, 1)
while an independent evaluation is denoted by
of ol == {A10A2|A1 € JZf,Az S ,Q{}

Using an independent evaluation of operands, one obtainsemapproximation in
general, e.g.

[[(A + B)C]]Ae,o{ - [[ACHAEQ{ + [[BC]]BE% =AC + BE .
Be# Ce? Ce%
Cev
The notation introduced above makes it possible to formewatoverapproximation
of the set of matrices/ (t) := [€*']ac.y based on the Taylor series ef'. For
typical step sizes in time used in reachability analysidy dime first terms of the
Taylor series contribute significantly to the solution. $hthe dependent set-based
evaluation is performed up to second order, while higheeoterms are evaluated
independently; that is,

A (t) :[[l +At+%(At)z—i—%(At)3+%(At)4+...ﬂA )
C [[l FALT %(At)zﬂ%ﬁ %(M)M %(,eft)‘w....

It is shown below that the computation above is always bodvdeen the set of
matrix valuese and timet is bounded. Thereto, the norm of a set of matrices is
defined as

||| = sup{||All|A € 7}, 3)
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where||/A|| denotes an arbitrary matrix norm, while special norms, sasthe in-
finity norm, will be denoted by.«7||... Applying the matrix norm, one obtains

1 o
e Jac |l < izoﬁuﬂn't' _ .

which is bounded fof{.«7|| < c andt < co.

In order to computge* '] ac., the infinite sum in (2) has to be replaced by a finite
sum to which a set of remainder matrices is added. The nunfilbemos retained in
the Taylor series is denoted Igy

Proposition 1 (State Transition Matrix Remainder). The set of remainder matri-
cesyil i1 .o/t is overapproximated foe/| < C € R™" by the interval matrix

SO =1YO.YOL YO =S C.—t

The absolute value of a matrix set is defined as the matrix inhwdach element is
equal to the supremum of the absolute value of the correspgredement in each
matrix in <. Thatis,|«/|i j = sup({|a; j||A € &/ }.

Proof. The multiplication of two matrix sets7 and %, whereC andD are cho-
sen such thate| < C € R™" and|4| < D € R™", has the absolute value bound
|of B| < |<7|| 2| < CD. From this it follows that.7"| < C" such that

‘ZTS.Z D W TR T .

i=n+1 i=n+1 B i=n+ i=

Besides the presented Taylor method, there is a numberfefdit techniques
to compute the matrix exponential [32]. Unfortunatelyabalternative approaches
are not suitable for computations with matrix sets or do movige error bounds.
No error bounds can be provided when applying techniqueshwirse solvers of
ordinary differential equations [32]. Polynomial methadake it possible to obtain
the matrix exponential from a finite suei' = 34 ai(t)A', whereaq;(t) is a poly-
nomial. However, the error introduced by the Taylor ser@sainder, which would
be omitted using this technique, is small compared to thepeaation of the powers
/', Matrix decomposition methods, whete= SBS! so thate = S&S1 suffer
from the problem that the inverse of an uncertain matrix isltta compute [33]
and that for many techniqué&ss hard to obtain wheA is uncertain, e.g. whe8is
a matrix of eigenvectors [34]. Splitting techniques whica based on the formula
€3+C = limm_,« (%M ™)™ are not appropriate, too, since high powers of matrix
sets are hard to compute.
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3.2 Reachable Sets of Time Intervals

Given the homogeneous solutigp(r) € .# (r)x(0), the following approximation
for the solution at intermediate points in time is suggested

o t —

£0(t) = X(0) + ~(Mx(0) ~x(0), M €-Z(r),te [o.r]. @)
The errorxy(t) — Xn(t) made when applying this approximation is bounded by the
set.7 (r)x(0), where.7 (r) is a set of matrices such thaf(t) € Xn(t) + .7 (r)x(0).
Using the inclusiomp(t) € .# (t)x(0) and replacing (t) by its Taylor series yields
a formula for computing the set of matricés.

N Aiti t/ 2 Airi ;

F(r) Q{i%TﬁLgﬁ](t)l fF(i;TwLé"m(r)f |)'Ai ca'te [O,r]}

n o7 . .
{3 5w a0 -1am

t e [0,r] }
In [27] it is shown that

[0](i,r) == {t —tr Yt e [0,r]} = (it —irt)r,0].

It remains to computej; (t) — }é"m(r). The matrix setj;(t) is strictly increasing
with time so thatsj; (t) € [0, 1]&}(r) fort € [O,r]. Thus,

{& 1) - ;ﬁi](fﬂt €10,r]} € {(p1— p2) &5 ()| a, p2 € [0,1] } = [~ 1, 2] &5 ()

and[—1,1]&(r) = &jj)(r) becauses (t) has symmetric bounds. These simplifica-
tions make it possible to computg(r) as

n i
71 =3 S0 + 6y

Since all possible solutions of (4) are contained in the esnfull CH(R(0) U
A (r)#(0)), the reachable set for a time interval without input can bemated
asZ([0,r]) = CH(Z(0)U. (r)#(0)) + F(r) %(0).

3.3 Reachable Set of the Complete System

We now consider the additional contribution to the reachabt due to uncertain in-
puts. Since the superposition principle for linear systearsbe applied, the reach-
able set of the input solution can be computed independehtlye homogeneous
solution. The input solutiorp(t) is bounded according to [35, Chap. 3] by
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t__
Xp(t) € | A (t—T1)u(T)dr, t>to. (5)
to

In order to compute the reachable set due to uncertain infggollowing propo-
sition on distributivity of positive scalars and convex masets is required.

Proposition 2 (Distributivity of Matrix Sets). Wheng is convex and e R*:
ad +ba/ = (a+b)«.

Proof. Itis always true thata+b).o7 C a.o/ 4 be7, evenife/ is not convex. Further,
due to the convexity it follows for the real-valued and awdriy matricesy, X, € &
and the scalasr € [0,1] thataX; + (1— a)X; € o/. Making use of, b > 0 this can
be rewritten by choosing = ;%:

a b
—X —Xo e
arb ttarp 2

so thataX; + bX; € (a+ b).«Z and consequentlyes + b/ C (a+b).«7. O

Theorem 1 (Input Solution). The set of reachable states due to the uncertain input
u(t) € Z is overapproximated as

B n CH(,Q{i%)ti+l
0=, (M

Proof. The integral in (5) is solved for set-valued inputs by splgtthe integral
fromtp to t into subintervalsty,tx. 1], wherek € {0,...,m— 1}. For now, it is as-
sumed that the input value taken froin is constant within time intervalgy, 1],
so thatz can be excluded from the integration:

>+£’m(t)t|02/|.

m-1 g
Xp(t) € Z AME—T)dT Y. (6)
K=0

This assumption will be overruled when choosing- « later. Next,.Z (t — 1) =
Sil o' (t— 1) /il + & (t — 1) is inserted so that

teoq n 4 _ 1
/M///(t—r)dr:Zj%/kﬂ(t—r)'dr—k “Cat-ndt (@)
t = t

K i! K Jty

—
Tt

=t

i —
rdr Tt

éa[i](T)dT
The integral in (7) can be moved inside since the matrix \&luighin o7 are not
time-varying. Inserting (7) into (6) yields

t—ty t—ty

m-1/n JZ{i i
Xp(t) € kZO <.ZJ'_'/t T'dT+ é’m(T)dT> wU

—tt1 t=tiya
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Using 34 f:ttkﬁl Sy(n)dt|Z | = fé@@m(r)dﬂ%L where || returns an axis-

aligned box, and applying Prop. 2 yields

n i )
Xp(t) eizj%;%) /Ot ridr +/Ot£’[i](r)dr|%|.

—ti+1/(i41)

One can see that the result is independent of the numbafrintermediate time
intervals due to Prop. 2. This means that choosing o« returns the same result so
that the assumption of constant input values within timerivels can be overruled.
It remains to compute the integriatY (t), Y (t)] := /5 & (1)dt, where

N oo C| . 0 C| .
Y(t)= : tHl < —tHl =y (),
®) i:nz+l (i+21)! i:;H i! ®)
so that; &ji)(T)dt C & ()t andY (t) is as introduced in Prop. 1. O

If the origin is contained in the set of possible inputsg(@7), it holds that
2([0,r]) = Z(r); see [27]. If this is not the case, some minor extensionsere r
quired [27]. Assuming that@ 7%, the overall algorithm for computing the reachable
set can be stated in Algorithm 1.

Algorithm 1 ComputeZ([0,t¢])

Input: Initial setZ(0), set of state transition matrice# (r), input set%, set of correction ma-
trices.Z (r), time increment, time horizonty
Output: Z([0,t¢])

Ao = CH(Z(0) U (1)%(0)) + .7 (1 %(0)
o7\ \ritL

70 = 3o (G ) + iz

Ho = Ao+ etg”o

for k=1...; —1do

Ky = ](r)%’k,l + Py
end for .
Z([0,t]) = kaz/iﬁk—l

4 Overapproximating the State Transition Matrix

The computation of the set of possible state transitionioest{e*!|A € ./} using
matrix zonotopes and interval matrices as representafitineomatrix sete are
discussed next. Matrix zonotopes are more general tharvatt@atrices, while the
presented computations are more efficient using intervatices. The presented
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techniques still work when the set of matrices contains matrices for which the
linear system is unstable. This is useful when consideriyigritl systems with
switched linear dynamics, where some linear systems atahlaswhile the overall
dynamics is stable.

4.1 Matrix Zonotopes
A matrix zonotope is defined as
CIIR NG ()
Ay =3G% + 5 pGY|p €[-1,1,G" e R™" (8)
:={c"+ 3 nellp J

and is written in short form as/, = (G(%,G,...,G)), where the first matrix
is referred to as thmatrix centerand the other matrices asatrix generatorsThe
order of a matrix zonotope is defined as= k/n. When exchanging the matrix
generators by vector generat@® < R", one obtains a zonotope (see e.g. [14]).
Matrix zonotopes can also be represented as the convexflitdlsm-called matrix
verticesv(:

ﬁfm:{

In order to obtain the Taylor series terms in (2), one has tomgde the power
of matrix zonotopes. This is done iteratively bzi['z] = APz, Where By =

r
aVIIVO e R™M o e R0 >0,y o =1¢. 9

pf['z]’l Thus, it suffices to show the multiplication of two matrixadopesa/; =
(GO,....Gk)) and B, = (HO, ... H{ke)):

Ay By = H(Gm)f%‘piG“)) (H<0>+ KZBq,-HU'))]]p_ I
2 A i :
kn K J (10)

— Oy . )
=GVHY + i;j;) [Pigilp.ger-11G VR,
(i,j)#(0,0) (-1.1]

so thatj; Z; C (GOH© GIOHW, . GkKaH(ke)). The Taylor terms up to sec-
ond order are evaluated exactly:

Proposition 3 (Dependent Matrix Zonotope Evaluation). The set
[ + At +1/2(At)’]acay, , Wheresy = (GI9,GWY,... GI¥) is enclosed by the

smallest possible zonotopé, (t) = (L (t), L (t),... . LKw)(t)), where
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LO®)  =1+60t+ (60" + 51 0560
J:1---KAZ LO)(t) el (G( IGU) +GUIGO)t2,
ji=1.. L (kat+ )()—OSG()
| = ZKA le i1l L@+ (t) = (GUG( )+G<k)G(J))t2.

Proof. The result of the multiplicationG© + 54, piG") (G + 51 piG1) can
be rearranged to

2 Ka . . Ka
GO ¢ Zl pj (GOcH +cIG@) 4+ leJZG(J)
1= 1=
Ka—1 Ka

+ pip(GUIGH 4 GG,
le k:%rl

wherepj, px € [—1,1] and pjz € [0,1]. Since the interval0, 1] deviates fron]—1, 1]
used as factors for matrix generators, it is split int6 -9 [—1,1]0.5; this makes
it possible to add the matricesSG()° to the constant solutio(©?, and use
the same matrix values as generator matrices. Applyingrésslt to[l + At +
1/2(At)2]]A€p¢[Z] results in the above proposition. O

4.2 Interval Matrices

An interval matrix is a special case of a matrix zonotope gmetiies for each
matrix element the interval of possible values:

o =[AA], Vi j:a;<aj;, AAcR™"

The matrixA is referred to as thewer boundandA as theupper boundf ).
When computing with intervals, one generally uses inteavdhmetic. In this
work, only the addition and multiplication rule are require

[a] + [b] =[a+b,a+ b, 1)
[a] - [b] =[min(ab,ab,ab,ab),maxab, ab,ab,ab)].

For the computation of the Taylor terrﬁ@zfmt)i, one has to compute the power of
interval matrices. This is done iteratively as for matrixatopes byzfm' = ;) By,
whereZ;) = szfm"l. Using interval arithmeticg}; = ;) %;) is computed element-
wise by the single-use expression] = 34 [ai][by;]. i.e. each matrix value occurs
only once for each computation fafj]. In interval arithmetic, single use expressions
are always exact, e.¢a|([b] + 1) = [a(b+ 1)[ac(q be[n- HOwWever, in this casez);

is a function ofej;) such thatt}) 2 o %
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In [36] it has been shown that the square of an interval magixbe rewritten as
a single-use expression, making the computation exaaj irgi@rval arithmetic, i.e.
the tightest possible interval matrix is computed. It hasrbirther proven in [36]
that it is NP-hard to compute the tightest enclosing intenvatrix of the cube of
an interval matrix Mi]3). The idea of computing the square of an interval matrix is
extended in order to write as many computation§lof At + 1/2(At)2]]A€p¢[iJ asa
single-use expression, while the other expressions ataeated by computing the
global maxima.

Proposition 4 (Dependent Interval Matrix Evaluation). The set
[I+At +1/2(At)2]}Ae%] can be tightly enclosed by another interval mawfi (t) =

[W(t),W(t)], where

o 1 1
Vi ] =[]t (@] + [y )t?) + 5 ENENS
2 2
kATk]
i o] = ([au] ). max(at + Za% @it + 22)] +2 3 faufalt?
- - st ) =l =il ’ 1
2 2 2 k%éi
min ({a;t + 1a2t? gt + 1a2t?}), for— 1 ¢ [a
k(al,y=4™ ({a a8 A 58 }) t ¢ [ail
—3, for— ¢ € [a;]
Proof. The non-diagonal elemenjw;;] can be formulated as a single-use expres-
sion (SUE), resulting in an exact evaluation using intevdhmetic. The com-
putation of the diagonal elemenfs;i] cannot entirely be reformulated to a SUE.
However, one can spliw;] into a part with and without a single variable occur-
rence:

[wii] = [ai]t + }[aii]ztz-f—} (2] [awi]t?

_ 2 2%
non-SUE —

SUE

It remains to obtain the exact interval gfa) := at+ %azt2 by computing the
minimum and maximum. The functiop(a) has only one minimum a = —1/t
and is monotone elsewhere, so that the maximum is to be foutiteaborders:
Ymax= Maxa;t + 3a2t2 3t + 3a2t?). Where the global minimumagn = —1/t) is
an element ofa;i], one obtainsymin = —1/2. In the other case, the minimum is to
be found at the bordepimin = min(a;t + $a2t? 3t + 3a2t?). 0

Besides computing with the lower and upper bound of intsfvahe can also
compute with the center and the radius of the interval. Thauathge of the latter
technique is that it is more efficient and easier to parakelsee [31]. The result
is more conservative, but the interval of a standard opmrgaddition, difference,
multiplication, and division) is bounded by a factobin radius compared to the
computation with lower and upper bounds.

1 The radius of a seX is defined as B max, ex, xex [X1 — X in [31].
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4.3 Norm Bounds

In order to quickly estimate the size of the set of state ttimmsmatrices, it is often
helpful to compute with norms instead of applying the introed computational
techniques using matrix zonotopes or interval matrices.

Theorem 2 (Norm Bound). In order to obtain a tight norm bound, the matrix set
</ is overapproximated by an interval matrix;; which is split into a nominal and

a symmetric parte; = Ay +[—S,S|. The norm of the distance of the set of state
transition matrices to the exponential matrix of the norhmatrix is computed for
AR +S| < 2as

[ ace — €

2
_ A 11815 Isit__
< : .
A - N1+ S — (1A 1+ [1Agl+SDs+1 " 1= TTAnl+SIE

The proof is shown in the Appendix.

4.4 Discussion

For small timeg < 2/([||Ajy| + S||) (see the Appendix), which are typically used
for reachability analysis, the ternf-_s(g%t)i contribute less to the overall solution
[e*']ac.s for increasing values. Thus, one should use sophisticated computations
for the first terms and switch to coarser and more efficientmaations for higher
order terms. For this reason, computations with matrix ropes are only con-
ducted up to second order in this work. Another reason isigatumber of genera-
tors for thel™™ power is(k +1)' — 1, while the representation size does not grow for
interval matrices. In order to keep the overapproximatibimrval computations
low, higher powers are based on the exact result of the spseee[36]. Besides
matrix zonotopes, one can also represent uncertaintielsebsnore general matrix
polytopes [27]. However, due to the computational compyeod matrix polytopes,
itis advisable to overapproximate them by matrix zonotgpes [27]) and compute
with the methods presented herein.

4.5 Numerical Evaluation of the Set of State Transition Matrices

The methods presented for computing the set of state timmsitatrices are illus-
trated for a five-dimensional example and evaluated forgarig generated exam-
ples.
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4.5.1 Five-Dimensional Example

The computation of the set of state transition matricesnsatestrated for the matrix
zonotope

~1-40 0 O 01010 0 O

4-10 0 0 01010 0 O

dy=G0c"), c9=|0 0-31 0|,cY=|0 001010
0 0-1-30 0 001010

0 00 0-2 0 0 0 001
(12)

and the corresponding interval matrix that tightly enctodee above matrix zono-
tope:

[~1.1,-0.9] [-4.1,—3.9] 0 0 0
39,41 [-1.1,-0.9 0 0 0
oy = 0 0  [-31,-29 [0.9,11] 0
0 0 [-11,-09[-31,-29 0

0 0 0 0 [-21,-19

(13)

The resulting sets7 (t) are computed far= 0.05 and the maximum order= 6
of the Taylor expansion. For the matrix zonotop§;, the set of state transition
matrices is plotted for selected projections in Fig. 3. iPakir matrix exponential
values generated from matrix samphass </ are also plotted. These matrices are
the vertex matrices of/, and 100 randomly chosen matrices. One can observe that
the matrix zonotope computation is much more accurate gotiess very well the
result of the samples, while the interval matrix computatieturns a much larger
set. The independent evaluation of each Taylor term usingixrzonotopes, i.e.
(10) is applied for the first two Taylor terms instead of Pr@palso returns a much
larger set compared to the dependent evaluation of the tgprtssecond order.

The results for the interval matri¢};; are shown in Fig. 4. Obviously, the com-
putation with matrix zonotopes results only in marginal royements when the
uncertain matrix is an interval matrix, while it is a morersfgcant improvement
over the independent evaluation, i.e. pure interval armtieris applied for the first
two Taylor terms instead of Prop. 4. For interval matricks,result is tight for both,
the interval matrix and the matrix zonotope computation.

45.2 Random Matrix Set Generation

For a more thorough evaluation, random matrix sets are ctedpusing a num-
ber of characterizing parameters. A random matrix whoseehs are uniformly
distributed is denoted b4""?= rand(a, u1) so thatvi, j : —a < a®"<a The vari-

ableu determines the ratio of the number of non-zero elementd edeahents of a
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3 !
= !

0.04 L .

0'92—‘6.195 —O.ﬁ -0.185 -0.05 —0.04& -0.04 -0.035
12 43
(a) Projection onto#Z 12, 4 »». (b) Projection onto/ 43, 4 3a.

Fig. 3 Computations of# (t) for the sete/|y as specified in (12),= 0.05,n = 6. Solid line: matrix
zonotope computation; dashed line: interval matrix corapoi; dash-dotted line: independent
matrix zonotope computation, i.e. independent evaluaif@ach Taylor term

0.93
&
=
0.9
0.92
~0.195 —O.:k? -0.185 -0.05 _0'04E/| -0.04 -0.035
12 43
(a) Projection onto#Z 12, 4 »». (b) Projection onto/ 43, 4 3a.

Fig. 4 Computations of# (t) for the seto;) as specified in (13};= 0.05,n = 6. Solid line: matrix
zonotope computation; dashed line: interval matrix corapoi; dash-dotted line: independent
matrix zonotope computation, i.e. independent evaluaif@ach Taylor term

matrix, i.e. the number of non-zero valuesisi1(un?) andceil returns the next
higher natural number.

The matrix center and matrix generators are randomly geseerasG(© =
rand(o,1) andGl) = rand(Z, u), whereo is referred to as center-uncertainty ra-
tio, K is the number of generators, ands the non-zero ratio. Note that the non-zero
elements have the same row and column indices for all gereratrices so that the
corresponding interval matrix uncertainties are non-z¢the same positions. The
interval enclosure of matrix zonotopes is equivalent toegating interval matrices
GO +[-S 9, whereS= rand(1, ).

There are no further constraints on the generation of ranaanix sets, such
that the sets might contain stable and/or unstable matrices
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4.5.3 Norm Evaluation

As a first test, the norm).Z (t) — My (t)[| with M5 (t) = e'in' as defined in 3)
is over- and underapproximated. The underapproximatiabiained as a union
of sampled matrices# (t) = Ui‘ileA(')t, whereA() are vertex matrices and 40
randomly generated matrices.

The overapproximation is obtained as presented above anishftmorm when
computing with interval matrices can easily be computefl#s||« = || A*[|», where
a&j = max(|g;|,[aij|). Note that computing the 2-norm of an interval matrix is ex-
ponential in the system dimension [37]. When the set of uagematrices is from
the class of matrix zonotopes, the maximum normis to be faagual to one of the
vertex matrice¥ () since|| s72, aiVW || < 574, @i VY]], ai > 0 (see (9)). However,
the number of vertices is too high, even in small dimensisosh that only inter-
val matrices can be evaluated. This is obvious since alrdaypumber of vertex
matrices required to represent the remainflgis 2" when each element ahj is
uncertain within an interval.

The ratio of both norms is defined as

_ [ A (t) =M (1) ][0
A (t) =My ()]0

6

and its evaluation is performed using randomly generatezhial matrices with
parameters specified in Table 1. After introducing = 2/|</j ||», one can define
the time-ratiow := t /tmax SO that forw € [0, 1] the convergence of the norm bound
is guaranteed (see the Appendix). By varying one of the par@mswhile fixing the
others, and by choosing the maximum Taylor ordente: 10, the plots in Fig. 5
are obtained. It can be seen that the only dominant pararisetiee time ratiocw,
while all other variations return norm ratios of aroun@ Which is mainly caused
by choosingo = 0.2.

Table 1 Error norm evaluation: Random matrix set generation pararse

[dimensionn[center-delta rati@[time ratiow]non-zero ratiqu]
[ 20 | 3 [ 02 | 03 |

4.5.4 Volume Evaluation

Since the performance of the matrix zonotope computationklmot be evaluated
in the previous norm test, we now evaluate how big the volufitbeset of state
transition matrices# (t) is when it is computed by matrix zonotopes or interval
matrices. The volume o/ (t) is computed by transforming it to a set in the vector
space, so that interval matrices become multidimensioteials and matrix zono-
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time ratiow dimensiom non-zero ratiqu center-d. ratiao

Fig. 5 Norm evaluation: Norm ratio8 for variations of parameters while fixing the other param-
eters given in Table 1

topes become zonotopes. The transformation is establishsthcking the column
vectors of a matrixY € R™" into a vectolry € R™.

The volume computation of multidimensional intervals imgly the product of
the interval lengths in each dimension. The volume comjartaif a zonotope is
more elaborate angP-hard; see [38]. For this reason, zonotopes are overapproxi
mated by parallelotopes according to [5] for which the voduzomputation is much
easier, meaning that the exact volume ratio is better forirmdnotopes than shown
in Fig. 6. In order to ensure that the volume is always grett@n O, the non-zero
ratio u is chosen to 1. Due to the computational load, the dimensi@hosen as
n =6 in contrast to Table 1. For a comparison of the results, vieeage ratio for
each dimension is computed:= (Vl/Vg)l/”z, whereV; is the volume of the zono-
tope computation/, the volume of the interval computation, and the dimensiaa du
to the vector space transformatiomd It can be seen that especially for problems
in higher dimension, matrix zonotopes perform better timerval matrices.

0.6 0.8 0.3
504 >0.6 > 03
0.2 0.4 0.2
o 0 0.2

5 10 0 5 10

0 0.5 1 ] ]
time ratiow dimensionn center-d. ratiao

Fig. 6 Volume evaluation: Normalized volume ratiosfor variations of parameters while fixing
the other parameters.

5 Computation of Reachable Sets

As mentioned in the introduction, there exists a large nurobpossible represen-
tations for reachable sets. It has been shown that zonosoksupport functions
outperform other representations when computing the eddetset of linear time
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invariant systems [16, 39]. However, for linear systemswincertain parameters,
no efficient method has yet been proposed using supportifunsciThus, zonotopes
are used for the numerical examples, which are specified &),ilexcept that the

matrix generators are replaced by vector generators. Tder of a zonotope is also
defined ap = K /n, wherek is the number of generators ands the system dimen-

sion.

In order to execute Alg. 1, it remains to specify how to mudytian interval ma-
trix or a matrix zonotope with a zonotope, and how to add zopes. Due to space
limitations, the derivation of these operations is left2d@][ It is noted that the mul-
tiplication and addition operation can be implemented ieffitty which is reflected
in the numerical examples presented below.

5.1 Five-Dimensional Example

As afirst example, the reachable set of the linear system\ x+ u(t) is computed,
whereA € o7 as specified in (12). Alternatively, the reachable set ismmated with
interval matrices so that € .«7;) as specified in (13) to compare the accuracy with
the more complex matrix zonotope computations. The setmftimis bounded by
the interval[—0.1,0.1] for each dimension. The maximum order of Taylor terms
is chosen tap = 4, the maximum zonotope order is chosenpas 20, the time
increment i = 0.05 and the time horizon s = 5.

o #(0)
0O Z([0.t1]) using«;
@ %([0.tf]) using.«/

—_

=" 0.5 <" 0.5
0 0
-1 -05 0 0.5 1 1.5 0 0.5 1
X2 X4
(a) Projection onto, X3. (b) Projection ontog, Xs.

Fig. 7 Reachable set of the five-dimensional example. The light g¥gion shows the reachable
set when computing with the interval matrix;), while the dark gray region shows the result when
computing with the original matrix zonotope(y. Black lines show exemplary trajectories and the
white region is the initial set

The scalability of the algorithm is shown by computing restile sets for sev-
eral randomly generated linear systems using the same ptaesas for the five-
dimensional system. There are no further constraints oigémeration of random
matrix sets, such that the sets might contain stable and&tahle matrices. Compu-
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tation times for system matrices bounded by interval masrand matrix zonotopes
are shown in Table 2. The computations have been performBtAFLAB on an
Intel i7 Processor with .6 GHz and 6 GB memory.

Table2 Computation times

[Dimensionn [ 5]10[20]50] 100]
Interval matrix

CPU timein [s] [[0.140.170.461.05 3.63
Matrix zonotope: Nr of generator matrices= 1
CPU time in [s] [[0.140.150.461.36 6.24
Matrix zonotope: Nr of generator matrices= 2
CPU time in [s] [[0.150.20/0.723.5311.0
Matrix zonotope: Nr of generator matrices= 4
CPU time in [s] [[0.220.361.477.5828.3

5.2 Transmission Line

The second example is a transmission line which is modelethd®-L-C circuit,
see Fig. 8. Those models are used in, e.g., timing verificatfdntegrated circuit
design [40]. Possible verification tasks are to guaranteaamam time to reach a
certain output voltage or to guarantee that a maximum owtgtege is not overshot.
Similar examples have been studied in [16, 41], where wrapfriee algorithms
could be applied. This is not possible in this work since utate parameters are
considered. The wrapping effect plays a dominant role ia &xample since the
system is poorly damped, where the smallest damping ratal gfoles is 0016.
Thus, even a small wrapping effect can cause unstable relecket computations.
This effect could be decreased by applying subdivisiortesgias for the uncertain
parameters, which would increase the computation timeghiew

Rariver L R L R L
I lo In

Uin ¢ C _|_T U C_|_ T UzJ\/\/\/_NN\?er Uout

Fig. 8 Transmission line modeled as an R-L-C circuit

After denoting the voltage and the current at tHenode byU, andl;, respec-
tively, and all resistances, inductances, and capacisdng®r, L, C, the differential
equations are



20 Matthias Althoff &), Bruce H. Krogh, and Olaf Stursberg

first node(l = 1) |other nodes |last nodg(l = n)
Ur=g(l2—11) U =¢g(ia—h) Up=—¢ly
1= 2 (Ug+Upn) — Baveryy iy = LUy —Uy_g) = Biy iy = LUy —Up1) = BRI,
(14)
with parameter ranges listed in Table 3. After introducihg state vectoxk =
[Ul,...,Un,Il,...,l,,]T, the inputu = Uiy, and grouping the terms in (14), one can
formulate the differential inclusion
%€ ([pQ™ + [p2)Q'? + [ps]Q"® + [p4 Q™)x+ [par u, (15)
= =712
whereQ() e R™" r ¢ R", and
1 1 [Rdriver] R
] ==, [Pl ==, [Ps]l="—F7—, [PaJ=717
[L] €l [L] [L]

The formulation in (15) makes it possible to obtain the gat@sG (") of the matrix
zonotopew] as

4
GO = lZmid{[pi]}Q(i), fori=1.4:G" = rad{[p]}Q"

and analogously fogZ|,, wheremid{.} returns the midpoint andad{.} the ra-
dius of an interval. The initial state of the system is deiagd by the steady state
solution for input voltaget)i, = u € [—0.2,0.2] to which an uncertainty is added
so that the initial currents are also uncertd®0) = —A~bu+ [1(0.001), where
A, b are chosen as the matrix centers«f, %|,, and[1(0.001) is a box of edge
length 2-0.001. At timet = O, the input is changed to € [0.99,1.01] so that the
step response of the output voltddg: = U; can be verified. For the modeling of
the transmission line, 20 nodes have been used such thaydteershas 40 state
variables. The reachable setld; is presented in Fig. 9 when computing with ma-
trix zonotopes (dark gray) or interval matrices (light grely can be observed that
the matrix zonotope computations are much tighter due teohsideration of the
dependency of thB, L, andC values of each node. Further projections of reachable
sets in the phase space are shown in Fig. 10.

The step size of the exampleris= 0.002, the time horizon i; = 0.7, Taylor
terms are computed up to ordge= 6, and the maximum zonotope ordepis- 400,
where the order reduction is performed as in [14]. The coatprt time was 388 s
for the matrix zonotope computation and 37 s for the intemairix computation in
MATLAB (without using the parallel computing toolbox) on &mtel i7 Processor
with 1.6 GHz and 6 GB memory. Interval computations have been paddmusing
the Matlab toolbox IntLab [42].
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Table 3 Transmission Line Parameters

[resistance in@][driver resistance in@][inductance in [H] capacitance in [F] |
[RE[0.99,1.00 | Rurver € [9.9,101] | L—1e—10 |Ce le—13:-[3.99,4.01]

O #([0x¢]) using.«;
B #([04]) using«,

0 01 02 03 04 05 06 07
time tin 10 [s]

Fig. 9 Output voltage range of the transmission line over time. [fgte gray region shows the
reachable set when computing with the interval matriy, while the dark gray region shows
the result when computing with the original matrix zonotopfg . Black lines show exemplary
trajectories

1, in [A]

0.05
0.02 o %(0)
~— 0/ .
0 Z g #(0t))
002 = 0 using.«7j;
— %
~0.04 m 7 _([0';;])
usin
—0.06 —0.05 o
0 05 1 15 -5 0 05 1 15
U in[V] Uzo in [V]
(a) Projection ontdJy, I;. (b) Projection ontdJ,g, l20.

Fig. 10 Reachable set of the transmission line example. The light grgion shows the reachable
set when computing with the interval matrix;;, while the dark gray region shows the result when
computing with the original matrix zonotopg(;. Black lines show exemplary trajectories and the
white region is the initial set

6 Conclusions

The computation of reachable sets for linear systems witleriain time-invariant
system matrices and time-varying inputs has been presefhedeachable set for
points in time without any input is computed based on the $ataie transition
matrices, which is extended for time intervals and unceritgduts. New methods
for tightly overapproximating the set of state transitioatrices by considering pa-
rameter dependencies have been developed for intervatesmand matrix zono-
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topes. These methods are numerically evaluated and sueptechby an accurate
norm estimation. Due to the use of zonotopes for the reaelsdilrepresentation,
the computational complexity grows moderately with the benof state variables
compared to other approaches, such as the computation rbitinagy polytopes.

The usefulness of the presented methods is demonstratéitefeerification of a

transmission line. Although the overapproximation of restde sets is small for
the first time intervals, the wrapping effect might becomeoaishant source for

overapproximation when the system is poorly damped.

As previously mentioned, it is assumed that the implemantalf the presented
methods returns exact numerical results, although comphtere rounding errors
due to a fixed humber of significant digits. This can be fixed &sfgrming all un-
derlying numerical computations with interval arithmstaccounting for rounding
errors.

Future work aims at reducing the wrapping effect by develgpiew order re-
duction techniques for zonotopes. This might be achieveddppting techniques
used for the reduction of the wrapping effect of multidimenal intervals, such as
the QR-preconditioning algorithm [29]. Preconditionihg tstate equations such as
using the classical diagonalization of system matricegre* = SozS1 andS
contains the eigenvectors of the nominal system matfix has not been beneficial
since the uncertainty of7* is increased compared 1@ due to the necessary ma-
trix set multiplications. However, if one could compute thage of eigenvalues and
eigenvectors more efficiently and tighter as today [34], ooéld use these results
to obtain an exactly diagonalized system matrix directlywduld then be possible
to compute the set of state transition matrices for long thogzons (due to the
separate evaluation for each dimension) such that wragpéegimplementation
developed in [39] could be applied.
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Appendix
Proof of Theorem 2

Thel™ power of an interval matrix can be represented by a real daherixC (1)
and a symmetric interval matr{x-D(1),D(l)]:

o' = (A +[-S.8)' =Cy (1) +[-D(1),D(1)].

Using the nominal or center valde,; and the symmetric intervat-S, S, the values
of Cjy (1) andD(l) can be obtained iteratively (see [31]):

Cin(i+1)=AnC(),

. ) : : , ., (16)

D(i+1) < [Ay[D(i) +S|Cpry (1) |+ SD(i) = (|Ap [ +S)D(i) +S|Cpry (i)l

whereCiy (1) = Ay, D(1) = S. Using this notation, the difference between the
nominal exponential matrix and the overapproximated seixpbnential matrices

IS .
[ e~ C D), (i)

7)

We are ultimately interested B¥ (i) := y!_, D(l )% (see (17)). A matrix compu-
tation can be found fo®2 (i) based on (16) when overapproximating the absolute
value ofCy (i) by [Cppy(i+1)| = |Ap||Cpny (i)]:

{|C[n](i+1)_|ti+l] At 0 0] {|C[n](i)_|ti]
D+t |=| & (Agl+Sto| | pix |.
S(i+1) 0 I+ | SE(i)

=G(i)

In order to derive some properties from the linear updaterseh the matri>é(i)
depending on is replaced by a constant mati& such that the result is overap-

proximated. This is done by overapproximating the sBhti) = zile(I)% by

S (i) =31 D)5t
Cri+DIt/27 [lAgls 0 0] [ICm /2
D(i+1)t'+1/2' — t/zlfl ) (18)
S(i+1) i

When using the definition of norms of matrix sets in (3), théofeing relationships
hold: [[AB|| < ||A]|||B]l, ||A+BJ| < ||A[| + [|B]|. The inequality for the multiplica-
tion only holds for sub-multiplicative norms, which is thase for allp-norms. This
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makes it possible to rewrite (18) to

ICH (i +1)[t/2 1A rlt\% 0 O [ICmMI )2
IID( i+1)[eY/2 | = | IS5 1AW +SII5 0| | IDG)t'/2
1S+ 1) 0 1 1 [E20]l

:Gnorm

Due to the block-triangular structure @,orm, the eigenvalues arﬁA sz
AR+ SII3 3 and 1. If|[|Ajy| + S||5 < 1, it follows that the maximum ergenvalue
is 1 whrch is assumed from now on. Another interesting priyp&f Gnorm is that
it is non-negative, i.€gnormj,j > O for alli,j = 1...3. In addition, if there exists a
common natural numben for all index pairs such thdiGyy,.)ij > 0, the matrix is
not only irreducible, but primitive, too.

For primitive matrices one can apply the Perron-Frobettiasrem that allows
one to compute lif.. GK,,, based on the left and right eigenvectors@qorm.
However, due to the block-triangular structure@&form, it follows that it is a re-
ducible matrix and thus not primitive. In [43] it is shown thander certain con-
ditions (see [43, Assumption 2]), the results of the Peffoobenius theorem can
be generalized to the reducible matrix at hand, wheigthe right andy the left
eigenvector corresponding to the greatest eigenvaleel: limy o GK /AKX =
Mk Gorm=vya" /(YT q Using this result, and the fact that the right eigenvec-

tor is alwaysy = [O 0 1] andqgz = 1, the norm of the set of matrix exponentials
can be overapproximated by

T [ IAm]It
1€ Iaco — o) <[00 0 2 st | (19)
q'y 0
—q7
The remaining left eigenvectors are
o = EF
- 2
AW AR+ Sl = (A AR+ S5 +1
1
= T ot
1—[[|Ag|+Sl5

Inserting this result into (19) yields the result of the treso.
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