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Abstract As an important approach to analyzing safety of a dynamic system, this
paper considers the task of computing overapproximations of reachable sets, i.e.
the set of states which is reachable from a given initial set of states. The class of
systems under investigation are linear, time-invariant systems with parametric un-
certainties and uncertain but bounded input. The possible set of system matrices due
to uncertain parameters is represented by matrix zonotopesand interval matrices –
computational techniques for both representations are presented. The reachable set
is represented by zonotopes, which makes it possible to apply the approach to sys-
tems of 100 continuous state variables with computation times of a few minutes.
This is demonstrated for randomized examples as well as a transmission line exam-
ple.

1 Introduction

Reachability analysis deals with the problem of finding the set of states that a sys-
tem can reach when starting from a specified set of initial states in finite or infinite
time. One of the main purposes of reachability analysis is todemonstrate the safe
execution of a system by proving that the system does not reach any unsafe state.
This is illustrated for a two-dimensional example with statesx1, x2 in Fig. 1. Besides
the safety verification problem, reachability analysis is auseful tool for robustness
analysis [1], abstraction of hybrid systems [2], and state-bounding observers [3].
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In this work, an efficient algorithm for computing reachablesets of continuous-
time linear systems with uncertain inputs/disturbances and constant but uncertain
parameters is presented. One advantage of the proposed method is that the computa-
tional complexity is moderate in terms of the system dimension. As shown by earlier
work, the reachability algorithm for linear systems can be extended to the analysis
of nonlinear systems [4] and hybrid systems [5]. Thus, the reachability analysis of
linear systems can be seen as a basic module for the reachability analysis of more
complicated system classes.

x1

x2

reachable set unsafe setinitial set

trajectory

Fig. 1 An empty intersection of (an overapproximation of) the reachable set with an unsafe set of
states verifies system safety

For systems with derivative boundsẋ ∈ P, wherex ∈ R
n and P is a bounded

convex polyhedron (polytope) inRn, the reachable set can be represented by poly-
hedra [6]. Reachable sets of such systems can be used as a basis for the reachability
analysis of linear or even more complex systems, such as nonlinear and hybrid sys-
tems [7,8].

Other work deals directly with linear systemsẋ(t) = Ax(t)+u(t), wherex ∈R
n,

u ∈U ⊂R
n, A ∈R

n×n. Exact reachable sets of linear systems can only be obtained
in special cases; in general one has to compute overapproximations to perform sys-
tem verification [9]. Approaches to this class of systems canbe classified by the
geometric representation used for the reachable sets: polytopes [10], ellipsoids [11],
oriented rectangular hulls [12], zonotopes [13,14], or level sets [15]. Support func-
tions [16] unify these methods, except of the use of level sets. If uncertain param-
eters are considered, most existing algorithms are based oninterval methods and
multidimensional intervals (hyperrectangles) to represent reachable sets [17–19].
Similar techniques are used for validated integration methods of ordinary differ-
ential equations, which are typically applied to smaller uncertainties in the initial
states [20–22].

Besides the mentioned techniques that are based on guaranteed set integration,
for which an overview can be found in [23], one can verify the safety of a system
with barrier certificates [24] or simulation based techniques, e.g. [25,26].

Previous work addressed the computation of reachable sets of linear systems with
uncertain parameters [27]. Recently, this approach has been extended to linear sys-
tems with time-varying uncertain parameters [28]. In theseworks, the reachable sets
are represented by zonotopes, which offer a more general representation compared
to multidimensional intervals, which are typically used for this class of problems.
Zonotopes are also a more efficient alternative to arbitrarypolytopes for reachability
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analysis of linear systems [14]. The novelties for the follow-up work presented here
are:

• Improved computational techniques: Dependencies betweenthe elements of state
transition matrices due to common parameters are considered when computing
with matrix zonotopes.

• A norm bound for the computation of matrix exponential sets is derived.
• Performance evaluations of methods for computing matrix exponential sets are

conducted.
• Properties of a new transmission line example are verified.

This book chapter is organized as follows. In Section 2, the problem of com-
puting reachable sets is introduced, and a brief description of the used algorithmic
procedure is given. The formulas for computing reachable sets of linear systems un-
der uncertain initial states, parameters, and inputs are derived in Section 3. These
formulas are based on the set of possible state transition matrices, of which the
computation is described in Section 4. The usefulness of thepresented approach is
demonstrated for a transmission line example, and randomlygenerated examples in
Section 5.

2 Problem Formulation

We consider time-invariant linear systems of the form

ẋ(t) = Ax(t)+u(t), A ∈ A , u(·) ∈ U[0,t f ], x(0) ∈ X0, t ∈ [0, t f ],

whereu(t) :R+ →R
n is an input function over time,A is the set of system matrices

A, X0 is the set of initial states, andt f ∈ R
+ is the time horizon. The set of input

functions is defined asU[0,t f ] = {u(·)|u(·) is piecewise continuous,u(t) ∈ U , t ∈
[0, t f ]}, whereU is the set of possible input values. The notationu(·) refers to
trajectories rather than the explicit value at timet. Note that the commonly used
input formulationBũ(t) is included inu(t) when definingU = {Bũ|ũ ∈ Ũ }.

The objective of this work is to compute the set of reachable states

R
e([0, t f ]) =

{

x
∣
∣
∣x =

∫ t

0
(Ax(τ)+u(τ))dτ, A ∈ A ,

u(·) ∈ U[0,t f ], x(0) ∈ X0, t ∈ [0, t f ]
}

.

The fact thatRe([0, t f ]) refers to the exact reachable set is indicated by the super-
scripte. However, the reachable set for uncertain time-invariant linear systems can-
not be computed exactly for arbitraryA andu(·) [9]. Therefore, overapproximations
R([0, t f ])⊇Re([0, t f ]) are computed in this work. The task is to find algorithms that
bound the overapproximation as tightly as possible, while at the same time ensuring
that the algorithms are efficient and scale well with the system dimensionn. Ensur-



4 Matthias Althoff (�), Bruce H. Krogh, and Olaf Stursberg

ing tightness of the enclosure is a challenging task due to the wrapping effect, which
is understood as the propagation of overapproximations through the computations
of successive time steps [29].

The basic principle of many reachability algorithms, including the approach
presented here, is to compute the reachable set for consecutive time intervals
R([tk−1, tk]), wheretk = k· r andk∈N is the time step; see [10,12,14,30]. The com-
plete reachable set is then obtained by:R([0, t f ]) =

⋃

k=1...t f /r R([tk−1, tk]), where
t f is a multiple ofr. Since the union is represented as a list of the setsR([tk−1, tk]),
the focus of this work is on the computation of a single time interval[0, r]. The basic
steps for the computation ofR([0, r]) are shown in Fig. 2 and are summarized as
follows:

1. Computation of the reachable setH (r) without the input (homogeneous solu-
tion), but with consideration of the setA of system matrices;

2. Generation of the convex hull of the solution att = r and the initial set;
3. Enlargement of the convex hull to ensure enclosure of all trajectories for the time

interval t ∈ [0, r]. The enlargement compensates for two assumptions made in
steps 1 and 2: The first assumption was that the system has no input. The second
one was that trajectories between the initial set and the reachable setH (r) are
straight lines for which the convex hull computation would be sufficient.

R(0)

H (r)

convex hull
of R(0), H (r)

R([0, r])

➀ ➁ ➂

enlargement

Fig. 2 Computation of the reachable set for a time interval

It is guaranteed that the formulas derived below return reachable sets that enclose
all possible trajectories. The implementation of the algorithms in this work neglects
the effect of floating-point errors caused by the finite number of stored digits in
computers. This effect can be taken care of by exchanging floating-point arithmetic
by interval arithmetic [31], which propagates the roundingerrors.

3 Overapproximating the Reachable Set

It is well known that the solution of an autonomous linear time-invariant system (ẋ=
Ax) is provided by the state transition matrix:x(t) = ΦΦΦ(t, t0)x0, whereΦΦΦ(t, t0) =
eA(t−t0). When the initial state is uncertain withinR(t0), the set of reachable states
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at time t is R(t) = {eA(t−t0)x0|x0 ∈ R(t0)}. If additionally, the system matrix is
uncertain, one has to compute the reachable set asR(t) = {eA(t−t0)x0|A ∈ A ,x0 ∈
R(t0)}. The computation of the set of possible state transition matrices is discussed
first. Then, the extensions for reachable sets of time intervals [0, r] and under the
influence of uncertain inputs are presented. Without loss ofgenerality, it is assumed
thatt0 = 0 from now on, so thatΦΦΦ(t) = ΦΦΦ(t, t0).

3.1 Overapproximating the State Transition Matrix

In order to make the computation of the set of state transition matrices{eAt |A ∈
A } tractable for matrix zonotopes and interval matrices, someset-based operations
have to be computed independently. The set computations that remain dependent are
indicated by a special notation. Letting◦ denote either addition or multiplication,
then the exact evaluation is denoted by

JA◦AKA∈A := {A◦A|A ∈ A }, (1)

while an independent evaluation is denoted by

A ◦A := {A1◦A2|A1 ∈ A ,A2 ∈ A }.

Using an independent evaluation of operands, one obtains anoverapproximation in
general, e.g.

J(A+B)CKA∈A
B∈B
C∈C

⊆ JACKA∈A
C∈C

+ JBCKB∈B
C∈C

= A C +BC .

The notation introduced above makes it possible to formulate an overapproximation
of the set of matricesM (t) := JeAtKA∈A based on the Taylor series ofeAt . For
typical step sizes in time used in reachability analysis, only the first terms of the
Taylor series contribute significantly to the solution. Thus, the dependent set-based
evaluation is performed up to second order, while higher order terms are evaluated
independently; that is,

M (t) =
r

I +A t+
1
2!
(A t)2+

1
3!
(A t)3+

1
4!
(A t)4+ . . .

z
A∈A

⊆
r

I +A t+
1
2!
(A t)2

z
A∈A

+
1
3!
(A t)3+

1
4!
(A t)4+ . . . .

(2)

It is shown below that the computation above is always bounded when the set of
matrix valuesA and timet is bounded. Thereto, the norm of a set of matrices is
defined as

‖A ‖= sup
{
‖A‖

∣
∣A ∈ A

}
, (3)
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where‖A‖ denotes an arbitrary matrix norm, while special norms, suchas the in-
finity norm, will be denoted by‖A ‖∞. Applying the matrix norm, one obtains

‖JeAtKA∈A ‖ ≤
∞

∑
i=0

1
i!
‖A ‖it i = e‖A ‖t ,

which is bounded for‖A ‖< ∞ andt < ∞.
In order to computeJeAtKA∈A , the infinite sum in (2) has to be replaced by a finite

sum to which a set of remainder matrices is added. The number of terms retained in
the Taylor series is denoted byη .

Proposition 1 (State Transition Matrix Remainder). The set of remainder matri-
ces∑∞

i=η+1
1
i! A

it i is overapproximated for|A | ≤ C ∈R
n×n by the interval matrix

E[i](t) = [−Y(t),Y(t)], Y(t) = eCt −
η

∑
i=0

Cit i

i!
.

The absolute value of a matrix set is defined as the matrix in which each element is
equal to the supremum of the absolute value of the corresponding element in each
matrix inA . That is,|A |i, j = sup

{
|ai, j |

∣
∣A ∈ A

}
.

Proof. The multiplication of two matrix setsA andB, whereC andD are cho-
sen such that|A | ≤ C ∈ R

n×n and|B| ≤ D ∈ R
n×n, has the absolute value bound

|A B| ≤ |A | |B| ≤CD. From this it follows that|A n| ≤ Cn such that

∣
∣
∣
∣

∞

∑
i=η+1

A it i

i!

∣
∣
∣
∣
≤

∞

∑
i=η+1

|A i |t i

i!
≤

∞

∑
i=η+1

Cit i

i!
= eCt −

η

∑
i=0

Cit i

i!
. ⊓⊔

Besides the presented Taylor method, there is a number of different techniques
to compute the matrix exponential [32]. Unfortunately, these alternative approaches
are not suitable for computations with matrix sets or do not provide error bounds.
No error bounds can be provided when applying techniques which use solvers of
ordinary differential equations [32]. Polynomial methodsmake it possible to obtain
the matrix exponential from a finite sumeAt = ∑n−1

i=0 αi(t)Ai , whereαi(t) is a poly-
nomial. However, the error introduced by the Taylor series remainder, which would
be omitted using this technique, is small compared to the computation of the powers
A i . Matrix decomposition methods, whereA= SBS−1 so thateAt = SeBtS−1 suffer
from the problem that the inverse of an uncertain matrix is hard to compute [33]
and that for many techniquesS is hard to obtain whenA is uncertain, e.g. whenS is
a matrix of eigenvectors [34]. Splitting techniques which are based on the formula
eB+C = limm→∞(eB/meC/m)m are not appropriate, too, since high powers of matrix
sets are hard to compute.
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3.2 Reachable Sets of Time Intervals

Given the homogeneous solutionxh(r) ∈ M (r)x(0), the following approximation
for the solution at intermediate points in time is suggested:

x̂h(t) = x(0)+
t
r
(Mx(0)− x(0)), M ∈ M (r), t ∈ [0, r]. (4)

The errorxh(t)− x̂h(t) made when applying this approximation is bounded by the
setF (r)x(0), whereF (r) is a set of matrices such thatxh(t) ∈ x̂h(t)+F (r)x(0).
Using the inclusionxh(t)∈M (t)x(0) and replacingM (t) by its Taylor series yields
a formula for computing the set of matricesF :

F (r)⊇

{ η

∑
i=0

Ait i

i!
+E[i](t)− I−

t
r

( ∞

∑
i=0

Air i

i!
+E[i](r)− I

)
∣
∣
∣
∣
Ai ∈ A

i , t ∈ [0, r]

}

=

{ η

∑
i=2

A i

i!
(t i − tr i−1)+E[i](t)−

t
r
E[i](r)

∣
∣
∣
∣
t ∈ [0, r]

}

.

In [27] it is shown that

[ϕ ](i, r) :=
{
t i − tr i−1

∣
∣t ∈ [0, r]

}
= [(i

−i
i−1 − i

−1
i−1 )r i ,0].

It remains to computeE[i](t)−
t
r E[i](r). The matrix setE[i](t) is strictly increasing

with time so thatE[i](t) ∈ [0,1]E[i](r) for t ∈ [0, r]. Thus,

{
E[i](t)−

t
r
E[i](r)

∣
∣t ∈ [0, r]

}
⊆
{
(µ1− µ2)E[i](r)

∣
∣µ1,µ2 ∈ [0,1]

}
= [−1,1]E[i](r)

and[−1,1]E[i](r) = E[i](r) becauseE[i](t) has symmetric bounds. These simplifica-
tions make it possible to computeF (r) as

F (r) =
η

∑
i=2

A i

i!
[ϕ ](i, r)+E[i](r).

Since all possible solutions of (4) are contained in the convex hull CH(R(0) ∪
M (r)R(0)), the reachable set for a time interval without input can be computed
asR([0, r]) = CH(R(0)∪M (r)R(0))+F (r)R(0).

3.3 Reachable Set of the Complete System

We now consider the additional contribution to the reachable set due to uncertain in-
puts. Since the superposition principle for linear systemscan be applied, the reach-
able set of the input solution can be computed independentlyof the homogeneous
solution. The input solutionxp(t) is bounded according to [35, Chap. 3] by
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xp(t) ∈
∫ t

t0
M (t − τ)u(τ)dτ, t ≥ t0. (5)

In order to compute the reachable set due to uncertain inputs, the following propo-
sition on distributivity of positive scalars and convex matrix sets is required.

Proposition 2 (Distributivity of Matrix Sets). WhenA is convex and a,b∈ R
+:

aA +bA = (a+b)A .

Proof. It is always true that(a+b)A ⊆ aA +bA , even ifA is not convex. Further,
due to the convexity it follows for the real-valued and arbitrary matricesX1,X2 ∈A

and the scalarα ∈ [0,1] thatαX1+(1−α)X2 ∈A . Making use ofa,b≥ 0 this can
be rewritten by choosingα = a

a+b:

a
a+b

X1+
b

a+b
X2 ∈ A

so thataX1+bX2 ∈ (a+b)A and consequentlyaA +bA ⊆ (a+b)A . ⊓⊔

Theorem 1 (Input Solution). The set of reachable states due to the uncertain input
u(t) ∈ U is overapproximated as

P(t) =
η

∑
i=0

(
CH(A iU )t i+1

(i +1)!

)

+E[i](t)t |U |.

Proof. The integral in (5) is solved for set-valued inputs by splitting the integral
from t0 to t into subintervals[tk, tk+1], wherek ∈ {0, . . . ,m−1}. For now, it is as-
sumed that the input value taken fromU is constant within time intervals[tk, tk+1],
so thatU can be excluded from the integration:

xp(t) ∈
m−1

∑
k=0

∫ tk+1

tk
M (t − τ)dτ U . (6)

This assumption will be overruled when choosingm→ ∞ later. Next,M (t − τ) =
∑η

i=0A i(t − τ)i/i! +E[i](t − τ) is inserted so that

∫ tk+1

tk
M (t − τ)dτ =

η

∑
i=0

A i

i!

∫ tk+1

tk
(t − τ)idτ

︸ ︷︷ ︸

=
∫ t−tk
t−tk+1

τ idτ

+

∫ tk+1

tk
E[i](t − τ)dτ

︸ ︷︷ ︸

=
∫ t−tk
t−tk+1

E[i](τ)dτ

(7)

The integral in (7) can be moved inside since the matrix values within A are not
time-varying. Inserting (7) into (6) yields

xp(t) ∈
m−1

∑
k=0

(
η

∑
i=0

A i

i!

∫ t−tk

t−tk+1

τ idτ +
∫ t−tk

t−tk+1

E[i](τ)dτ

)

U
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Using ∑m−1
k=0

∫ t−tk
t−tk+1

E[i](τ)dτ|U | =
∫ t

0 E[i](τ)dτ|U |, where |U | returns an axis-
aligned box, and applying Prop. 2 yields

xp(t) ∈
η

∑
i=0

CH(A iU )

i!

∫ t

0
τ idτ

︸ ︷︷ ︸

=t i+1/(i+1)

+

∫ t

0
E[i](τ)dτ|U |.

One can see that the result is independent of the numberm of intermediate time
intervals due to Prop. 2. This means that choosingm→ ∞ returns the same result so
that the assumption of constant input values within time intervals can be overruled.
It remains to compute the integral[−Ỹ(t), Ỹ(t)] :=

∫ t
0 E[i](τ)dτ, where

Ỹ(t) =
∞

∑
i=η+1

Ci

(i +1)!
t i+1 <

∞

∑
i=η+1

Ci

i!
t i+1 = Y(t)t,

so that
∫ t

0 E[i](τ)dτ ⊂ E[i](t)t andY(t) is as introduced in Prop. 1. ⊓⊔

If the origin is contained in the set of possible inputs (0∈ U ), it holds that
P([0, r]) = P(r); see [27]. If this is not the case, some minor extensions are re-
quired [27]. Assuming that 0∈U , the overall algorithm for computing the reachable
set can be stated in Algorithm 1.

Algorithm 1 ComputeR([0, t f ])

Input: Initial setR(0), set of state transition matricesM (r), input setU , set of correction ma-
tricesF (r), time incrementr, time horizont f

Output: R([0, t f ])

H0 = CH(R(0)∪M (r)R(0))+F (r)R(0)

P0 = ∑η
i=0

(
CH(A iU )r i+1

(i+1)!

)

+E[i](r)r|U |

R0 = H0+P0
for k= 1. . .

t f
r −1 do

Rk = M (r)Rk−1+P0
end for
R([0, t f ]) =

⋃t f /r
k=1Rk−1

4 Overapproximating the State Transition Matrix

The computation of the set of possible state transition matrices{eAt |A ∈ A } using
matrix zonotopes and interval matrices as representation of the matrix setA are
discussed next. Matrix zonotopes are more general than interval matrices, while the
presented computations are more efficient using interval matrices. The presented
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techniques still work when the set of matricesA contains matrices for which the
linear system is unstable. This is useful when considering hybrid systems with
switched linear dynamics, where some linear systems are unstable, while the overall
dynamics is stable.

4.1 Matrix Zonotopes

A matrix zonotope is defined as

A[z] =
{

G(0)+
κ

∑
i=1

piG(i)
∣
∣
∣pi ∈ [−1,1],G(i) ∈ R

n×n
}

(8)

and is written in short form asA[z] = (G(0),G(1), . . . ,G(κ)), where the first matrix
is referred to as thematrix centerand the other matrices asmatrix generators. The
order of a matrix zonotope is defined asρ = κ/n. When exchanging the matrix
generators by vector generatorsg(i) ∈ R

n, one obtains a zonotope (see e.g. [14]).
Matrix zonotopes can also be represented as the convex hull of its so-called matrix
verticesV(i):

A[z] =
{ r

∑
i=1

αiV(i)
∣
∣
∣V(i) ∈R

n×n,αi ∈ R,αi ≥ 0,∑
i

αi = 1
}

. (9)

In order to obtain the Taylor series terms in (2), one has to compute the power
of matrix zonotopes. This is done iteratively byA l

[z] = A[z]B[z], whereB[z] =

A
l−1
[z] . Thus, it suffices to show the multiplication of two matrix zonotopesA[z] =

(G(0), . . . ,G(κA)) andB[z] = (H(0), . . . ,H(κB)):

A[z]B[z] =
r(

G(0)+
κA

∑
i=1

piG(i)
)(

H(0)+
κB

∑
j=1

q jH( j)
)z

pi ,q j∈[−1,1]

= G(0)H(0)+
κA

∑
i=0

κB

∑
j=0

(i, j) 6=(0,0)

Jpiq jKpi ,q j∈[−1,1]
︸ ︷︷ ︸

⊆[−1,1]

G(i)H( j),
(10)

so thatA[z]B[z] ⊆ (G(0)H(0),G(0)H(1), . . . ,G(κA)H(κB)). The Taylor terms up to sec-
ond order are evaluated exactly:

Proposition 3 (Dependent Matrix Zonotope Evaluation). The set
JI+A t + 1/2(A t)2KA∈A[z]

, whereA[z] = (G(0),G(1), . . . ,G(κA)) is enclosed by the

smallest possible zonotopeW[z](t) = (L(0)(t),L(1)(t), . . . ,L(κW)(t)), where
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L(0)(t) = I+G(0)t +
(

G(0)2+∑κA
i=10.5G(i)2

)

t2,

j = 1. . .κA : L( j)(t) = G( j)t +(G(0)G( j)+G( j)G(0))t2,

j = 1. . .κA : L(κA+ j)(t) = 0.5G( j)2t2,

l = ∑κA−1
j=1 ∑κA

k= j+11 : L(2κA+l)(t) = (G( j)G(k)+G(k)G( j))t2.

Proof. The result of the multiplication(G(0)+∑κA
i=1 piG(i))(G(0)+∑κA

i=1 piG(i)) can
be rearranged to

G(0)2+
κA

∑
j=1

p j(G(0)G( j)+G( j)G(0))+
κA

∑
j=1

p2
j G

( j)2

+
κA−1

∑
j=1

κA

∑
k= j+1

p j pk(G
( j)G(k)+G(k)G( j)),

wherep j , pk ∈ [−1,1] andp2
j ∈ [0,1]. Since the interval[0,1] deviates from[−1,1]

used as factors for matrix generators, it is split into 0.5+ [−1,1]0.5; this makes

it possible to add the matrices 0.5G( j)2 to the constant solutionG(0)2, and use
the same matrix values as generator matrices. Applying thisresult toJI + A t +
1/2(A t)2KA∈A[z]

results in the above proposition. ⊓⊔

4.2 Interval Matrices

An interval matrix is a special case of a matrix zonotope and specifies for each
matrix element the interval of possible values:

A[i] = [A,A], ∀i, j : ai j ≤ ai j , A,A ∈ R
n×n.

The matrixA is referred to as thelower boundandA as theupper boundof A[i].
When computing with intervals, one generally uses intervalarithmetic. In this

work, only the addition and multiplication rule are required:

[a]+ [b] =[a+b,a+b],

[a] · [b] =[min(ab,ab,ab,ab),max(ab,ab,ab,ab)].
(11)

For the computation of the Taylor terms1
i! (A[i]t)

i , one has to compute the power of

interval matrices. This is done iteratively as for matrix zonotopes byA[i]
l =A[i]B[i],

whereB[i] =A[i]
l−1. Using interval arithmetic,C[i] =A[i]B[i] is computed element-

wise by the single-use expression[ci j ] =∑n
k=1[aik][bk j], i.e. each matrix value occurs

only once for each computation of[ci j ]. In interval arithmetic, single use expressions
are always exact, e.g.[a]([b]+1) = Ja(b+1)Ka∈[a],b∈[b]. However, in this case,B[i]
is a function ofA[i] such thatC[i] ⊇ A[i]B[i].
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In [36] it has been shown that the square of an interval matrixcan be rewritten as
a single-use expression, making the computation exact using interval arithmetic, i.e.
the tightest possible interval matrix is computed. It has been further proven in [36]
that it is NP-hard to compute the tightest enclosing interval matrix of the cube of
an interval matrix (A[i]

3). The idea of computing the square of an interval matrix is
extended in order to write as many computations ofJI+A t +1/2(A t)2KA∈A[i]

as a
single-use expression, while the other expressions are evaluated by computing the
global maxima.

Proposition 4 (Dependent Interval Matrix Evaluation). The set
JI+A t+1/2(A t)2KA∈A[i]

can be tightly enclosed by another interval matrixW[i](t)=

[W(t),W(t)], where

∀i 6= j : [wi j ] =[ai j ](t +
1
2
([aii ]+ [a j j ])t

2)+
1
2 ∑

k:k6=i,k6= j

[aik][ak j]t
2

∀i : [wii ] =
[

κ([aii ], t),max
(
aii t +

1
2

a2
ii t

2,aii t +
1
2

a2
ii t

2)
]

+
1
2 ∑

k:k6=i

[aik][aki]t
2

κ([aii ], t) =

{

min
(
{aii t +

1
2a2

ii t
2,aii t + 1

2a2
ii t

2}
)
, for− 1

t /∈ [aii ]

− 1
2, for− 1

t ∈ [aii ]

Proof. The non-diagonal elements[wi j ] can be formulated as a single-use expres-
sion (SUE), resulting in an exact evaluation using intervalarithmetic. The com-
putation of the diagonal elements[wii ] cannot entirely be reformulated to a SUE.
However, one can split[wii ] into a part with and without a single variable occur-
rence:

[wii ] = [aii ]t +
1
2
[aii ]

2t2

︸ ︷︷ ︸

non-SUE

+
1
2 ∑

k:k6=i

[aik][aki]t
2

︸ ︷︷ ︸

SUE

.

It remains to obtain the exact interval ofγ(a) := at+ 1
2a2t2 by computing the

minimum and maximum. The functionγ(a) has only one minimum ata = −1/t
and is monotone elsewhere, so that the maximum is to be found at the borders:
γmax= max(aii t+

1
2a2

ii t
2,aii t+ 1

2a2
ii t

2). Where the global minimum (amin=−1/t) is
an element of[aii ], one obtains:γmin = −1/2. In the other case, the minimum is to
be found at the border:γmin = min(aii t +

1
2a2

ii t
2,aii t + 1

2a2
ii t

2). ⊓⊔

Besides computing with the lower and upper bound of intervals, one can also
compute with the center and the radius of the interval. The advantage of the latter
technique is that it is more efficient and easier to parallelize; see [31]. The result
is more conservative, but the interval of a standard operation (addition, difference,
multiplication, and division) is bounded by a factor 1.5 in radius1 compared to the
computation with lower and upper bounds.

1 The radius of a setX is defined as 0.5maxx1∈X,x2∈X |x1−x2| in [31].
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4.3 Norm Bounds

In order to quickly estimate the size of the set of state transition matrices, it is often
helpful to compute with norms instead of applying the introduced computational
techniques using matrix zonotopes or interval matrices.

Theorem 2 (Norm Bound). In order to obtain a tight norm bound, the matrix set
A is overapproximated by an interval matrixA[i] which is split into a nominal and
a symmetric part:A[i] = A[n]+[−S,S]. The norm of the distance of the set of state
transition matrices to the exponential matrix of the nominal matrix is computed for
‖|A[n]|+S‖< 2

t as

‖JeAtKA∈A −eA[n]t‖

≤
‖A[n]‖‖S‖ t2

2

‖A[n]‖ · ‖|A[n]|+S‖ t2
4 − (‖A[n]‖+ ‖|A[n]|+S‖) t

2 +1
+

‖S‖t
1−‖|A[n]|+S‖ t

2
.

The proof is shown in the Appendix.

4.4 Discussion

For small timest < 2/(‖|A[n]|+S‖) (see the Appendix), which are typically used
for reachability analysis, the terms1i! (A t)i contribute less to the overall solution
JeAtKA∈A for increasingi values. Thus, one should use sophisticated computations
for the first terms and switch to coarser and more efficient computations for higher
order terms. For this reason, computations with matrix zonotopes are only con-
ducted up to second order in this work. Another reason is thatthe number of genera-
tors for thel th power is(κ +1)l −1, while the representation size does not grow for
interval matrices. In order to keep the overapproximation of interval computations
low, higher powers are based on the exact result of the square; see [36]. Besides
matrix zonotopes, one can also represent uncertainties by the more general matrix
polytopes [27]. However, due to the computational complexity of matrix polytopes,
it is advisable to overapproximate them by matrix zonotopes(see [27]) and compute
with the methods presented herein.

4.5 Numerical Evaluation of the Set of State Transition Matrices

The methods presented for computing the set of state transition matrices are illus-
trated for a five-dimensional example and evaluated for randomly generated exam-
ples.
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4.5.1 Five-Dimensional Example

The computation of the set of state transition matrices is demonstrated for the matrix
zonotope

A[z]=(G(0),G(1)), G(0)=









−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2









, G(1)=









0.1 0.1 0 0 0
0.1 0.1 0 0 0
0 0 0.1 0.1 0
0 0 0.1 0.1 0
0 0 0 0 0.1









.

(12)
and the corresponding interval matrix that tightly encloses the above matrix zono-
tope:

A[i] =









[−1.1,−0.9] [−4.1,−3.9] 0 0 0
[3.9,4.1] [−1.1,−0.9] 0 0 0

0 0 [−3.1,−2.9] [0.9,1.1] 0
0 0 [−1.1,−0.9] [−3.1,−2.9] 0
0 0 0 0 [−2.1,−1.9]









.

(13)
The resulting setsM (t) are computed fort = 0.05 and the maximum orderη = 6

of the Taylor expansion. For the matrix zonotopeA[z], the set of state transition
matrices is plotted for selected projections in Fig. 3. Particular matrix exponential
values generated from matrix samplesǍi ∈ A[z] are also plotted. These matrices are
the vertex matrices ofA[z] and 100 randomly chosen matrices. One can observe that
the matrix zonotope computation is much more accurate and captures very well the
result of the samples, while the interval matrix computation returns a much larger
set. The independent evaluation of each Taylor term using matrix zonotopes, i.e.
(10) is applied for the first two Taylor terms instead of Prop.3, also returns a much
larger set compared to the dependent evaluation of the termsup to second order.

The results for the interval matrixA[i] are shown in Fig. 4. Obviously, the com-
putation with matrix zonotopes results only in marginal improvements when the
uncertain matrix is an interval matrix, while it is a more significant improvement
over the independent evaluation, i.e. pure interval arithmetic is applied for the first
two Taylor terms instead of Prop. 4. For interval matrices, the result is tight for both,
the interval matrix and the matrix zonotope computation.

4.5.2 Random Matrix Set Generation

For a more thorough evaluation, random matrix sets are computed using a num-
ber of characterizing parameters. A random matrix whose elements are uniformly
distributed is denoted byArand= rand(a,µ) so that∀i, j : −a≤ arand

i j ≤ a. The vari-
ableµ determines the ratio of the number of non-zero elements to all elements of a
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Fig. 3 Computations ofM (t) for the setA[z] as specified in (12);t = 0.05,η =6. Solid line: matrix
zonotope computation; dashed line: interval matrix computation; dash-dotted line: independent
matrix zonotope computation, i.e. independent evaluationof each Taylor term
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(a) Projection ontoM 12, M 22.
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(b) Projection ontoM 43, M 34.

Fig. 4 Computations ofM (t) for the setA[i] as specified in (13);t = 0.05,η = 6. Solid line: matrix
zonotope computation; dashed line: interval matrix computation; dash-dotted line: independent
matrix zonotope computation, i.e. independent evaluationof each Taylor term

matrix, i.e. the number of non-zero values isceil(µ n2) andceil returns the next
higher natural number.

The matrix center and matrix generators are randomly generated asG(0) =
rand(σ ,1) andG(i) = rand( 1

κ ,µ), whereσ is referred to as center-uncertainty ra-
tio, κ is the number of generators, andµ is the non-zero ratio. Note that the non-zero
elements have the same row and column indices for all generator matrices so that the
corresponding interval matrix uncertainties are non-zeroat the same positions. The
interval enclosure of matrix zonotopes is equivalent to generating interval matrices
G(0)+[−S,S], whereS = rand(1,µ).

There are no further constraints on the generation of randommatrix sets, such
that the sets might contain stable and/or unstable matrices.
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4.5.3 Norm Evaluation

As a first test, the norm‖M (t)−M[n](t)‖∞ with M[n](t) = eA[n] t as defined in (3)
is over- and underapproximated. The underapproximation isobtained as a union

of sampled matrices:M (t) =
⋃ϖ

i=1eǍ(i)t , whereǍ(i) are vertex matrices and 103

randomly generated matrices.
The overapproximation is obtained as presented above and the inf-norm when

computing with interval matrices can easily be computed as‖A[i]‖∞ = ‖A∗‖∞, where
a∗i j = max(|ai j |, |ai j |). Note that computing the 2-norm of an interval matrix is ex-
ponential in the system dimension [37]. When the set of uncertain matrices is from
the class of matrix zonotopes, the maximum norm is to be foundequal to one of the
vertex matricesV(i) since‖∑rA

i=1 αiV(i)‖≤∑rA
i=1 αi‖V(i)‖, αi ≥ 0 (see (9)). However,

the number of vertices is too high, even in small dimensions,such that only inter-
val matrices can be evaluated. This is obvious since alreadythe number of vertex
matrices required to represent the remainderE[i] is 2n2

when each element ofE[i] is
uncertain within an interval.

The ratio of both norms is defined as

θ =
‖M (t)−M[n](t)‖∞

‖M (t)−M[n](t)‖∞

and its evaluation is performed using randomly generated interval matrices with
parameters specified in Table 1. After introducingtmax= 2/‖A[i]‖∞, one can define
the time-ratioω := t/tmax so that forω ∈ [0,1] the convergence of the norm bound
is guaranteed (see the Appendix). By varying one of the parameters while fixing the
others, and by choosing the maximum Taylor order toη = 10, the plots in Fig. 5
are obtained. It can be seen that the only dominant parameteris the time ratioω ,
while all other variations return norm ratios of around 1.2 which is mainly caused
by choosingω = 0.2.

Table 1 Error norm evaluation: Random matrix set generation parameters

dimensionn center-delta ratioσ time ratioω non-zero ratioµ
20 3 0.2 0.3

4.5.4 Volume Evaluation

Since the performance of the matrix zonotope computations could not be evaluated
in the previous norm test, we now evaluate how big the volume of the set of state
transition matricesM (t) is when it is computed by matrix zonotopes or interval
matrices. The volume ofM (t) is computed by transforming it to a set in the vector
space, so that interval matrices become multidimensional intervals and matrix zono-
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Fig. 5 Norm evaluation: Norm ratiosθ for variations of parameters while fixing the other param-
eters given in Table 1

topes become zonotopes. The transformation is establishedby stacking the column
vectors of a matrixY ∈R

n×n into a vectory ∈ R
n2

.
The volume computation of multidimensional intervals is simply the product of

the interval lengths in each dimension. The volume computation of a zonotope is
more elaborate and♯P-hard; see [38]. For this reason, zonotopes are overapproxi-
mated by parallelotopes according to [5] for which the volume computation is much
easier, meaning that the exact volume ratio is better for matrix zonotopes than shown
in Fig. 6. In order to ensure that the volume is always greaterthan 0, the non-zero
ratio µ is chosen to 1. Due to the computational load, the dimension is chosen as
n = 6 in contrast to Table 1. For a comparison of the results, the average ratio for
each dimension is computed:υ = (V1/V2)

1/n2
, whereV1 is the volume of the zono-

tope computation,V2 the volume of the interval computation, and the dimension due
to the vector space transformation isn2. It can be seen that especially for problems
in higher dimension, matrix zonotopes perform better than interval matrices.

0 0.5 1
0

0.2

0.4

0.6

time ratioω

υ

5 10
0.2

0.4

0.6

0.8

dimensionn

υ

0 5 10

0.26

0.28

0.3

0.32

center-d. ratioσ

υ

Fig. 6 Volume evaluation: Normalized volume ratiosυ for variations of parameters while fixing
the other parameters.

5 Computation of Reachable Sets

As mentioned in the introduction, there exists a large number of possible represen-
tations for reachable sets. It has been shown that zonotopesand support functions
outperform other representations when computing the reachable set of linear time
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invariant systems [16, 39]. However, for linear systems with uncertain parameters,
no efficient method has yet been proposed using support functions. Thus, zonotopes
are used for the numerical examples, which are specified as in(8), except that the
matrix generators are replaced by vector generators. The order of a zonotope is also
defined asρ = κ/n, whereκ is the number of generators andn is the system dimen-
sion.

In order to execute Alg. 1, it remains to specify how to multiply an interval ma-
trix or a matrix zonotope with a zonotope, and how to add zonotopes. Due to space
limitations, the derivation of these operations is left to [27]. It is noted that the mul-
tiplication and addition operation can be implemented efficiently which is reflected
in the numerical examples presented below.

5.1 Five-Dimensional Example

As a first example, the reachable set of the linear systemẋ= Ax+u(t) is computed,
whereA∈A[z] as specified in (12). Alternatively, the reachable set is computed with
interval matrices so thatA∈ A[i] as specified in (13) to compare the accuracy with
the more complex matrix zonotope computations. The set of inputs is bounded by
the interval[−0.1,0.1] for each dimension. The maximum order of Taylor terms
is chosen toη = 4, the maximum zonotope order is chosen asρ = 20, the time
increment isr = 0.05 and the time horizon ist f = 5.

−1 −0.5 0 0.5 1 1.5

0

0.5

1

x
2

x
3

R(0)
R([0.t f ]) usingA[i]

R([0.t f ]) usingA[z]

(a) Projection ontox2, x3.

0 0.5 1

0

0.5

1

x
4

x
5

(b) Projection ontox4, x5.

Fig. 7 Reachable set of the five-dimensional example. The light gray region shows the reachable
set when computing with the interval matrixA[i], while the dark gray region shows the result when
computing with the original matrix zonotopeA[z]. Black lines show exemplary trajectories and the
white region is the initial set

The scalability of the algorithm is shown by computing reachable sets for sev-
eral randomly generated linear systems using the same parameters as for the five-
dimensional system. There are no further constraints on thegeneration of random
matrix sets, such that the sets might contain stable and/or unstable matrices. Compu-
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tation times for system matrices bounded by interval matrices and matrix zonotopes
are shown in Table 2. The computations have been performed inMATLAB on an
Intel i7 Processor with 1.6 GHz and 6 GB memory.

Table 2 Computation times

Dimensionn 5 10 20 50 100

Interval matrix
CPU time in [s] 0.14 0.17 0.46 1.05 3.63
Matrix zonotope: Nr of generator matricesκ = 1
CPU time in [s] 0.14 0.15 0.46 1.36 6.24
Matrix zonotope: Nr of generator matricesκ = 2
CPU time in [s] 0.15 0.20 0.72 3.53 11.01
Matrix zonotope: Nr of generator matricesκ = 4
CPU time in [s] 0.22 0.36 1.47 7.58 28.33

5.2 Transmission Line

The second example is a transmission line which is modeled asan R-L-C circuit,
see Fig. 8. Those models are used in, e.g., timing verification of integrated circuit
design [40]. Possible verification tasks are to guarantee a minimum time to reach a
certain output voltage or to guarantee that a maximum outputvoltage is not overshot.
Similar examples have been studied in [16, 41], where wrapping-free algorithms
could be applied. This is not possible in this work since uncertain parameters are
considered. The wrapping effect plays a dominant role in this example since the
system is poorly damped, where the smallest damping ratio ofall poles is 0.016.
Thus, even a small wrapping effect can cause unstable reachable set computations.
This effect could be decreased by applying subdivision strategies for the uncertain
parameters, which would increase the computation time, however.

Uin Uout

Rdriver RRL LL

CCC

I1 I2 Iη

U1 U2

Fig. 8 Transmission line modeled as an R-L-C circuit

After denoting the voltage and the current at thel th node byUl and Il , respec-
tively, and all resistances, inductances, and capacitances byR, L, C, the differential
equations are
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first node(l = 1) other nodes last node(l = η)
U̇1 =

1
C(I2− I1) U̇l =

1
C(Il+1− Il) U̇η =− 1

CIη
İ1 = 1

L (U1+Uin)−
Rdriver

L I1 İl =
1
L (Ul −Ul−1)−

R
L Il İη = 1

L (Uη −Uη−1)−
R
L Iη

(14)
with parameter ranges listed in Table 3. After introducing the state vectorx =
[U1, . . . ,Uη , I1, . . . , Iη ]

T , the inputu= Uin, and grouping the terms in (14), one can
formulate the differential inclusion

ẋ ∈ ([p1]Q
(1)+[p2]Q

(2)+[p3]Q
(3)+[p4]Q

(4)

︸ ︷︷ ︸

=A[z]

)x+[p1]r
︸︷︷︸

=B[z]

u, (15)

whereQ(i) ∈R
n×n, r ∈ R

n, and

[p1] =
1
[L]

, [p2] =
1
[C]

, [p3] =
[Rdriver]

[L]
, [p4] =

[R]
[L]

.

The formulation in (15) makes it possible to obtain the generatorsG(i) of the matrix
zonotopeA[z] as

G(0) =
4

∑
i=1

mid{[pi]}Q(i), for i = 1..4 : G(i) = rad{[pi]}Q(i)

and analogously forB[z], wheremid{.} returns the midpoint andrad{.} the ra-
dius of an interval. The initial state of the system is determined by the steady state
solution for input voltagesUin = u ∈ [−0.2,0.2] to which an uncertainty is added
so that the initial currents are also uncertain:R(0) = −A−1bu+�(0.001), where
A, b are chosen as the matrix centers ofA[z], B[z], and�(0.001) is a box of edge
length 2· 0.001. At timet = 0, the input is changed tou ∈ [0.99,1.01] so that the
step response of the output voltageUout = Ul can be verified. For the modeling of
the transmission line, 20 nodes have been used such that the system has 40 state
variables. The reachable set ofUout is presented in Fig. 9 when computing with ma-
trix zonotopes (dark gray) or interval matrices (light gray). It can be observed that
the matrix zonotope computations are much tighter due to theconsideration of the
dependency of theR, L, andC values of each node. Further projections of reachable
sets in the phase space are shown in Fig. 10.

The step size of the example isr = 0.002, the time horizon ist f = 0.7, Taylor
terms are computed up to orderη = 6, and the maximum zonotope order isρ = 400,
where the order reduction is performed as in [14]. The computation time was 388 s
for the matrix zonotope computation and 37 s for the intervalmatrix computation in
MATLAB (without using the parallel computing toolbox) on anIntel i7 Processor
with 1.6 GHz and 6 GB memory. Interval computations have been performed using
the Matlab toolbox IntLab [42].
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Table 3 Transmission Line Parameters
resistance in [Ω ] driver resistance in [Ω ] inductance in [H] capacitance in [F]

R∈ [0.99,1.01] Rdriver ∈ [9.9,10.1] L = 1e−10 C ∈ 1e−13· [3.99,4.01]
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Fig. 9 Output voltage range of the transmission line over time. Thelight gray region shows the
reachable set when computing with the interval matrixA[i], while the dark gray region shows
the result when computing with the original matrix zonotopeA[z]. Black lines show exemplary
trajectories
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Fig. 10 Reachable set of the transmission line example. The light gray region shows the reachable
set when computing with the interval matrixA[i], while the dark gray region shows the result when
computing with the original matrix zonotopeA[z]. Black lines show exemplary trajectories and the
white region is the initial set

6 Conclusions

The computation of reachable sets for linear systems with uncertain time-invariant
system matrices and time-varying inputs has been presented. The reachable set for
points in time without any input is computed based on the set of state transition
matrices, which is extended for time intervals and uncertain inputs. New methods
for tightly overapproximating the set of state transition matrices by considering pa-
rameter dependencies have been developed for interval matrices and matrix zono-
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topes. These methods are numerically evaluated and supplemented by an accurate
norm estimation. Due to the use of zonotopes for the reachable set representation,
the computational complexity grows moderately with the number of state variables
compared to other approaches, such as the computation with arbitrary polytopes.
The usefulness of the presented methods is demonstrated forthe verification of a
transmission line. Although the overapproximation of reachable sets is small for
the first time intervals, the wrapping effect might become a dominant source for
overapproximation when the system is poorly damped.

As previously mentioned, it is assumed that the implementation of the presented
methods returns exact numerical results, although computers have rounding errors
due to a fixed number of significant digits. This can be fixed by performing all un-
derlying numerical computations with interval arithmetics accounting for rounding
errors.

Future work aims at reducing the wrapping effect by developing new order re-
duction techniques for zonotopes. This might be achieved byadopting techniques
used for the reduction of the wrapping effect of multidimensional intervals, such as
the QR-preconditioning algorithm [29]. Preconditioning the state equations such as
using the classical diagonalization of system matrices, whereA ∗ = SA S−1 andS
contains the eigenvectors of the nominal system matrixA[n], has not been beneficial
since the uncertainty ofA ∗ is increased compared toA due to the necessary ma-
trix set multiplications. However, if one could compute therange of eigenvalues and
eigenvectors more efficiently and tighter as today [34], onecould use these results
to obtain an exactly diagonalized system matrix directly. It would then be possible
to compute the set of state transition matrices for long timehorizons (due to the
separate evaluation for each dimension) such that wrapping-free implementation
developed in [39] could be applied.
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Appendix

Proof of Theorem 2

Thel th power of an interval matrix can be represented by a real valued matrixC[n](l)
and a symmetric interval matrix[−D(l),D(l)]:

A[i]
l = (A[n]+[−S,S])l = C[n](l)+ [−D(l),D(l)].

Using the nominal or center valueA[n] and the symmetric interval[−S,S], the values
of C[n](l) andD(l) can be obtained iteratively (see [31]):

C[n](i +1) = A[n]C[n](i),

D(i +1)≤ |A[n]|D(i)+S|C[n](i)|+SD(i) = (|A[n]|+S)D(i)+S|C[n](i)|,
(16)

whereC[n](1) = A[n], D(1) = S. Using this notation, the difference between the
nominal exponential matrix and the overapproximated set ofexponential matrices
is

JeAtKA∈A −eA[n]t ⊆
∞

∑
i=1

[−D(i),D(i)]
t i

i!
. (17)

We are ultimately interested inS∑(i) := ∑i
l=1 D(l) t l

l ! (see (17)). A matrix compu-
tation can be found forS∑(i) based on (16) when overapproximating the absolute
value ofC[n](i) by |C[n](i +1)|= |A[n]||C[n](i)|:





|C[n](i +1)|t i+1

D(i +1)t i+1

S∑(i +1)



=





|A[n]|t 0 0
St (|A[n]|+S)t 0
0 I 1

i! I





︸ ︷︷ ︸

=G̃(i)





|C[n](i)|t
i

D(i)t i

S∑(i)



 .

In order to derive some properties from the linear update scheme, the matrixG̃(i)
depending oni is replaced by a constant matrixG such that the result is overap-

proximated. This is done by overapproximating the sumS∑(i) = ∑i
l=1 D(l) t l

l ! by

S∑∗
(i) = ∑i

l=1 D(l) t l

2l−1 :





|C[n](i +1)|t i+1/2i

D(i +1)t i+1/2i

S∑(i +1)



=





|A[n]|
t
2 0 0

S t
2 (|A[n]|+S) t

2 0
0 I I





︸ ︷︷ ︸

=G





|C[n](i)|t
i/2i−1

D(i)t i/2i−1

S∑(i)



 . (18)

When using the definition of norms of matrix sets in (3), the following relationships
hold: ‖AB‖ ≤ ‖A‖‖B‖, ‖A+B‖ ≤ ‖A‖+ ‖B‖. The inequality for the multiplica-
tion only holds for sub-multiplicative norms, which is the case for allp-norms. This
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makes it possible to rewrite (18) to





‖C[n](i +1)‖t i+1/2i

‖D(i +1)‖t i+1/2i

‖S∑(i +1)‖



=





‖A[n]‖
t
2 0 0

‖S‖ t
2 ‖|A[n]|+S‖ t

2 0
0 1 1





︸ ︷︷ ︸

=Gnorm





‖C[n](i)‖t i/2i−1

‖D(i)‖t i/2i−1

‖S∑(i)‖





Due to the block-triangular structure ofGnorm, the eigenvalues are‖A[n]‖
t
2,

‖|A[n]|+S‖ t
2, and 1. If‖|A[n]|+S‖ t

2 < 1, it follows that the maximum eigenvalue
is 1, which is assumed from now on. Another interesting property of Gnorm is that
it is non-negative, i.e.gnorm,i, j ≥ 0 for all i, j = 1. . .3. In addition, if there exists a
common natural numberm for all index pairs such that(Gm

norm)i j > 0, the matrix is
not only irreducible, but primitive, too.

For primitive matrices, one can apply the Perron-Frobeniustheorem that allows
one to compute limk→∞ Gk

norm based on the left and right eigenvectors ofGnorm.
However, due to the block-triangular structure ofGnorm, it follows that it is a re-
ducible matrix and thus not primitive. In [43] it is shown that under certain con-
ditions (see [43, Assumption 2]), the results of the Perron-Frobenius theorem can
be generalized to the reducible matrix at hand, wherey is the right andq the left
eigenvector corresponding to the greatest eigenvalueλ̄ = 1: limk→∞ Gk

norm/λ̄ k =
limk→∞ Gk

norm= yqT/(yTq). Using this result, and the fact that the right eigenvec-

tor is alwaysy =
[
0 0 1

]T
andq3 = 1, the norm of the set of matrix exponentials

can be overapproximated by

‖JeAtKA∈A −eA[n]t‖ ≤
[
0 0 1

] yqT

qTy
︸ ︷︷ ︸

=qT





‖A[n]‖t
‖S‖t

0



 . (19)

The remaining left eigenvectors are

q1 =
‖S‖ t

2

‖A[n]‖ · ‖|A[n]|+S‖ t2
4 − (‖A[n]‖+ ‖|A[n]|+S‖) t

2 +1
,

q2 =
1

1−‖|A[n]|+S‖ t
2
.

Inserting this result into (19) yields the result of the theorem.
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