
JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 1

Comparison of Markov Chain Abstraction and
Monte Carlo Simulation for the Safety Assessment

of Autonomous Cars
Matthias Althoff and Alexander Mergel

Abstract—The probabilistic prediction of road traffic scenarios
is addressed. One result is a probabilistic occupancy of traffic
participants, the other result is the collision risk for autonomous
vehicles when executing a planned maneuver. The probabilistic
occupancy of surrounding traffic participants helps to plan
the maneuver of an autonomous vehicle, while the computed
collision risk helps to decide if a planned maneuver should
be executed. Two methods for the probabilistic prediction are
presented and compared: Markov chain abstraction and Monte
Carlo simulation. The performance of both methods is evaluated
with respect to the prediction of the probabilistic occupancy
and the collision risk. For each comparison test we use the
same models generating the probabilistic behavior of traffic
participants, where the generation of these data is not compared
to real world data. However, the results show independentlyof
the behavior generation that Markov chains are preferred for the
probabilistic occupancy, while Monte Carlo simulation is clearly
preferred for determining the collision risk.

Index Terms—Safety assessment, threat level, autonomous cars,
Markov chains, Monte Carlo simulation, probabilistic occupancy,
crash probability, behavior prediction.

I. I NTRODUCTION

ONE of the main objectives of research on autonomous
vehicles is to realize the vision of accident-free driving

by exclusion of human errors. This can be done by fully
autonomous vehicles or partly autonomous vehicles, which
only take over the control when an accident is, or is almost
inevitable.

In order to assess the safety of a planned maneuver, the
prediction of traffic participants is vital for the identification
of future threats. In contrast to predictive approaches, non-
predictive methods are based on the recording and evaluation
of traffic situations that have resulted in dangerous situations;
see e.g. [1], [31]. However, this approach is only suitable
for driver warnings. Planned trajectories of autonomous cars
cannot be evaluated with this method since the consequences
when following these trajectories have to be predicted.

Behavior prediction has been mainly limited to human
drivers within theego vehicle (i.e. the vehicle for which the
safety assessment is performed). This is motivated by research
on driver assistant systems which warn drivers when dangerous

Matthias Althoff is with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA
15213. (e-mail: althoff@ece.cmu.edu).

Alexander Mergel is with the Institute of Automatic ControlEngineering
(LSR), Technische Universität München, 80290 München,Germany (e-mail:
alexander.mergel@mytum.de).

Manuscript received xx. month 2010; revised xxx.

situations are ignored. The majority of works on this topic use
learning mechanisms such as neural networks and autoregres-
sive exogenous models [37], [42], or filter techniques such as
Kalman filters [26], [33]. Another line of research is to detect
traffic participants on selected road sections and learn motion
patterns for anomaly detection. Developed learning techniques
for motion patterns are e.g. clustering methods [20], hidden
Markov models [30], and growing hidden Markov models
[39]. The disadvantage of a prediction at fixed locations is that
the predictions are specialized to this particular road segment
and are probably not representative for other traffic situations.

For the prediction of arbitrary traffic situations, simulations
of traffic participants have been used [5], [18]. Due to the
efficiency of single simulations, these approaches are already
widely implemented in cars, e.g. to initiate an emergency brak-
ing maneuver based on measures liketime to collision. Simu-
lations of traffic participants are also computed in microscopic
traffic simulations [28], [38]. However, single simulations do
not consider uncertainties in the measurements and actions
of other traffic participants, which may lead to unsatisfactory
collision predictions [25].

A more sophisticated threat assessment considers multiple
simulations of other vehicles, considering different initial
states and changes in their inputs (steering angle and acceler-
ation). Multiple simulations have been used in [22] to identify
collision-free maneuvers for triggering emergency braking. If
the simulations are randomly generated, one computes by a
so-called Monte-Carlo method, which have been studied in
[4], [7]–[9], [13] for the risk analysis of road traffic and in
[6], [40] for the related topic of air traffic safety.

Another method to compute the probabilistic behaviors of
traffic participants, is to abstract their behavior. One approach
is to linearize the system dynamics and compute with Gaussian
distributions since the distribution remains Gaussian after a
linear transformation [24]. Several linearizations representing
different operation modes, such as stopping, or accelerating,
are computed in [17]. The operation modes are probabilis-
tically switched and the switching is Markovian. Another
approach is to abstract traffic participants by Markov chains
as presented in the previous works [2], [3].

A. Contributions

The main contribution of this paper is to compare the Monte
Carlo simulation in [4], [7]–[9], [13] with the Markov chain
abstraction in [2], [3] according to their performance in the

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 2

probabilistic prediction of traffic situations. However, in order
to compare both techniques, an appropriate behavior model
has to be found to generate acceleration commands. For the
first time, the behavior models used in [7]–[9], [13] and [2],[3]
are analyzed according to the autocorrelation and the average
spectral density. In addition, the abstraction of Markov chains
is computed via simulation techniques instead of reachability
analysis as in [2], [3] for better accuracy. Accuracy has further
been improved in the Markov chain approach by resolving
an unnecessary over-approximation in the crash probability
computation and by using a more accurate vehicle model. The
efficiency of the Markov chain computations and the Monte
Carlo simulations have been increased, too: the Markov chain
computation has been sped up by reformulating it to a sparse
matrix multiplication and applying on-the-fly cancellation of
non-relevant probabilities. The Monte Carlo simulations have
been sped up by computing with analytical solutions instead
of numerical solvers.

B. Organization

In Sec. II we give a detailed problem description. The
modeling of traffic participants for the prediction is presented
in Sec. III. We introduce the Markov chain abstraction and the
Monte Carlo simulation in Sec. IV and Sec. V, respectively.
The probabilistic generation of acceleration commands is
presented in Sec. VI. The remainder of the paper is about the
assessment of the Markov chain abstraction and the Monte
Carlo simulation. First, the results for the prediction of the
probabilistic occupancy are compared in Sec. VII. Second,
the predicted crash probabilities are compared in Sec. VIII.

II. PROBLEM DESCRIPTION

In order to get a better idea of the addressed problem, the
required information and the objectives are described below.

A. Required Information

The presented safety assessment requires the following
information:

• the planned trajectory of the autonomous car,
• the geometric description of the relevant road sections,
• the position and geometry of static obstacles,
• the position, velocity, and classification of traffic par-

ticipants (into cars, trucks, motorbikes, bicycles, and
pedestrians).

Note that the gathering of this data is not subject of this
work. The planned trajectory of the ego car is known since it
is internally planned. The geometric description of the relevant
road sections can be extracted from off-the-shelf navigation
systems and fused with lane detection software. For lane
detection, one usually uses LIDAR sensors and cameras [29].
The same sensors are generally used for the detection of
static obstacles. The detection of traffic participants andthe
estimation of their position and velocity is a challenging task
[10], [32]. Since this data is difficult to infer, the result of
dynamic object detection is usually described by a probability
distribution.

−20

−10

0

10
60 80 100 120 140 160 180

planned path other carsego carbicycle

Fig. 1. Probabilistic occupancy of other traffic participants at a certain point
in time. The result can be used for path planning of the ego carin order to
avoid areas of high probability of occupancy.

autonomous car

environment
sensors

trajectory
planner

safety assessment

Fig. 2. Concept of the safety assessment: The environment sensors provide
the road geometry, static obstacles, and traffic participants. This information
is forwarded to the trajectory planner and the safety assessment module. The
trajectory is only executed when approved by the safety assessment module.

The specialty of the proposed methods for the safety assess-
ment is that they can compute with the uncertainties provided
by the dynamic object detection. The probability distributions
of measurements can be arbitrary and may have multiple
maxima due to multiple object hypotheses. In addition to this
uncertainty, there is another uncertainty regarding the future
behavior of other traffic participants.

B. Objectives

Incorporating the uncertainty from the obstacle detection
and the future behavior, this work predicts the future proba-
bilistic occupancy of obstacles on the road. The second result
of this work is the probability of a crash for the autonomous
vehicle when following its planned path.

The probabilistic occupancy of other traffic participants
allows to optimize the planned paths such that the autonomous
car does not come to close to other traffic participants. This
is illustrated in Fig. 1. The crash probability helps to decide
if a planned trajectory should be executed or not. If several
trajectories are planned, the safety assessment can identify the
trajectory with the least crash probability. The interaction of
the safety assessment module with the sensor information and
the trajectory planner is illustrated in Fig. 2. In order to update
the prediction fort ∈ [0, tf] after a time interval∆t based on
new sensor values, the computation has to be faster than real-
time by a factor oftf/∆t.

III. M ODELING OF TRAFFIC PARTICIPANTS

This work focuses on the safety assessment of autonomous
cars driving on a road network, i.e. the motion of traffic
participants is constrained along designated roads. On that

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 3

account, the motion of traffic participants is modeled such
that traffic participants follow certain paths up to a certain
accuracy. An alternative modeling for probabilistic prediction
in unstructured environments can be found e.g. in [35].

The generated paths are located in the centers of lanes that
can be followed. Possible lanes to be followed are extracted
from detected road sections by checking all possible driving
options, such asleft turn, right turn, go straight, left lane
change, and right lane change. Possible driving paths of an
exemplary road section using the aforementioned driving op-
tions are shown in Fig. 3. In some traffic situations, additional
paths which use lanes for oncoming traffic are required. This
is the case when an obstacle (e.g. standing car) blocks a lane.
Possible paths for such a scenario are shown in Fig. 4 and
can be obtained with the same methods used in the trajectory
planner, but applied to other traffic participants instead of the
ego car. The concept of generating paths which are followed
by a certain accuracy is also suggested in [17].

path 1

path 2

∆s

path
segment

vehicle

s

f(s)

δ

f(δ)

f(s, δ)

ρ(s)

Df

Se

Cef

Fig. 3. Probability distribution of the position of a vehicle along a path-
aligned coordinate system.

0 10 20 30 40 50 60
−5

0

5

10

approaching vehicle standing vehicle

path1 path2 path3

Fig. 4. Evasion of a standing car with alternative paths.

A. Lateral Distribution

The deviation along generated paths is modeled by a piece-
wise constant probability density functionf(δ), where δ is
the lateral deviation from a driving path as shown in Fig. 3.
The deviation probability of other traffic participants at the be-
ginning of the prediction is set according to the measurement
uncertainty of the obstacle detection. This distribution can be
cross-faded over time to a distribution that has been obtained
from an averaging of traffic observations; see [11].

B. Longitudinal Distribution

In contrast to the path deviation, the longitudinal dynam-
ics of traffic participants along a path can be much better

described by a mathematical model. In order to formulate
this model, the volumetric center of traffic participants along
a path is denoted bys, the velocity byv, and the absolute
acceleration bya. The acceleration commandu is normalized
and varies from[−1, 1], where−1 represents full braking and
1 represents full acceleration. Further, the functionρ(s) is
introduced which maps the path coordinates to the radius
of curvature. The radius of the path determines the tangential
accelerationaT , and the normal acceleration is denoted byaN .
The differential equations for the vehicle dynamics are:

ṡ = v, v̇ =

amax u, 0 < v ≤ vsw ∨ u ≤ 0

amax vsw

v
u, v > vsw ∧ u > 0

0, v ≤ 0

(1)

subject to the constraints

v ≤vmax,

|a| ≤amax, |a| =
√

a2N + a2T , aN = v2/ρ(s), aT = v̇.

(2)

Backwards driving on a lane is not considered; see (1)
(v̇ = 0, v ≤ 0). The positive acceleration dynamic changes
at the switching velocityvsw. The dynamics for0 < v ≤
vsw ∨ u ≤ 0 is based on tire friction, while the other one
is based on engine power which limits the acceleration when
the torque forv > vsw is not causing wheel spin anymore.
The constraintv ≤ vmax in (2) models the speed limit.
The other constraint models that the tire friction only allows
a limited absolute accelerationamax (Kamm’s circle). The
constantamax is chosen asamax = 7 [m/s2] andvsw is chosen
according to the different classes of traffic participants1.

The proposed model for the longitudinal dynamics is almost
the same as used in [13]. The difference there is that the
acceleration command resulting in zero acceleration is non-
zero. It is also remarked that the model in this work differs
from the previous one in [2]. The new model is more accurate
which can be observed by plotting the acceleration over the
velocity, and comparing it with the result of a high fidelity
simulation2 of an Audi Q7 in Fig. 5. Note that the peaks in
acceleration occur due to the torque converter of the automatic
gear box.

A specialty of the proposed longitudinal dynamics is that
an analytical solution exists for constantu. This is beneficial
for the Monte Carlo simulation, introduced later.

Proposition 1 (Analytical Solution of (1)): The analytical
solution of the longitudinal dynamics of traffic participants in
(1) for u > 0 (u = const) andv > vsw is

s(t) = s(0) +

(

v(0)2 + 2vsw u t
)

3

2 − v(0)3

3vsw u
,

v(t) =
√

v(0)2 + 2vsw u t.

The analytical solutions of the cases0 < v < vsw ∨ u < 0
andv ≤ 0 are trivial. �

1Used values in this work: Car:7.3 [m/s], truck:4 [m/s], motorbike:8 [m/s],
bicycle: 1 [m/s].

2Used software: veDYNA.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 4

0 20 40
0

2

4

6

8

v [m/s]

a
 [

m
/s

2
]

Audi Q7

v̇ = a
max

·

v
sw

v
· u

Fig. 5. Maximum accelerationa of the Audi Q7 plotted over its velocityv;
used parameters:amax = 7 [m/s2], vsw = 7.3 [m/s].

The correctness can be easily verified by inserting the solution
into (1).

C. Combined Distribution

The driver task of velocity control and lane keeping can be
assumed to be fairly independent; see [14], [21]. The same
observation holds for autonomous vehicles whose vehicle
control is separately developed for lateral and longitudinal
dynamics [34], or whose control has negligible dependency
with respect to the safety assessment in road traffic. Thus, it
is assumed that the longitudinal probability distributionf(s),
obtained from the longitudinal dynamics (1), is independent
from the lateral distribution so that the overall distribution is
f(s, δ) = f(s) · f(δ) as indicated in Fig. 3. It is emphasized
that the lateral and the longitudinal distributionf(δ) andf(s)
refer to the volumetric center of the vehicle bodies.

In this work, the lateral and the longitudinal probability
distribution are modeled as a piecewise constant distribution
as shown in Fig. 3. An interval with constant probability
distribution along a path is denoted bySe and by Df for
a deviation interval. The region with constant probability
distribution spanned bySe and Df is denoted byCef (see
Fig. 3), which is required later.

The vehicle bodies and the occupancy of pedestrians on
the road is modeled by rectangles whose size varies between
the different types of traffic participants (cars, trucks, motor-
bikes/bicycles, and pedestrians).

IV. M ARKOV CHAIN ABSTRACTION

First, Markov chain abstraction is considered for predicting
the longitudinal probability distribution. The techniques for
the abstraction of dynamic systems with continuous state
variables to Markov chains are manifold, where many of them
couple the time increment with the accuracy of the abstraction,
see e.g. [19], [23]. However, this coupling is unfavorable in
terms of real-time applicability, as a required approximation
accuracy may lead to short time increments of probability
updates – and consequently to too many update iterations that
cannot be handled in real-time. For this reason, the update
intervals and the approximation accuracy is decoupled as in
[27], [36].

The abstraction, which is computed offline, allows the
dynamics of a traffic participant (1) to be described by a
Markov chain. During online operation, a Markov chain is

X1 X2 X3 X4 · · ·

· · ·

...

s

v
Φ31

Fig. 6. Discretization of the state space.

instantiated for each relevant traffic participant around the ego
vehicle.

A Markov chain is a stochastic dynamic system with
discrete statez ∈ N

+. There are discrete time and continuous
time Markov chains. In this work, discrete time Markov chains
are used, such thatt ∈ {t1, t2, . . . , tf} where tf is the
prediction horizon andtk+1 − tk = T ∈ R

+ is the time step
increment. The current state of Markov chains is not exactly
known, but probabilitiespi = P (z = i) describe that the
system is in statez = i, which are combined to a probability
vector p for all states. By definition, the probability vector
for the next time steptk+1 is a linear combination of the
probability vector of the previous time steptk:

p(tk+1) = Φ p(tk), (3)

whereΦ is referred to as the transition matrix.
Since the original system has continuous state variables,

regions of the continuous state space have to be assigned
to discrete states. In this work, a regionX ⊂ R

2 of the
continuous state space of (1) is discretized in orthogonal cells
of equal size, resulting in rectangular cells, see Fig. 6. The
state space cells are denoted byXi, where the indexi refers to
the value of the corresponding discrete state. In an analogous
way, the regionU = [−1, 1] of the input space of (1) is
discretized into intervalsUα. The indexα refers to the value
of the discrete inputy. In order to distinguish between indices
referring to discrete state or input values, state indices are
subscripted and Latin, where input indices are superscripted
and Greek. In order to obtain a continuous distribution from
the probability vectorp, it is assumed that the probability
distribution is uniform within each cell.

A. Transition Probabilities of the Markov Chain

The transition probabilities store the probabilities thatthe
discrete state changes fromj to i: Φij = P (z(tk+1) =
i|z(tk) = j). In this work, the transition probabilities depend
on the value of the discrete inputy, too. For this reason,
a different transition probability matrixΦα is computed for
each discrete input valueα, such thatΦα

ij = P (z(tk+1) =
i, y(tk+1) = α|z(tk) = j, y(tk) = α).

The transition probabilities are obtained by runningNα
j

simulations starting from the initial cellXj under input
u ∈ Uα. The numberNα

ij of those simulations ending up in
cell Xi determines the transition probability:Φα

ij = Nα
ij/N

α
j .

The input values are held constant during the simulation, but
have varying values from simulation to simulation. Since itis
assumed that the initial states and the inputs are uniformly
distributed within cells, the initial states and the inputsare
drawn from a uniform grid within the cells as illustrated in
Fig. 7.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 5

s [m]
v

 [
m

/s
]

100 110 120 130 140

10

12

14

16

18

s [m]

v
 [

m
/s

]

100 110 120 130 140

10

12

14

16

18

initial
cell

initial
cell

simulation
results

abstraction reachable
cells

Fig. 7. Simulation results of the original system (left) andthe corresponding
probabilistic reachable set of the abstracting Markov chain (right). Both results
are obtained using the same initial cell and input cell. A transition to a cell
is the more likely, the darker the color of the cell is.

Another possibility to abstract a continuous dynamics to
a Markov chain is via reachability analysis as described in
[2]. This technique is less accurate in terms of the resulting
transition probabilities, but makes it possible to compute
complete abstractions, i.e. all states reachable by the abstracted
Markov chain (cells with non-zero probability) cover all pos-
sible trajectories of the original system. Completeness makes
it possible to guarantee that no crash occurs when the crash
probability is 0. However, a crash-free trajectory can also
be guaranteed when the intersection between reachable road
sections of traffic participants and the autonomous car are
empty. Reachable road sections can be computed as proposed
in [2]. Vehicles that do not pose a threat can be ignored
for the probabilistic computations which is also proposed in
[17]. Since completeness is not required, the more accurate
simulation technique is applied.

B. Computing Stochastic Reachable Sets using Markov Chains

The transition probabilities allow to compute the state
probabilities as shown in (3). The difference, however, is that
the transition probabilities incorporate the input probability,
too. In order to use the update scheme of a Markov chain,
the state probability vector has to be redefined. Denoting
the joint probability of a state value and an input value as
pαi := P (z = i, y = α), the combined probability vector is
defined as

p̃T =
[

p11 p21 . . . pc1 p12 . . . pc2 p13 . . . pcd
]

,

whered is the number of states andc is the number of inputs.
Given this probability vector, the transition values have to be
organized in the transition matrix as

Φ̃ =

Φ1
11 0 . . . 0 . . . Φ1

1d 0 . . . 0
0 Φ2

11 . . . 0 . . . 0 Φ2
1d . . . 0

...
...

0 0 . . . Φc
d1 . . . 0 0 . . . Φc

dd

The rewritings allows to update the probabilities by
p̃(tk+1) = Φ̃ p̃(tk). The transition matrixΦ̃ is sparse, i.e.
it does not contain many non-zero values which allows to

increase the efficiency of the matrix multiplication (see e.g.
[43]). The efficiency is even more increased when canceling
small probabilities iñp after each time steptk and normalizing
p̃ afterwards such that its sum is one. This is reasonable
since completeness is not required. The valuep̃ below which
probabilities are canceled is set by the minimum probability
density ξ which is uniform within each cell according to
previous assumptions so that

p̃ = s∆v∆u∆ξ, (4)

wheres∆, v∆, andu∆ are the cell lengths of position, velocity,
and input value. The default value ofξ is 0 (no cancelation),
good results have been obtained withξ = 1/16 ·10−3. Higher
values of ξ reduce computation time, while decreasing the
accuracy.

V. M ONTE CARLO SIMULATION

There exists a huge variety of Monte Carlo methods and
thus one cannot give a strict guidance on how to apply them in
general. However, most methods exhibit the following scheme.

1) Generate inputs and initial states randomly.
2) Perform a deterministic computation starting at the ini-

tial states subject to the randomly generated inputs.
3) Aggregate the results of the individual computations into

the final result.

In this work, the initial states and the input values have a
piecewise constant probability distribution in order to compare
the results with the Markov chain computations. The random
values are obtained by the inverse transform method (see [41])
according to the given piecewise constant probability distri-
butions. The deterministic computations for the longitudinal
dynamics are simply computed as presented in Prop. 1. The
aggregation of results is discussed in more detail below.

A. Aggregation of Results

The aggregation of the results depends on the purpose
of the Monte Carlo simulation. For the computation of the
probabilistic occupancy, it is checked in which segment (seg)
Si of the followed path a simulation ends. For the computation
of the crash probability, it is checked if a crash occurs. The
detection of these events is formalized by indicator functions
which use the general vectorx containing all variables of the
Monte Carlo simulation:

ind
seg

i (x) =

{

1, if s(x) ∈ Si

0, otherwise
, ind

crash(x) =

{

1, crash

0, otherw.

Since in this work, all simulations have equal weight, the
probabilities of occupying a path region or causing a crash are
obtained by the relative number of simulations for which the
indicator function is1.

B. Error Analysis

An intrinsic property of Monte Carlo simulation is that the
result of the computations is not deterministic, i.e. the result
differs from execution to execution. Obviously, this is because
the samples for the deterministic simulation are randomly

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 6

generated. Thus, the probability distributions are possibly far
from the exact solution. The good news, however, is that
the mean error scales with1√

Ns

whereNs is the number of
simulations. This is a well known result from Monte Carlo
integration [41] of probability density functionsf(x), and
holds for the problems discussed herein. This can be shown by
reformulating the computations as a Monte Carlo integration
using the indicator functions. The probabilitŷpi that the path
positions is in Si, and the crash probabilitypC , are computed
as

p̂i =

∫

ind
seg

i (x)f(x) dx, pC =

∫

ind
crash(x)f(x) dx.

VI. GENERATION OFACCELERATION COMMANDS

An important influence on the outcome of the probabilistic
predictions are given by the sequence of probabilistic acceler-
ation commands over time. Two methods for the generation of
acceleration commands are presented and then compared. The
first one is a Markov chain approach as presented in [2]. The
other one is an approach based on Monte Carlo simulation
as presented in [8], [9], [13]. In all approaches, the input
value is held constant for a certain time span. In this work,
this time span is chosen as for the time incrementT of the
Markov chain abstraction. The comparison of the generated
acceleration commands to real world measurements is future
work.

A. Markov Chain Approach

In [2], not only the state transitions, but also the probabilistic
acceleration values are generated by Markov chains. As men-
tioned above, the acceleration commands are held constant
during the time intervals[tk, tk+1] and are changed instantly
at timestk. The probability that the input value changes for
a given state value, is described by the input transition values
Γαβ
i (tk) := P (z(t′k) = i, y(t′k) = α|z(tk) = i, y(tk) = β),

wheret′k = tk + δt andδt is an infinitesimal time step. Those
transition values are combined into an input transition matrix
Γ̃(tk), similarly as for the state transition matrix̃Φ:

Γ̃ =

Γ11
1 Γ12

1 . . . Γ1c
1 0 . . . 0 0 . . . 0

Γ21
1 Γ22

1 . . . Γ2c
1 0 . . . 0 0 . . . 0

...
...

...
0 0 . . . 0 0 . . . 0 Γc1

d . . . Γcc
d

.

In contrast to the computation of the transition matrixΦ̃ for
the states, the transition matricesΓ̃(tk) for the input cannot
be computed based on a reasonably simple dynamic model
(due to complexity of human behavior or decision systems
of autonomous vehicles). As a consequence, the transition
matricesΓ̃(tk) have to be learned by observation or set by
a combination of offline simulations and heuristics, where the
latter is used in [2] considering the constraints of the vehicle
model in (2).

Combining the input and the state transition matrix yields
the extended formula of the Markov chain update for time
varying input probabilities:

p̃(tk+1) = Γ̃(tk) Φ̃ p̃(tk). (5)

B. Trajectory Weighting

Another way of creating random inputs is proposed in works
on Monte Carlo simulation of road traffic scenes [8], [9], [13].
In these approaches, a random trajectory is created first, and
afterwards its likeliness is evaluated, i.e. a weight is assigned
to it. The values of the input trajectories are created by an
IID3 process, but the final process is no longer IID after
a weight is assigned by the likeliness function. The inputs
created in the aforementioned works are for the acceleration
and the steering, while only the acceleration is of interestin
this work. After removing the steering-related aspects, the so-
called goal function for the computation of the likeliness of
the input trajectory is computed in [9], [13] as

g(u) = −

Nu
∑

k=1

(

λ1(v(tk)− vmax)2 + λ2aT (tk)
2 + λ3aN (tk)

2
)

where λ1–λ3 are tuning parameters which punish velocity
deviations from the allowed velocity, and large normal as well
as tangential accelerations. The probability distribution of the
input trajectoriesf(u) is assumed to bef(u) = cn exp(kg ·
g(u)), where the previously introduced goal function is in the
exponent. The valuekg is another tuning parameter andcn is
the normalization constant.

C. Comparison

Continuous input values generated from the Markov chain
approach and the trajectory weighting approach are com-
pared according to their autocorrelation and their average
spectral density. Continuous input values are obtained from
the discrete inputs of the Markov chain approach by the
previously mentioned inverse transform method. The input
trajectories for both approaches are generated with parameters
listed in Tab. I forNu = 10, whereNu is the number of
time steps. The Monte Carlo simulation parameters are taken
from [8]. The initial velocity is uniformly distributed within
v(0) = 15± 1 m/s, which affects the input generation due to
the speed limit. The considered time horizon istf = 5 s, and
the number of computed simulations isNs = 105.

TABLE I
PARAMETERS FOR INPUT TRAJECTORY GENERATION.

General
vmax 100/3.6 m/s
T 0.5 s
Trajectory weighting; see [13]
kg 100
λ1 0.05/Nu/(1 + v(0)2)

λ2 0.05/Nu/(amax)2

λ3 0.05/Nu/(amax)2

Markov chain; see [2]
m [0.01, 0.04, 0.25, 0.25, 0.4, 0.05]
q(0) [0, 0, 0.5, 0.5, 0, 0]
γ 0.2

3IID: independent and identically distributed.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 7

1) Autocorrelation: The autocorrelation, i.e. the correlation
of the signal against a time-shifted version of itself is defined
as

S(t, τ) := E[u(t)u(τ)] =

∫ ∞

−∞

∫ ∞

−∞
utuτf(utuτ) dut duτ ,

(6)
whereE[] is the expectation,f() is the probability density
function, andut is a realization of the random variableu(t).
The computation of the above integrals is approximated using
Monte Carlo integration.

The autocorrelation values for the input trajectories are
plotted in Fig. 8. There is almost no correlation between
the inputs of different time steps in the trajectory weighting
approach as shown in Fig. 8(a). This is in contrast to the
Markov chain approach, where the input signals are much
more correlated; see Fig. 8(b).

2
4

6
8

10
2
4
6
8
10

0

0.2

0.4

tτ

S
(t
,τ
)

(a) Trajectory weighting approach.

2
4

6
8

10
2
4
6
8
10

0

0.1

0.2

tτ

S
(t
,τ
)

(b) Markov chain approach.

Fig. 8. Autocorrelation of input trajectories.

2) Average Spectral Density: Besides the autocorrelation,
the spectral density of input signals is compared for a deeper
analysis. The spectral density describes how the energy of a
signal is distributed over its frequency, where the energy of a
signalx(t) is defined as

∫∞
−∞ |x(t)|2 dt in signal processing.

The spectral density is defined as|X(f)|2, whereX(f) is the
Fourier transform ofx(t). For the analysis of several instances
of a stochastic signal, one is interested in the expectationof
the random spectral densityE[|X(f)|2].

Proposition 2 (Average Spectral Density):The average of
the spectral densityΦ(f) = E[|U(f)|2] for input signals
u(t), which are piecewise constant for time incrementsT , is
computed as

Φ(f) = T 2
si

2(πfT)

Nu
∑

k=1

Nu
∑

l=1

E[u(tk)u(tl)]e
−j2πfT (k−l),

whereNu is the number of time steps andsi(x) = sin(x)/x
is the sinc function. �

Proof:
The input signalu(t) is constant within consecutive time

intervals[tk, tk+1], wheretk+1 − tk = T . This can be written
as

u(t) =

Nu
∑

k=1

u(tk)rect

(

t− (k − 0.5)T

T

)

,

whererect(t) is 1 for −0.5 < t < 0.5 and0 otherwise.

The Fourier transform makes it possible to formulate the
following relation between the time and frequency domain:

rect

(

t− (k − 0.5)T

T

)

c sjTsi(πfT)e−j2πf(k−0.5)T .

For the whole input signal, the Fourier transform isU(f) =
jTsi(πfT)ejπfT

∑Nu

k=1 u(tk)e
−j2πfkT from which follows

the spectral densityΦ(f).
The expectationE[u(tk)u(tl)] is obtained from the autocor-

relation in (6). The expectations of spectral densitiesΦ(f) are
visualized in Fig. 9. It can be seen that the lower frequencies
are more dominant in the Markov chain approach, while the
frequency distribution of the trajectory weighting approach is
close to an IID process with uniform distribution.

−5 0 5
0

0.2

0.4

0.6

0.8

1

f

Φ
(f
)

Markov chain approach

trajectory weighting approach

uniform IID process

Fig. 9. Average spectral density of input trajectories.

A general observation in road traffic is that drivers change
their acceleration with low frequency and that their inputsare
highly correlated. In both tests, the autocorrelation and the
average spectral density test, the acceleration inputs created
by the Markov chain showed more realistic behavior.

VII. C OMPARISON OFPROBABILISTIC OCCUPANCY

In this section, acceleration commands from the previously
presented Monte Carlo and Markov chain approach are used
to compare the probability distribution of traffic participants.
For each comparison, the same model for generating the
acceleration commands is used, which ensures comparability
of the distributions. Since the final probabilistic occupancy
is simply obtained byf(s, δ) = f(s) · f(δ), wheref(δ) is
heuristically obtained, the following comparison is aboutf(s)
and the distribution of the velocityf(v) as an auxiliary result.

The computed piecewise constant probability distributions
of f(s) andf(v) with probabilitiespi for certain intervals, are
compared by the distance

d =
∑

i

|pi − pei |V (Xi),

where pe is the exact probability distribution. The multipli-
cation with the volumeV (Xi) of the cellsXi is required in
order to compare results of different discretization.

For the numerical experiments, two different Markov chain
discretizations are used as listed in Tab. II. The cancelation of
small probability values is performed as suggested in (4) with
ξ = 1/16 · 10−3. The Monte Carlo approach used in the nu-
merical experiment is performed with104 simulations. Since

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 8

TABLE II
STATE SPACE DISCRETIZATIONS FOR A POSITION INTERVAL OF[0, 400] M

AND A VELOCITY INTERVAL OF [0, 60] M /S.

position position velocity velocity
discretization segments resolution segments resolution
A 80 5 m 30 2 m/s
B 320 1.25 m 120 0.5 m/s

there is no exact solution for the presented scenario, an almost
exact solution was computed with Monte Carlo simulation
using 107 samples. The acceleration command is generated
by a Markov chain using the parameters in Tab. I. The initial
position and the initial velocity are uniformly distributed in the
intervals[2, 8] m and[15, 17] m/s, respectively. The probability
distributions are compared att = 5 s.

The resulting position and velocity distribution for different
discretizations and inputs can be found in Fig. 10 and 11.
The distance measured for all tested combinations of input
generations, prediction techniques, and discretizationsis listed
in Tab. III. Since the Monte Carlo approach delivers different
results for each run,100 runs have been computed and the
minimum, maximum, and mean value are shown. The results
are fairly independent from the input generation, except that
the Markov chain approach performs better when Monte Carlo
generated inputs are used. This is because the probability of
low velocities is high for those inputs so that the Markov chain
specific problem of flattening distributions is limited to high
velocities. The computational times can be found in Tab. IV,
which are obtained from an AMD Athlon64 3700+ processor
(single core) using a Matlab implementation. The Monte Carlo
simulation has been obtained using the Runge-Kutta solver and
the analytic solution as presented in Prop. 1. Ultimately, the
Markov chain solution is faster than the analytically obtained
Monte Carlo solution and the discretization of the Markov
chain B is fine enough to produce results that are more
accurate than the Monte Carlo approach with104 simulations.

TABLE III
DISTANCE MEASUREd.

res. A res. A res. B res. B
position velocity position velocity

Input generation: Markov chain
Monte Carlo: min 0.0594 0.0218 0.0500 0.0166

max 0.2393 0.0783 0.0905 0.0331
mean 0.1327 0.0512 0.0677 0.0259

Markov chain: 1.0882 0.3425 0.0346 0.0121
Input generation: Monte Carlo
Monte Carlo: min 0.0885 0.0212 0.0573 0.0186

max 0.2169 0.0985 0.0936 0.0338
mean 0.1485 0.0518 0.0752 0.0261

Markov chain: 0.8438 0.1272 0.0165 0.0056

TABLE IV
COMPUTATIONAL TIMES OF THE ROAD FOLLOWING SCENARIO.

Monte Carlo Monte Carlo Markov chainA Markov chainB
(simulated) (analytical)
3.44 s 0.578 s 0.030 s 0.417 s

0 100
0

0.1

0.2
Exact

pr
ob

ab
ili

ty

s [m]
0 100

0

0.1

0.2
Monte Carlo

pr
ob

ab
ili

ty

s [m]
0 100

0

0.1

0.2
Markov Chain A

pr
ob

ab
ili

ty

s [m]

0 20
0

0.1

0.2

Exact

pr
ob

ab
ili

ty

v [m/s]
0 20

0

0.1

0.2

Monte Carlo

pr
ob

ab
ili

ty

v [m/s]
0 20

0

0.1

0.2

Markov Chain A

pr
ob

ab
ili

ty

v [m/s]

Fig. 10. Road following scenario: Position and velocity distribution for a
coarse discretization (t = 5 s). Inputs generated by the Markov chain approach
result in the black distribution, while Monte Carlo generated inputs result in
the gray distribution.

0 100
0

0.02

0.04

Exact

pr
ob

ab
ili

ty
s [m]

0 100
0

0.02

0.04

Monte Carlo

pr
ob

ab
ili

ty

s [m]
0 100

0

0.02

0.04

Markov Chain B

pr
ob

ab
ili

ty

s [m]

0 20
0

0.02

0.04

0.06
Exact

pr
ob

ab
ili

ty

v [m/s]
0 20

0

0.02

0.04

0.06
Monte Carlo

pr
ob

ab
ili

ty
v [m/s]

0 20
0

0.02

0.04

0.06
Markov Chain B

pr
ob

ab
ili

ty

v [m/s]

Fig. 11. Road following scenario: Position and velocity distribution for a
fine discretization (t = 5 s). Inputs generated by the Markov chain approach
result in the black distribution, while Monte Carlo generated inputs result in
the gray distribution.

Finally, it was analyzed if the quality of the probability
distributions depends on the initial condition. As the vehicle
model (1) is invariant under translations in position, it is
only necessary to vary the initial velocity. The influence
on the initial velocity on the distancesdpos, dvel of the
position and velocity is shown in Fig. 12. The Monte Carlo
simulations are performed with104 samples and the Markov
chain approach was computed with theB model. In contrast to
the previous computations, the speed limit of100/3.6 m/s has
been removed so that initial velocities above this speed canbe
investigated. It can be seen that the dependence on the initial
velocity and thus on the initial state can be neglected, meaning
that the results in Fig. 10 and Fig. 11 are representative. The
small dependence on the initial state makes it possible to tune
the discretization based on a single initial distribution.If the
distance measured of the position or velocity is too high,
one can make the corresponding discretization finer until the
desired accuracy is achieved, which should approximately hold
for all other conditions.

VIII. C OMPARISON OFCRASH PROBABILITIES

In this work, the crash probability of different time intervals
is computed independently of previous crash probabilities.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 9

10 20 30
0

0.05

0.1

0.15

0.2
d
p
o
s

Initial velocity v(0) [m/s]

Monte Carlo

Markov Chain

(a) Distanced of the position distri-
bution.

10 20 30
0

0.02

0.04

d
v
e
l

Initial velocity v(0) [m/s]

Monte Carlo

Markov Chain

(b) Distanced of the velocity distri-
bution.

Fig. 12. Distanced to the exact solution for different initial velocities.

This has the advantage that for each time interval, a situation
can be judged independently of previous occurrences. This is
not the case, when computing the physical probability that a
crash will happen. Consider a scenario in which two situations
are equally dangerous at two different points in time. However,
the probability that the vehicle crashes in the first situation is
greater than in the second situation. This is because a crash
can only occur in the second situation, if the vehicle survived
the first one and crashes in the second one. For this reason, it
is assumed that the autonomous vehicle has not crashed until
the investigated time interval.

The crash probability is computed for consecutive time
intervals, since one may miss a high crash probability when
only computing for points in time. This is achieved in the
Monte Carlo simulation by computing for sufficient interme-
diate points in time within a time interval. When using Markov
chains, an additional transition matrix for time intervalsis
computed offline:Φ̃interval = 1

ñ

∑ñ

k=1 Φ̃
(t̃k), where Φ̃(t̃k)

are transition probability matrices for intermediate points in
time t̃k. The probability distribution for time intervals is then
computed as̃p(tk)interval = Φ̃interval p̃(tk), where p̃(tk) is
computed in (5).

A. Computation of Crash Probabilities

The computation of crash probabilities is separately dis-
cussed for the Markov chain abstraction and the Monte Carlo
simulation.

1) Markov Chain Abstraction: When using the Markov
chain abstraction, one has to compute the probabilistic oc-
cupancy as an intermediate step. In order to describe the
probabilistic occupancy, some additional notations have to be
introduced. The region spanned by the path position interval
Se and the deviation intervalDf is denoted byCef (see
Fig. 3). The probability that the center of a vehicle is in
a regionCef is denoted byp̂ef . The probabilities for the
autonomous car are indicated by the superscriptego (e.g.
p̂
ego

gh). It is required to additionally introduce the probability
pintghef that two bodies of the ego vehicle and another vehicle
intersect when the center of the ego vehicle body is in
C

ego

gh and that of the other vehicle inCef . This probability
is computed by gridding the regionsCego

gh , Cef and testing
for all combinations of centers if an intersection of vehicle
bodies exists. The relative number of intersections provides
the intersection probability. This computation is expensive, so
that the intersection probabilities are precomputed offline by

storing the results for different relative positions, orientations,
and types of traffic participants in a database. In the previous
work [2], pintghef was conservatively chosen to1 when an
intersection is possible.

Using the introduced variables, the crash probability be-
tween the autonomous vehicle and another vehicle can be
formulated as

pC =
∑

g,h,e,f

pintghef p̂
ego

gh p̂ef .

The summation over all possible indicesg, h, e, f is compu-
tationally expensive. For this reason, techniques to effectively
search for combinations of path and deviation indices which
potentially cause a vehicle body intersection, are presented in
the previous work [2].

2) Monte Carlo Simulation: The crash probability for the
Monte Carlo approach is simply obtained by summing up
the probabilities of simulations that have crashed. Note that
simulations resulting in a crash are not removed from the com-
putation in order to obtain crash probabilities in compliance
with the aforementioned definition of the crash probability.

It is crucial that the detection of a crash is computationally
cheap. Crashes are detected by checking if the rectangular
vehicle bodies intersect. An efficient method to detect the
intersection of two rectangles, is the separating axis theorem
[16]. An extension considering the velocity of objects is
presented in [12].

B. Crash Scenario

The crash probabilities are investigated for a scenario where
the autonomous car drives behind another car in the same lane.
The autonomous car starts from the position0 m with constant
velocity 20 m/s and has a uniform position uncertainty of
±3 m. The vehicle driving in front has a uniform position
uncertainty of [20, 25] m and the initial velocity is within
[15, 17] m/s. The other parameters are as listed in Tab. I, and
the considered time horizon istf = 5 s. The (almost) exact
solution is obtained from a Monte Carlo simulation with105

simulations.
The crash probability of the Markov chain approach is

compared to the exact solution with a coarse and a fine
discretization using modelA and B (see Tab. II) and for
points in time (TP) as well as time intervals (TI). The crash
probabilities pC for different time steps/time intervals are
shown in Fig. 13. It can be observed that the fine discretization
produces much better results than the coarse discretization.

Besides different Markov chain models, Monte Carlo so-
lutions were tested for a varying number of samples; see
Fig. 13(c). The results show that the crash probability is very
accurate, even when only103 or 102 samples are used. For this
reason, it can be clearly stated that the Monte Carlo simulation
performs better than the Markov chain approach when the
crash probability has to be computed. This is reconfirmed by
the computational times in Tab. V, where the Monte Carlo
approach is more efficient. The computational times for the
Markov chain approach are separated into the part for comput-
ing the probability distribution and the part that intersects the
probability distributions to obtain the crash probability. The

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 10

computations were performed on an AMD Athlon64 3700+
processor (single core) using a Matlab implementation.

TABLE V
COMPUTATIONAL TIMES OF THE CRASH SCENARIO.

Markov chain
A (TP) A (TI) B (TP) B (TI)

Prob. dist. 0.175 s 0.175 s 0.525 s 0.525 s
Intersection 0.042 s 0.107 s 0.169 s 0.394 s
Total 0.217 s 0.282 s 0.694 s 0.919 s
Monte Carlo simulation

1e2 (sim.) 1e3 (sim.) 1e2 (analy.) 1e3 (analy.)
Total 0.190 s 0.549 s 0.069 s 0.321 s

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

time t [s]

cr
a

sh
 p

ro
b

a
b

il
it

y

exact solution

Markov chain (TI)

Markov chain (TP)

(a) Markov chain comparison (dis-
cretization A).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

time t [s]

cr
a

sh
 p

ro
b

a
b

il
it

y

exact solution

Markov chain (TI)

Markov chain (TP)

(b) Markov chain comparison (dis-
cretization B).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

time t [s]

cr
a

sh
 p

ro
b

a
b

il
it

y

exact solution

Monte Carlo: 1e3 samples

Monte Carlo: 1e2 samples

(c) Monte Carlo comparison.

Fig. 13. Crash probabilities for different points in time.

IX. CONCLUSIONS

The Markov chain approach and the Monte Carlo approach
have some inherent differences concerning their error sources.
The main error in the Markov chain approach is introduced
due to the discretization of the state and input space. The
error in the transition probabilities can be made arbitrarily
small since they are computed beforehand. Consequently, the
Markov chain approach has only systematic errors from the
discretization but no probabilistic errors since no randomsam-
pling is applied. Thus, the resulting probabilities are computed
deterministically so that the results can be repeated.

In the Monte Carlo approach, there are no systematic errors
(no bias) because each simulation is correctly solved with
the original dynamical system equations. However, the Monte
Carlo simulation suffers under probabilistic errors due tothe

sampling of the initial conditions and the input sequences.
Due to the probabilistic errors, the resulting distributions and
crash probabilities differ from execution to execution under
unchanged initial conditions. This implies that the obtained
results might be far off the exact solution – however, the
likeliness of an extremely bad result is small and the mean
error converges with 1√

Ns

, whereNs is the number of samples.
The resulting probability distributions of the Markov chain

approach are slightly more accurate and faster than for the
Monte Carlo simulation if an analytical solution exists. When
no analytical solution exists, the Markov chain approach
is at least about10 times faster. Because there are many
matrix multiplications in the Markov chain approach, it can
be significantly accelerated by using dedicated hardware such
as DSPs (digital signal processors). However, when computing
crash probabilities, the Monte Carlo approach clearly returns
better results since it does not suffer from the discretization
of the state space.

The results can be directly implemented in an autonomous
car. A screenshot of the probabilistic prediction in the test
vehicle MUCCI [15] is shown in Fig. 14.

Fig. 14. Screenshot of a test drive. The probabilistic occupancy of the other
car is computed via the Markov chain abstraction.

ACKNOWLEDGMENT

The authors gratefully acknowledge the partial financial
support of this work by the Deutsche Forschungsgemeinschaft
(German Research Foundation) within the Transregional Col-
laborative Research Center 28 ”Cognitive Automobiles”.

REFERENCES

[1] M. Abdel-Aty and A. Pande. ATMS implementation system for identi-
fying traffic conditions leading to potential crashes.IEEE Transactions
on Intelligent Transportation Systems, 7(1):78–91, 2006.

[2] M. Althoff, O. Stursberg, and M. Buss. Model-based probabilistic
collision detection in autonomous driving. IEEE Transactions on
Intelligent Transportation Systems, 10:299 – 310, 2009.

[3] M. Althoff, O. Stursberg, and M. Buss. Safety assessmentof driving
behavior in multi-lane traffic for autonomous vehicles. InProc. of the
IEEE Intelligent Vehicles Symposium, pages 893–900, 2009.

[4] K. Aso and T. Kindo. Stochastic decision-making method for au-
tonomous driving system that minimizes collision probability. In Proc.
of the FISITA World Automotive Congress, 2008.

[5] A. Barth and U. Franke. Estimating the driving state of oncoming
vehicles from a moving platform using stereo vision.IEEE Transactions
on Intelligent Transportation Systems, 10:560–571, 2009.

[6] H. A. P. Blom, J. Krystul, and G. J. Bakker.Free Flight Collision Risk
Estimation by Sequential Monte Carlo Simulation, chapter 10, pages
247–279. Taylor & Francis CRC Press, 2006.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH X 200X 11

[7] A. E. Broadhurst, S. Baker, and T. Kanade. A prediction and planning
framework for road safety analysis, obstacle avoidance anddriver
information. In Proc. of the 11th World Congress on Intelligent
Transportation Systems, October 2004.

[8] A. E. Broadhurst, S. Baker, and T. Kanade. Monte Carlo road safety
reasoning. InProc. of the IEEE Intelligent Vehicles Symposium, pages
319–324, 2005.

[9] S. Danielsson, L. Petersson, and A. Eidehall. Monte Carlo based threat
assessment: Analysis and improvements. InProc. of the IEEE Intelligent
Vehicles Symposium, pages 233–238, 2007.

[10] M. S. Darms, P. E. Rybski, C. Baker, and C. Urmson. Obstacle detection
and tracking for the urban challenge.IEEE Transactions on Intelligent
Transportation Systems, 10:475–485, 2009.

[11] P. P. Dey, S. Chandra, and S. Gangopadhaya. Lateral distribution of
mixed traffic on two-lane roads.Journal of Transportation Engineering,
132:597–600, 2006.

[12] D. Eberly. Dynamic collision detection using orientedbounding boxes.
Technical report, Geometric Tools, Inc., 2002.

[13] A. Eidehall and L. Petersson. Statistical threat assessment for general
road scenes using Monte Carlo sampling.IEEE Transactions on
Intelligent Transportation Systems, 9:137–147, 2008.

[14] M. Gabibulayev and B. Ravani. A stochastic form of a human driver
steering dynamics model.Journal of Dynamic Systems, Measurement,
and Control, 129:322–336, 2007.

[15] M. Goebl, M. Althoff, M. Buss, G. Färber, F. Hecker, B. Heißing,
S. Kraus, R. Nagel, F. Puente León, F. Rattei, M. Russ, M. Schweitzer,
M. Thuy, C. Wang, and H.-J. Wünsche. Design and capabilities of the
Munich cognitive automobile. InProc. of the IEEE Intelligent Vehicles
Symposium, pages 1101–1107, 2008.

[16] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical
structure for rapid interference detection.Computer Graphics, 30:171–
180, 1996.

[17] D. H. Greene, J. J. Liu, J. E. Reich, Y. Hirokawa, T. Mikami, H. Ito,
and A. Shinagawa. A computationally-efficient collision early warning
system for vehicles, pedestrian and bicyclists. InProc. of the 15th World
Congress on Intelligent Transportation Systems, 2008.

[18] J. Hillenbrand, A. M. Spieker, and K. Kroschel. A multilevel collision
mitigation approach - its situation assessment, decision making, and
performance tradeoffs.IEEE Transactions on Intelligent Transportation
Systems, 7:528–540, 2006.

[19] J. Hu, M. Prandini, and S. Sastry. Aircraft conflict detection in presence
of a spatially correlated wind field.IEEE Transactions on Intelligent
Transportation Systems, 6:326–340, 2005.

[20] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A system
for learning statistical motion patterns.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28:1450–1464, 2006.

[21] T. Jürgensohn. Control theory models of the driver. InP. C. Cacciabue,
editor, Modelling Driver Behaviour in Automotive Environments, pages
277–292. Springer, 2007.

[22] N. Kaempchen, B. Schiele, and K. Dietmayer. Situation assessment of an
autonomous emergency brake for arbitrary vehicle-to-vehicle collision
scenarios. IEEE Transactions on Intelligent Transportation Systems,
10:678–687, 2009.

[23] X. Koutsoukos and D. Riley. Computational methods for reachability
analysis of stochastic hybrid systems. InHybrid Systems: Computation
and Control, LNCS 3927, pages 377–391. Springer, 2006.

[24] A. Lambert, D. Gruyer, G. S. Pierre, and A. N. Ndjeng. Collision prob-
ability assessment for speed control. InProc. of the 11th International
IEEE Conference on Intelligent Transportation Systems, pages 1043–
1048, 2008.

[25] K. Lee and H. Peng. Evaluation of automotive forward collision
warning and collision avoidance algorithms.Vehicle System Dynamics,
43(10):735–751, 2005.

[26] C.-F. Lin, A. G. Ulsoy, and D. J. LeBlanc. Vehicle dynamics and external
disturbance estimation for vehicle path prediction.IEEE Transactions
on Control Systems Technology, 8:508–518, 2000.

[27] J. Lunze and B. Nixdorf. Representation of hybrid systems by means
of stochastic automata. Mathematical and Computer Modeling of
Dynamical Systems, 7:383–422, 2001.

[28] J. Maroto, E. Delso, J. Flez, and J. M. Cabanellas. Real-time traffic
simulation with a microscopic model.IEEE Transactions on Intelligent
Transportation Systems, 7(4):513–527, 2006.

[29] J. C. McCall and M. M. Trivedi. Video-based lane estimation and
tracking for driver assistance: Survey, system, and evaluation. IEEE
Transactions on Intelligent Transportation Systems, 7:20–37, 2006.

[30] B. T. Morris and M. M. Trivedi. Learning, modeling, and classification
of vehicle track patterns from live video. IEEE Transactions on
Intelligent Transportation Systems, 9:425–437, 2008.

[31] H. Ning, W. Xu, Y. Zhou, Y. Gong, and T. S. Huang. A generalframe-
work to detect unsafe system states from multisensor data stream.IEEE
Transactions on Intelligent Transportation Systems, 11:4–15, 2010.

[32] F. Oniga and S. Nedevschi. Processing dense stereo datausing
elevation maps: Road surface, traffic isle, and obstacle detection. IEEE
Transactions on Vehicular Technology, 59:1172–1182, 2010.

[33] A. Polychronopoulos, M. Tsogas, A. J. Amditis, and L. Andreone.
Sensor fusion for predicting vehicles’ path for collision avoidance
systems. IEEE Transactions on Intelligent Transportation Systems,
8(3):549–562, 2007.

[34] R. Rajamani.Vehicle Dynamics and Control. Springer, 2005.
[35] F. Rohrmüller, M. Althoff, D. Wollherr, and M. Buss. Probabilistic

mapping of dynamic obstacles using Markov chains for replanning
in dynamic environments. InProc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2504–2510, 2008.

[36] J. Schröder.Modelling, State Observation and Diagnosis of Quantised
Systems. Springer, 2003.

[37] S. Sekizawa, S. Inagaki, T. Suzuki, S. Hayakawa, N. Tsuchida, T. Tsuda,
and H. Fujinami. Modeling and recognition of driving behavior based
on stochastic switched ARX model.IEEE Transactions on Intelligent
Transportation Systems, 8:593–606, 2007.

[38] T. Toledo. Integrated Driving Behavior Modeling. PhD thesis, Mas-
sachusetts Institute of Technology, 2003.

[39] D. Vasquez, T. Fraichard, and C. Laugier. Incremental learning of
statistical motion patterns with growing hidden markov models. IEEE
Transactions on Intelligent Transportation Systems, 10:403–416, 2009.

[40] A. L. Visintini, W. Glover, J. Lygeros, and J. Maciejowski. Monte
Carlo optimization for conflict resolution in air traffic control. IEEE
Transactions on Intelligent Transportation Systems, 7:470–482, 2006.

[41] S. Weinzierl. Introduction to Monte Carlo methods. Technical report,
NIKHEF Theory Group Kruislaan 409, 1098 SJ Amsterdam, The
Netherlands, 2000.

[42] Y. U. Yim and S.-Y. Oh. Modeling of vehicle dynamics fromreal vehicle
measurements using a neural network with two-stage hybrid learning
for accurate long-term prediction.IEEE Transactions on Vehicular
Technology, 53:1076–1084, 2004.

[43] R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM
Transactions on Algorithms, 1:2–13, 2005.

Matthias Althoff Matthias Althoff received the
diploma engineering degree in Mechanical Engi-
neering in 2005, and the Ph.D. degree in Electri-
cal Engineering in 2010, both from the Technis-
che Universität München, Germany. Currently he
is a postdoctoral researcher in the department of
Electrical and Computer Engineering at Carnegie
Mellon University, Pittsburgh, USA. His research
interests include (probabilistic) reachability analysis
of continuous and hybrid systems, and the safety
analysis of autonomous cars.

Alexander Mergel Alexander Mergel received the
diploma engineering degree in Electrical Engi-
neering in 2010 from the Technische Universität
München, Germany. His research interests include
Monte Carlo simulation, the safety assessment of
autonomous cars, and optimal control of hybrid
systems.

