
Avoiding Geometric Intersection Operations in
Reachability Analysis of Hybrid Systems

Matthias Althoff
malthoff@ece.cmu.edu

Bruce H. Krogh
krogh@ece.cmu.edu

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT
Although a growing number of dynamical systems studied in
various fields are hybrid in nature, the verification of prop-
erties, such as stability, safety, etc., is still a challenging
problem. Reachability analysis is one of the promising meth-
ods for hybrid system verification, which together with all
other verification techniques faces the challenge of making
the analysis scale with respect to the number of continuous
state variables. The bottleneck of many reachability analysis
techniques for hybrid systems is the geometrically computed
intersection with guard sets. In this work, we replace the in-
tersection operation by a nonlinear mapping onto the guard,
which is not only numerically stable, but also scalable, mak-
ing it possible to verify systems which were previously out
of reach. The approach can be applied to the fairly common
class of hybrid systems with piecewise continuous solutions,
guard sets modeled as halfspaces, and urgent semantics, i.e.
discrete transitions are immediately taken when enabled by
guard sets. We demonstrate the usefulness of the new ap-
proach by a mechanical system with backlash which has 101
continuous state variables.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General; I.6.4 [Simulation
and Modeling]: Model Validation and Analysis

General Terms
Algorithms, Theory, Verification

Keywords
Reachability Analysis, Hybrid Systems, Guard Intersection,
Zonotopes, Safety

1. INTRODUCTION
Reachability analysis essentially provides the set of states

that a hybrid system can reach in finite or infinite time. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’12, April 17–19, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1220-2/12/04 ...$10.00.

contrast to numerical simulation, reachable set algorithms
compute the reachable states starting from sets with in-
finitely many initial states and in many cases also sets of
infinitely many inputs/disturbances and parameters. When
the reachable set is obtained in an overapproximative way
(all reachable states are enclosed), reachability analysis serves
as a formal method for safety verification and other control
problems: invariant computation [27], abstraction to dis-
crete systems [9], guaranteed state observation [29], and the
like.

Typically, the main difficulty for the hybrid (combined
discrete and continuous) reachability problem lies in the con-
tinuous part, requiring set operations in continuous space.
Over the years, many representations for continuous reach-
able sets have been introduced, each of them having advan-
tages for specific types of system dynamics: ellipsoids [20],
polytopes [8], oriented rectangular hulls [30], zonotopes [12],
zonotope bundles [2], support functions [13], level sets [23],
and others. For reachability problems with large discrete
state spaces, specialized representations are also used for
sets of discrete states, see e.g. [10].

Zonotopes [4, 15] and support functions [13] have shown
great performance and scalability for purely continuous sys-
tems, but are challenging for intersections with guard sets.
In this paper, we consider guard sets modeled as polyhedra,
which is the most commonly used modeling formalism. Even
reachable sets represented by polytopes (bounded polyhe-
dra), which are closed under intersection with polyhedra,
are not computationally efficient for guard intersection since
partial intersections have to be unified by a convex hull to
avoid a combinatorial explosion in the representation size
and time required to compute the reachable set. Since the
computation of the convex hull is itself costly and in many
cases numerically unstable [5], alternative approaches have
been proposed for unifying reachable sets with simpler rep-
resentations, such as two-dimensional projections of zono-
topes [14], bundles of parallelotopes (a special case of zono-
topes) [2], and template polyhedra [11].

When the guard sets are modeled more generally as level
sets, a representation of the intersection of the reachable set
with the guard set can be computed by determining the time
interval in which an intersection takes place, and using the
complete reachable set of this time interval as an overap-
proximation of the intersection. This approach is often used
in so-called guaranteed integration methods for hybrid sys-
tems, typically enclosing a single trajectory rather than a set
of trajectories [24]. To compute tight overapproximations of
the reachable set using this method, the set of initial states

has to be partitioned and the reachable states are computed
from each set in the partition, resulting in a possibly large
computational load [28].

A completely different approach for reachability analy-
sis of hybrid systems is suggested in [16]. There, only the
reachable set propagating from guard intersection to guard
intersection is computed by solving linear matrix inequalities
(LMIs) embedded in a convex optimization routine, where
guards are modeled as hyperplanes. A disadvantage of this
approach is that it does not consider uncertain inputs and
it is semi-formal, since the LMIs have to be fulfilled for time
intervals, whereas only a finite number of points in time can
be checked. In this work, we propose an approach which also
computes guard set intersections without explicitly comput-
ing set intersections. We use hyperplanes to define guard
sets, but in contrast to [16], we (i) compute the reachable
set for all times in between guard intersections, (ii) present
a formal approach, and (iii) use operations that break down
to simple operations (addition, multiplication, and division)
on reals, instead of solving LMIs. Our algorithm has a com-
plexity of O(n6) with respect to the number of continuous
state variables n, which can be reduced to O(n3) for“simple“
dynamics and/or ”small” sets of states. Due to the simple
operations involved, the algorithm is numerically stable. A
requirement for the proposed approach, which is shared with
the approach in [16], is that the time interval of a guard in-
tersection for all trajectories within the reachable tube has
to be bounded. If the reachable tube only partially intersects
a guard set, a case which can be automatically detected, one
has to use the classical geometric intersection technique.

2. PROBLEM FORMULATION
We present a technique to compute the reachable set of

a hybrid automaton with urgent transition semantics, i.e.,
a transition is taken as soon as a guard is hit [17]. Due to
the urgent transitions, guard sets modeled as hyperplanes
or halfspaces enforce the same behavior, but halfspaces are
used in order to remove ambiguity when a reachable set hits
several guard sets (see Sec. 5.5).

Definition 1 (Hybrid Automaton). The hybrid au-
tomaton used in this work is defined as a tuple HA = (V, X ,
U, T, g, h, f) with:

• the discrete state space V = {v1, . . . , vξ}. Elements of
V are referred to as locations.

• the continuous state space X ⊆ R
n and input space

U ⊂ R
m.

• the set of discrete transitions T ⊆ V ×V. A transition
from vi to vj is denoted by (vi, vj).

• the guard function g : T → 2X (2X denotes the power-
set of X), which associates a guard set g((vi, vj)) with
each transition (vi, vj).

• the jump function h : T × X → X , which returns the
next continuous state when a transition is taken.

• the flow function f : V × X ×U → R
n, which defines a

vector field for the time derivative of x: ẋ = f(v, x, u).

The guard sets g are modeled as halfspaces H = {x|nTx ≤
d; x, n ∈ R

n; d ∈ R}. The jump function is restricted to
an affine map x′ = K(vi,vj)x + l(vi,vj), where x′ denotes

the state after the transition is taken and K(vi,vj) ∈ R
n×n,

l(vi,vj) ∈ R
n are given for each transition (vi, vj).

x1

x2

location v1 location v2

unsafe
set

initial
set

reachable
set halfspace

jump

guard
intersection

etc.

Figure 1: Illustration of the evolution of a reachable
set of a hybrid automaton.

In contrast to other definitions of hybrid automata, we do
not include invariants since a discrete transition is already
forced by the guard itself. Assuming that the hybrid au-
tomaton has no Zeno behavior, the combined discrete and
continuous state (v(t), x(t)) starts from (v0, x0) and x(t)
changes according to the flow function, while v(t) remains
constant. If the continuous state hits a guard set, the cor-
responding transition is taken immediately. In the event of
hitting more than one guard set at the same time, the tran-
sition is chosen non-deterministically. After the transition
from the previous location vi to the next location vj is taken
(in zero time), the continuous state is updated according to
the jump function and the continuous evolution is contin-
ued in the next location. This procedure is also illustrated
in Fig. 1. Given the behavior of the hybrid automaton, we
are interested in the reachable continuous states:

Definition 2 (Exact Reachable Set). Given an ini-
tial location v0 and a set of initial continuous states X 0, the
continuous reachable set Re

vi
(r) of a hybrid automaton as

specified in Def. 1 at time r in location vi is:

Re
vi
(r) =

{

x̃
∣
∣∃ some trajectory (v(t), x(t)) of HA with

v(0) = v0, x(0) ∈ X 0 ⊂ X , such that v(r) = vi, x(r) = x̃
}

.

The exact reachable set can be computed for only a limited
class of hybrid automata [21]. Therefore, we compute over-
approximations Rvi(t) ⊇ Re

vi
(t). In order to compute for

all times, we compute reachable sets for consecutive time
intervals [tk−1, tk], where tk = k r, r ∈ R

+ is the time in-
crement, and k ∈ N. Next, we explain the basic procedure
of computing reachable sets Rvi([tk−1, tk]) for consecutive
time intervals in a single location plus the subsequent com-
putation for determining the initial set of the next location.
Since this process is executed repeatedly, it is sufficient to
focus on one location, so we drop the location index for R(t)
from now on for simplicity of notation.

3. BASIC PROCEDURE
We begin with the reachable set computation for the con-

tinuous evolution and briefly describe the extension to hy-
brid systems with the classical and the new approach.

3.1 Continuous Dynamics
We first explain the reachable set computation for linear

dynamics (ẋ = Ax(t) + u(t), A ∈ R
n×n, x, u ∈ R

n) and
later discuss the extension to nonlinear dynamics. For linear

systems, the reachable set of the first time interval [t0, t1] is
computed as shown in Fig. 2:

1. Compute the reachable set at t = t1, neglecting uncer-
tain inputs (the homogeneous solution, Rh(t1));

2. Generate the convex hull of the solution at t = t1 and
the initial set; and

3. Enlarge the convex hull to ensure enclosure of all tra-
jectories for the time interval t ∈ [t0, t1], including the
effects of uncertain inputs.

The computation of further time intervals is performed as
in [15], which is similar to the computation of the first time
interval, but no further convex hull computations are re-
quired and further computations are carried out without the
wrapping effect, i.e. without accumulating overapproxima-
tion errors.

R(t0)

Rh(t1)

convex hull
of R(t0),

Rh(t1)

R([t0, t1])

➀ ➁ ➂

enlargement

Figure 2: Steps for the computation of an overap-
proximation of the reachable set.

For hybrid systems, it is necessary to also consider dis-
crete transitions activated by guards. Once these sets are
determined, the mapping due to possible jumps is performed
and the continuous reachable set computation can be con-
tinued. Two methods for guard intersection are presented:
geometric guard intersection and the new technique map-
ping reachable sets onto guard sets.

3.2 Geometric Guard Intersection
The classical approach to computing reachable sets across

discrete transitions in hybrid systems considers all possible
states hitting a guard by computing the intersection of the
reachable set with the guard set, see e.g. [7, 8, 11, 14, 18].
This is done by first intersecting all reachable sets of indi-
vidual time intervals [tk−1, tk] with the guard set in an exact
or overapproximative way. In a second step, the individual
intersections are unified into one or a few sets in order to
bound the number of initial sets for continuing the reacha-
bility computations in the newly reached location, see [11].
This procedure is illustrated in Fig. 3(a) for polyhedral sets,
where Rg is the intersection with the guard set and the dis-
played vertices indicate individual intersections.

When using representations other than general polyhe-
dra, such as ellipsoids [7], multidimensional intervals [18],
zonotopes [14], or template polyhedra [11], the intersection
with polyhedral guard sets (which is the most common type)
might result in large overapproximations. This problem is
avoided by general polyhedra [8], but there are two problems
with polyhedral computations: (i) the result is not numer-
ically stable unless infinite precision arithmetic is used [6],
and (ii) the unification of individual intersections by a con-
vex hull is computationally expensive [5].

x1

x2

R(0)

vertex Rg

R([tk, tk+1])

(a) Classical approach.
x1

x2

R(0)

Rg

R([tk, tk+1])

R(tη)

(b) New approach.

Figure 3: Guard intersection using the classical and
the new approach.

3.3 Mapping onto Guard Sets
In the following, we propose a new technique to avoid ge-

ometric operations and directly map reachable sets to sets
enclosing guard intersections. We compute this mapping
from the last reachable set at a point in time tη that does
not intersect the guard. This point in time is determined
by the first reachable set of the time interval [tη, tη+1] which
intersects the guard set. It is obvious that although for
[tη, tη+1] there is an intersection, there is no intersection for
tη since there was no intersection for [tη−1, tη]. In Fig. 3(b),
the mapping from R(tη) (bold border) to the overapproxi-
mative guard intersection Rg is indicated by a curved arrow.

We motivate our new technique by a simple example,
where the flow is constant ż = b; z(0) = z0; z, b, z0 ∈ R

n,
such that the solution is z(t) = z0 + b t. We use z to denote
the state of the constant-flow system to distinguish it from
the continuous state x for general continuous dynamics (such
as linear systems). Given a halfspace H = {z|nT z ≤ d},
the time th for hitting the halfspace for the constant flow
is computed by solving nT (z0 + b th) = d, which implies

th = − nT

nT b
z0 + d

nT b
. Inserting th into the solution z(t) re-

sults in a map from z0 to the state zh on the bordering
hyperplane:

zh = (I −
bnT

nT b
)

︸ ︷︷ ︸

=:C

z0 +
bd

nT b
︸︷︷︸

=:w

,

where I is the identity matrix and zh = Cz0 +w is an affine
map. For any initial state z0 ∈ R(0), this mapping can
be easily performed for most set representations (ellipsoids,
zonotopes, polytopes, support functions, etc.).

A possible extension from constant flow to linear dynamics
(ẋ = Ax(t) + u(t), x(0) = x0, A ∈ R

n×n, x, u ∈ R
n) is to

first assume constant flow, e.g. ż = b = Ax0 + u(0). We can
then add a set that bounds the error between the constant
flow and the trajectories of the linear dynamic system. This
error E = {e(t) = x(t) − z(t)|t ∈ [0, th,max]} is added via
Minkowski addition (A ⊕ B := {a + b|a ∈ A, b ∈ B}) to
z(t), which assures x(t) ∈ z(t) ⊕ E for t ∈ [0, th,max], where
th,max is the time until all initial states have hit the guard

set. Thus, th ∈ − nT

nT b
(x0 ⊕ E) ⊕ d

nT b
, which after insertion

into x(t) ∈ z(t)⊕ E yields

xh ∈

((

I −
bnT

nT b

)

x0 +
bd

nT b

)

⊕

(

−
bnT

nT b
⊗ E

)

⊕ E , (1)

where xh denotes a state of the linear dynamic system when
a trajectory has hit the guard set and A ⊗ B := {ab|a ∈
A, b ∈ B} is referred to as set-based multiplication. In the
following, the operator ⊗ is sometimes omitted for simplic-
ity.

We have used the constant flow to motivate the approach
described in the next section using a more general class of
dynamics we call state-dependent constant flow, which gives
a much tighter approximation than (1) to the guard set in-
tersection for linear dynamics. If the dynamics is nonlinear,
we propose to first abstract to linear dynamics as shown
in [4], where also a set of errors is computed in order to
preserve the overapproximation of the result. Since an ab-
straction to linear dynamics already exists, we focus on the
abstraction of linear dynamics to state-dependent constants
flows.

4. STATE-DEPENDENT CONSTANT FLOW
We define state-dependent constant flow using the system

matrix A ∈ R
n×n, the initial state y0 = y(0) ∈ R

n, and a
given vector b as

ẏ = Ay0 + b. (2)

For a given y0, this is simply a constant-flow system. The
difference is that by including the initial state explicitly, we
will be able to compute the mapping as a function of the
initial state. The solution of (2) is

y(t) = y0 + (Ay0 + b)t. (3)

A nice property of state-dependent constant flow is that the
hitting time of a hyperplane has a closed-form solution as
derived in the previous section.

We compute the error made when abstracting a linear
system to state-dependent constant flow, where the linear
system has constant input uc:

ẋ(t) = Ax(t) + uc. (4)

The solution of the linear system for x(0) = x0 is

x(t) = eAtx0 +

∫ t

0

eA(t−τ)dτ

︸ ︷︷ ︸

=:Γ(t)

uc. (5)

When A is invertible, the matrix Γ(t) can be computed as
Γ(t) = A−1(eAt − I), where I is the identity matrix. How-
ever, Γ(t) is not always invertible, so we compute Γ(t) by
integrating the Taylor series of eAt with remainder term

eAt =
∞∑

i=0

(At)i

i!
∈

η∑

i=0

(At)i

i!
⊕ Ê(t). (6)

The error term for the finite Taylor series is modeled as an
interval matrix Ê(t) = [−W (t),W (t)], where

W (t) =

∣
∣
∣
∣

∞∑

i=η+1

Ai

i!
ti
∣
∣
∣
∣
≤

∞∑

i=η+1

|A|iti

i!
= e|A|t −

η∑

i=0

|A|iti

i!
.

Integration yields

Γ(t) =
∞∑

i=0

Aiti+1

(i+ 1)!
∈

η
∑

i=0

Aiti+1

(i+ 1)!
⊕ Ẽ(t), (7)

where one can choose Ẽ(t) = Ê(t)t, see [3]. The approxi-
mation error made for computing the hitting state based on
state-dependent constant flow can be made arbitrarily small
for a single initial state:

Proposition 1 (Minimizing the State Difference).
The error e(t̃h) = x(t̃h)− y(t̃h), where t̃h is the hitting time
of the linear dynamics and x(0) = y(0) = x0, is minimized
by choosing

b = Θ(t̃h)x
0 + Γ∗(t̃h)uc

Θ(t) =

η∑

i=2

Aiti−1

i!
, Γ∗(t) =

η∑

i=0

Aiti

(i+ 1)!

such that limη→∞ e(t̃h) = 0 and 0 is a vector of zeros of
proper dimension.

Proof. We compute the error under the assumption that
x(0) = y(0) = x0, and ξ 6= x0 is used for obtaining b accord-
ing to the proposition. Using (5) and (3) we have for the
proposed choice of b

e(t) = x(t)− y(t)

=

(η
∑

i=0

Aiti

i!
⊕ Ê(t)

)

x0 ⊕

(η
∑

i=0

Aiti+1

(i+ 1)!
⊕ Ẽ(t)

)

uc

−

(

x0 + Ax0t+
(η∑

i=2

Ait̃i−1
h

i!
ξ +

η∑

i=0

Ait̃ih
(i+ 1)!

uc

)

t

)

=t

(η∑

i=2

Ai

i!
(ti−1x0 − t̃i−1

h ξ)⊕

η∑

i=0

Ai(ti − t̃ih)

(i+ 1)!
uc

)

⊕ Ê(t)x0 ⊕ Ê(t) t uc.

(8)

Since x0 +Ax0t cancels out, the error of the initial state x0

is only O(t2), whereas it would be O(t) when one chooses
constant flow. For x0 = ξ and t = t̃h, the error reduces to
e(t̃h) = Ê(t̃h)x

0 ⊕ Ê(t̃h)t̃huc, so that limη→∞ e(t̃h) = 0.

When x(0), y(0) ∈ R(0), the heuristics of computing b as
presented above with x0 as the center of R(0) has proven
successful in our numerical experiments. Thus far, we have
approximated the intersection of reachable states with the
guard set for a given initial state. The following section
extends this approximation to a set of initial states.

5. SET-BASED COMPUTATIONS
In this section, we compute (i) the set of states yh and

(ii) the error e(t) when the initial state is within a set of
states x(0) = y(0) ∈ R(0). Thereto, we first introduce ma-
trix zonotopes, which are used for intermediate results, and
vector zonotopes, which are used for the representation of
the reachable set.

Definition 3 (Matrix Zonotope). Given a matrix

center C ∈ R
n×n and matrix generators G(i) ∈ R

n×n, a
matrix zonotope is defined as

Z =
{

C +

p
∑

i=1

βiG
(i)
∣
∣
∣βi ∈ [−1, 1]; C,G(i) ∈ R

n×n
}

(9)

We write in short Z = (C,G(1), . . . , G(p)) and define the
order as ρ = p

n
, where p is the number of generators. By

replacing the matrix center with a vector center c ∈ R
n and

the matrix generators with vector generators g(i) ∈ R
n, one

obtains the standard vector zonotope, which is simply called
a zonotope. Zonotopes are a compact way of representing
sets in high dimensions, which, as is shown in the following,
scale well for the operations required in our procedure.

5.1 Operations on Zonotopes
We start with the addition of two zonotopes Z1 = (c, g(1),

. . ., gp1) and Z2 = (d, h(1), . . ., h(p2)), and the multiplication
with a matrix L ∈ R

o×n, where both operations are a direct
consequence of the zonotope definition (see [19]):

Z1 ⊕Z2 = (c+ d, g(1), . . . , g(p1), h(1), . . . , h(p2))

L⊗Z1 = (Lc, L g(1), . . . , L g(p1))
(10)

Additionally, we require the scalar interval multiplication

[−1, 1]⊗Z1 ⊆ (0, c, g(1), . . . , g(p1)), (11)

where 0 is a vector of zeros of proper dimension. We also
require the quadratic map of a zonotope, which is newly
derived.

Lemma 1 (Quadratic Map). Given a zonotope Z =

(c, g(1), . . . , g(p)) and a discrete set of matrices Q(i) ∈ R
n×n,

i = 1 . . . n, the set

ZQ = {λ|λi = xTQ(i)x, x ∈ Z}

is overapproximated by a zonotope (d, h(1), . . . , h(σ)), where
σ =

(
p+2
2

)
− 1. The center is computed as

di = cTQ(i)c+ 0.5

p∑

s=1

g(s)
T
Q(i)g(s),

and the generators are computed as

j =1 . . . p : h
(j)
i =cTQ(i)g(j) + g(j)

T
Q(i)c

j =1 . . . p : h
(p+j)
i =0.5g(j)

T
Q(i)g(j)

l =

p−1
∑

j=1

p
∑

k=j+1

1 : h
(2p+l)
i =g(j)

T
Q(i)g(k) + g(k)

T
Q(i)g(j)

The complexity of constructing this zonotope overapproxima-
tion with respect to the dimension n is O(n5).

Proof. Inserting the definition of a zonotope into the set
ZQ = {λ|λi = xTQ(i)x, x ∈ Z} yields

{

λ
∣
∣
∣λi = (c+

p∑

j=1

βjg
(j))TQ(i)(c+

p∑

j=1

βjg
(j)), βj ∈ [−1, 1]

}

,

which can be rearranged to

ZQ =
{

λ
∣
∣
∣λi = cTQ(i)c+

p
∑

j=1

0.5g(j)
T
Q(i)g(j)

︸ ︷︷ ︸

di

+

p
∑

j=1

βj (c
TQ(i)g(j) + g(j)

T
Q(i)c)

︸ ︷︷ ︸

h
(j)
i

+

p
∑

j=1

(2β2
j − 1) 0.5g(j)

T
Q(i)g(j)

︸ ︷︷ ︸

h
(p+j)
i

+

p−1∑

j=1

p∑

k=j+1

βjβk (g
(j)TQ(i)g(k) + g(k)

T
Q(i)g(j))

︸ ︷︷ ︸

h
(2p+l)
i

,

βi ∈ [−1, 1]
}

⊆
(

d, h(1), . . . , h(σ)
)

.

The obtained zonotope is an overapproximation since βj ∈
[−1, 1], (2β2

j −1) ∈ [−1, 1], and βjβk ∈ [−1, 1] for j 6= k. The
number of new generators is obtained from the fact that the
new generators h(j) are computed by picking two elements
from the set containing all generators and the center, where
replacement is allowed and order does not matter. By sub-
tracting the possibility that one can choose two centers, one
obtains σ =

(
p+2
2

)
− 1 generators.

It remains to derive the complexity. Quadratic operations

such as g(j)
T
Q(i)g(k) have complexity O(n2). The number p

of generators of Z can be expressed by its order as ρn, such
that the resulting zonotope has

(
(ρ n)+2

2

)
− 1 generators, a

number which can be bounded by O(n2), so we have O(n4)
for all generator computations for each dimension and O(n5)
for all dimensions.

The quadratic map can be generalized to the case when
all Q(i) are elements of a matrix zonotope:

Theorem 1 (Matrix Zonotope Map). We have Z =

(c, g(1), . . . , g(p)) and the matrices Q(i) ∈ Q(i) = (D(i), K(i,1),

. . ., K(i,ν)). The zonotope enclosing the set {λ|λi = xTQ(i)x,

x ∈ Z, Q(i) ∈ Q(i)} can be overapproximated by

ZD ⊕ ([−1, 1]⊗ ZK(1))⊕ . . .⊕ ([−1, 1]⊗ ZK(ν)),

where the addition and interval multiplication is performed
as in (10) and (11), and the partial solutions are computed
as in Lemma 1, where

ZD ⊇ {λ|λi = xTD(i)x, x ∈ Z}

ZK(j) ⊇ {λ|λi = xTK(i,j)x, x ∈ Z}

The complexity with respect to the dimension n is O(n6).

Proof. After inserting the definition of the matrix zono-
tope into λi = xTQ(i)x, one obtains

λi = xT (D(i) +

ν∑

j=1

βjK
(i,j))x

= xTD(i)x
︸ ︷︷ ︸

∈Ii⊗ZD

+β1 x
TK(i,1)x

︸ ︷︷ ︸

∈Ii⊗Z
K(1)

+ . . .+ βν x
TK(i,ν)x

︸ ︷︷ ︸

∈Ii⊗Z
K(ν)

,
(12)

where Ii is the ith row of the identity matrix. Since each βj
is within [−1, 1], we obtain ZD ⊕ ([−1, 1] ⊗ ZK(1)) ⊕ . . . ⊕
([−1, 1]⊗ ZK(ν)).

Given that the complexity for each partial zonotope ZK(j)

is O(n5) from the previous lemma, and that ρ̃ is the order of

the matrix zonotopes Q(i), we have ρ̃ n+1 partial zonotopes,
giving an overall complexity of O(n6).

5.2 Hitting Times
Before we compute the mapping onto guard sets, we have

to find a bound on the times when the guard set is hit.
Determining when a zonotope Z intersects a halfspace H =
{x|nTx ≤ d} is computationally efficient since it only evolves

checking if (nT ⊗ Z) ⊕ (−d) ≤ 0. By interpreting d as a
zonotope with no generators, this expression can be evalu-
ated by (10), resulting in a zonotope of dimension 1, which

we express as ωc ⊕ ([−1, 1] ⊗ ω(1)) ⊕ . . . ⊕ ([−1, 1] ⊗ ω(p));

ωc, ω
(i) ∈ R. The interval [ω, ω] of zonotope values is ob-

tained by

ω = ωc −

p∑

i=1

|ω(i)|, ω = ωc +

p∑

i=1

|ω(i)|.

If ω ≥ 0, no intersection occurs and if ω ≤ 0, the reachable
set is completely in the guard set. The union of all consec-
utive time intervals [tk, tk+1], for which ω ≥ 0 and ω ≤ 0,
forms the interval of hitting times. This interval is used be-
low to bound the error of the state-dependent constant flow
assumption. Note that in the event that no guard set is hit,
only the continuous evolution has to be considered.

5.3 Set of Abstraction Errors
For a given initial state, the error between the state-

dependent constant flow solution y(t) and the linear system
solution x(t) has already been presented in (8). Now, we
consider a set of initial states R(0) = ξ ⊕Y, where Y is the
deviation from ξ, and for simplicity we reset the time such
that the interval of hitting times is T = [0, tmax]. The set of
errors based on (8) is

E ={e(t) = x(t)− y(t)|t ∈ T ;x0, y0 ∈ (ξ ⊕ Y)}

=T

(η
⊕

i=2

Ai

i!

(

T i−1(ξ ⊕ Y)⊕ (−t̃i−1
h ξ)

)

︸ ︷︷ ︸

=
∑η

i=2
Ai

i!

(
T i−1Y⊕(T i−1⊕(−t̃

i−1
h

))ξ
)

⊕

η
⊕

i=0

Ai(T i ⊕ (−t̃ih))

(i+ 1)!
uc

)

⊕ Ê(tmax)x
0 ⊕ Ê(tmax)tmaxuc,

(13)

which is computed with complexity O(n3). Note that due

to the monotonic growth of Ê(t), it is sufficient to use the

latest time tmax for Ê(t). Since all values of T are positive,
we have T i = [0, timax] such that we can bound T i by a
zonotope (T, T), where T = 0.5timax. The multiplication
T i ⊗ Y in (13) is performed similar to Theorem 1 as T i ⊗
Y ⊇ TY ⊕ ([−1, 1] ⊗ TY). Other operations in (13) are
performed similarly, by e.g. considering ξ as a zonotope
with no generators.

5.4 Set of State-Dependent Constant Flow So-
lutions

Using the previously introduced operations on zonotopes
and matrix zonotopes, we compute the set of states xh hit-
ting the halfspace H = {x|nTx ≤ d} by bounding x(t) with
constant individual flow and the error set E :

x(t) ∈ x0 + (Ax0 + b)t⊕ E for t ∈ [0, tmax], (14)

By replacing b with (Ax0 + b) in (1), one obtains the set of
states Rh(x

0) enclosing xh:

Rh(x
0) := x0 + (Ax0 + b)

d− nT (x0 ⊕ E)

nT (Ax0 + b)
⊕ E , (15)

which is split into the hitting state yh(x
0) of y(t) andRh,E(x

0),

such that Rh(x
0) = yh(x

0)⊕Rh,E(x
0) and

yh(x
0) = x0 + (Ax0 + b)

d− nTx0

nT (Ax0 + b)
,

Rh,E(x
0) = (Ax0 + b)

−nT E

nT (Ax0 + b)
⊕ E .

We will first focus on yh(x
0). The set of states yh(x

0) for
x0 ∈ R(0) is

{

x0 + (Ax0 + b)
d− nTx0

nT (Ax0 + b)

∣
∣
∣x

0 ∈ R(0)
}

,

which requires to divide by nT (Ax0 + b) with x0 ∈ R(0).
This could be resolved by first computing the interval

I = {nT (Ax0 + b)|x0 ∈ R(0)}, (16)

and then computing the set of yh as {x0 + (Ax0 + b)(d −
nTx0)/a|x0 ∈ R(0), a ∈ I}. However, this approach ne-
glects the dependency of x0 and thus is too conservative.
We capture the dependency in a much better way by ap-
plying a Taylor series to the expression for yh, for which we
first need the partial derivatives.

Proposition 2 (Partial derivatives of yh). We use

Λ(y) := nT (Ay + b), Υ := nTA,

Θ(y) := −nΛ(y)− (d− nT y)ΥT , Ω := −nΥ+ΥTnT .

for a concise notation of the partial derivatives with respect
to x0 in index notation:

Lil(x
0) :=

∂yh,i
∂x0

l

= Iil +
Ail

Λ(x0)
(d−

n∑

j=1

njx
0
j)

+ (

n∑

j=1

Aijx
0
j + bi)

Θl(x
0)

Λ(x0)2
,

Q̃
(i)
lm(x0) :=

∂2yh,i
∂x0

l ∂x
0
m

=
1

Λ(x0)2
Q

(i)
lm(x0), where

Q
(i)
lm(x0) =AilΘm(x0) + AimΘl(x

0)

+ (Ωlm −
Θl(x

0)

Λ(x0)
2Υm)(

n∑

j=1

Aijx
0
j + bi).

The derivatives are obtained via standard derivation.

Proposition 3 (Taylor Series of yh). The first-order
Taylor series with Lagrange remainder of the state yh is

yh,i(x
0) ∈

(

yh,i(ξ) + Li(ξ)ν
)

⊕
(1

2
νT Q̃(i)ν

)

, (17)

where ν = x0 − ξ, Li is the ith row of the matrix L, Q̃(i) =
[ϕ,ϕ]⊗Q(i), [ϕ,ϕ] is the interval of {1/Λ(x0)2|x0 ∈ R(0)},

Q(i) = {Q(i)(x0)|x0 ∈ R(0)} ⊆ (C̃(i), G̃(i,1), . . . , G̃(i,1+2p)),

where

C̃
(i)
lm =AilΘc,m + AimΘc,l

+ (Ωlm − ψc,l2Υm)(
∑n

j=1 Aijcx,j + bi),

G̃
(i,1)
lm =− ψg,l2Υm(

∑n

j=1Aijcx,j + bi),

G̃
(i,1+α)
lm =AilΘ

(α)
g,m + AimΘ

(α)
g,l

+ (Ωlm − ψc,l2Υm)
∑n

j=1 Aijg
(α)
x,j ,

G̃
(i,1+p+α)
lm =− ψg,l2Υm

∑n

j=1Aijg
(α)
x,j .

Proof. The Lagrange remainder in (17) encloses all higher

order terms if {Q̃(i)(x0)|x0 ∈ R(0)} ⊆ Q̃(i). Based on the

computation of Q̃(i)(x0) in Proposition 2, we first compute

the interval of {1/Λ(x0)2|x0 ∈ R(0)} and then {Q
(i)
lm(x0)|x0 ∈

R(0)}, which we enclose by the proposed matrix zonotope.
Since the initial set is a zonotope, we have that x0 = cx +
∑p

α=1 βαg
(α)
x , and Θl(x

0) = Θc,l +
∑p

α=1 βαΘ
(α)
g,l , where

Θc,l = −n(nT (Acx + b))− (d− nT cx)Υ
T ,

Θ
(α)
g,l = −n(nTAg(α)

x) + nT g(α)
x ΥT .

(18)

Next, we obtain the overapproximation

{Θl(x
0)/Λ(x0)|x0 ∈ R(0)} ⊆ ψc,l ⊕ [−1, 1]ψg,l (19)

using interval arithmetic. The center and the generators of
the matrix zonotope (C̃(i), G̃(i,1), . . . , G̃(i,1+2p)) result from

inserting (18), (19), and x0 in zonotope form into Q(i)(x0)
in Proposition 2.

It remains to compute Rh,E(R(0)), which is much smaller
compared to the set of yh. Thus, it is sufficient to use (16)
and compute Rh,E(R(0)) = (AR(0)⊕ b)(−nTE)(1/I)⊕ E .

Using Proposition 3, the zonotope Rg enclosing the guard
intersection is computed as

Rg = yh(ξ)⊕L⊗(R(0)⊕(−ξ))⊕
1

2
[ϕ, ϕ]⊗Rquad⊕Rh,E(R(0)),

where [ϕ,ϕ]⊗Rquad ⊆ 0.5(ϕ+ϕ)Rquad⊕0.5(ϕ−ϕ)⊗[−1, 1]⊗
Rquad is computed using (10), (11), and Rquad ⊇ {λ|λi =

xTQ(i)x, x ∈ (R(0) ⊕ (−ξ)),Q(i) ∈ Q(i)} is computed as
in Theorem 1. The overall complexity of computing Rg is
determined by the computation of Rquad, such that it is
O(n6). When the constant flow approximation is sufficient,
the complexity reduces to O(n3).

Note that in case of uncertain inputs u(t) ∈ U , one needs
an additional Minkowski addition to Rg due to uncertain
inputs as described in [3].

5.5 Hitting Several Guard Sets
A problem, which is not addressed in [16], is how to deal

with reachable sets that hit several guard sets. A straight-
forward way would be to separately compute the intersection
for each guard using the presented approach, as illustrated
by R̃g,1, R̃g,2 in Fig. 4. Without further intersection of
other overlapping guard sets, one could continue the com-
putation with R̃g,1, R̃g,2 as new initial sets. However, this
often leads to a substantial overapproximation. In this case
we suggest to intersect the mapped guard set with all other
guards that have been hit, resulting in Rg,1 = R̃g,1 ∩ H2,
Rg,2 = R̃g,2 ∩ H1 for the example in Fig. 4.

As mentioned earlier, zonotopes are not closed under in-
tersection, but intersection can be tightly overapproximated
using zonotopes or zonotope bundles [2]. Although hitting
several guard sets requires a classical intersection operation,
one has the huge advantage that the guard intersection for
all times is represented by a single set Rg, while for the
classical approach, one first has to enclose partial intersec-
tions by a single set, which can be a costly or even unstable
operation.

6. NUMERICAL EXAMPLE
We present the usefulness and scalability of the presented

approach on instances of a mechanical system with backlash.

H2

H1

R̃g,1

R̃g,2

Rg,1

Rg,1

Intersection with other guard sets

R(tη)

Figure 4: Procedure for hitting several halfspaces.

Methods for analyzing such systems is of great interest since
backlash drastically reduces control performance [25]. The
considered system in Fig. 5 is taken from an automotive
drivetrain problem [22] and enhanced by additional rotat-
ing masses. Similar versions of this problem can be found in
robotics, automation, and production machines. We first de-
rive the differential equations of the system and then present
the results in comparison with other approaches.

6.1 System Equations
The indices m and l refer to the motor and the load, num-

bered indices refer to the numbering of additional rotating
masses, which are sometimes generalized by i. Moments of
inertia are denoted by J [kg m2], viscous friction constants
by b [Nm s/rad], shaft stiffness by k [Nm/rad], angular po-
sitions by Θ [rad], and torque by T [Nm] (see Fig. 5).

Jm
J1 J2 Jθ

Jl

ks k1 k2 kθ

Θm

Θ1 Θ2 Θθ

Θl

gear

engine

dynamics
u

Tm

Θs

2α

Figure 5: Powertrain model.

The differential equations of the rotating masses are

JmΘ̈m + bmΘ̇m = Tm − Tg

J1Θ̈1 + b1Θ̇1 = Ts − T1

· · ·

JnΘ̈θ + bθΘ̇θ = Tθ−1 − Tθ

JlΘ̈l + blΘ̇l = Tθ

The dead-zone nonlinearity of the backlash is

Ts = ks

Θs −Θ1 − α if Θs −Θ1 ≥ α

0 if |Θs −Θ1| < α

Θs −Θ1 + α if Θs −Θ1 ≤ −α

and the engine dynamics is modeled as Ṫm = (v−Tm)/τeng ,
where v [Nm] is the requested engine torque and τeng is the
time constant. The remaining torques Ti with indices i =

1 . . . (θ−1) and index θ are computed as Ti = ki(Θi−Θi+1)
using the shaft stiffness, and the last torque is Tθ = kθ(Θθ−
Θl). The gearbox ratio γ = 12 constrains the torques and
angles to Tg = Ts/γ, Θs = Θm/γ and a PID controller is
used to control the motor velocity, such that

v = kP (Θ̇ref − Θ̇m) + kI(Θref −Θm) + kD(Θ̈ref − Θ̈m).

In order to write the equations in state space form, we in-
troduce the state variables x1 = Θs − Θ1 = Θm/i − Θ1,

x2 = Tm, x3 = Θref , x4 = Θ̇ref , x5 = Θl, x6 = Θ̇l,

x7 = Θ̇m, x8 = Θ1, x9 = Θ̇1, . . ., x2θ+6 = Θθ, x2θ+7 = Θ̇θ.
We also define the input u = Θ̈ref , which is the acceleration
of the reference angle. For x1 ≥ α, which we refer to as
location 1, the system dynamics in state space form results
from the previous equations as

ẋ1 =
1

γ
x7 − x9

ẋ2 =
1

τeng

(

(kP (γx4 − x7) + kI(γx3 − γ(x1 + x8))

+ kD
(

γu−

1

Jm
(x2 −

1

γ
ks(x1 − α)− bmx7)

)

− x2

)

ẋ3 = x4

ẋ4 = u

ẋ5 = x6

ẋ6 =
1

Jl
(kθ(x2θ+6 − x5)− blx6)

ẋ7 =
1

Jm
(x2 −

1

γ
ks(x1 − α) − bmx7)

ẋ8 = x9

ẋ9 =
1

J1
(ks(x1 − α) − k1(x8 − x10) − b1x9)

· · ·

ẋ2θ+6 = x2θ+7

ẋ2θ+7 =
1

Jn
(kθ−1(x2θ+4 − x2θ+6)− kθ(x2θ+6 − x5)− bθx2θ+7).

The above dynamics can be written in linear form as ẋ =
A1x(t) + b1u(t) + c1, where the index refers to the location
and A1 ∈ R

n×n; b1, c1 ∈ R
n, where n = 2θ + 7. By setting

ks = 0 in the system equations, one obtains the dynamics
of location 2 when the system is in the dead-zone, and by
changing the sign of α, one obtains the dynamics of location
3 when the system is on the other side of the contact zone
than location 1.

The parameters of the system taken from [22] are listed
in Table 1. Parameters from the additional masses, which
can be interpreted as rotating elements in a gearbox and
further drivetrain elements, are taken from [26]. The PID
parameters tuned by the authors are kP = 0.5, kI = 0.5,
kD = 0.5.

Table 1: Powertrain parameters in SI units.

α τeng bl bm bi ks ki Jl Jm Ji
0.03 0.1 5.6 0 1 104 105 140 0.3 0.01

6.2 Reachable Set Computation
Many engineering questions of the considered powertrain

can be solved by computing the reachable set, such as guar-
anteeing upper bounds on the torques for a set of initial

states in order to ensure that no shaft will brake. Other
problems could be the verification of a maximum settling
time, or showing that the system does not reach the dead-
zone for certain maneuvers.

In this work, we choose a benchmark maneuver from an as-
sumed maximum negative acceleration of Θ̈ref = −5 [rad/s2]
to maximum positive acceleration of 5 [rad/s2], where the
first acceleration command lasts 0.2 s and the second one 1.8
s. We consider a wide range of possible initial angular veloc-
ities in the interval [20, 40] [rad/s], which would correspond
to a range of [2292, 4584] RPM of the motor for the given
gear ratio. Based on the range of initial angular velocities,
the other initial states are chosen as the steady state solu-
tion for an external load of 300 [Nm], resulting in a zonotope
with center c = [−0.0432, −11, 0, 30, 0, 30, 360, −0.0013,
30, . . ., −0.0013, 30]T and generator g = [0.0056, 4.67, 0,
10, 0, 10, 120, 0.0006, 10, . . ., 0.0006, 10]T . The time step
size is chosen as r = 5 · 10−4 s, and the maximum zonotope
order for quadratic evaluations is limited to ρ = 1.2 using
the reduction technique in [12].

We computed the reachable sets for different problem in-
stances (θ = {0, 1, . . . , 47}), resulting in up to 101 continu-
ous state variables. The overall computational time, as well
as the individual intersection times with guard sets (there
are 2 intersections) are listed in Tab. 2. Computations were
done in MATLAB on an i7 Processor and 6GB memory. Dif-
ferent projections of reachable sets for the instance with 101
continuous state variables are shown in Fig. 6, which also
displays simulations from sampled initial states. Since the
continuous dynamics can be computed wrapping-free [15],
the overapproximation is small for all times, which can be
seen by comparison with sample trajectories.

Table 2: Computational times in seconds (n = 2θ+7).

dim. n 11 21 31 41 51 101
CPU time 8.122 14.31 23.72 31.83 53.74 1550
1st guard 0.087 0.413 2.620 4.858 11.40 663.7
2nd guard 0.094 0.467 2.704 4.774 11.71 522.4

−0.1 0 0.1 0.2

0

50

100

x
1

x
2

guard set

R(0)

sample

traj.

(a) Projection onto x1, x2.

−0.1 0 0.1 0.2

0

20

40

60

80

x
3

x
1

guard set

R(0)

sample

traj.

(b) Projection onto x1, x3.

Figure 6: Reachable set of the powertrain for n = 101
(θ = 47). Black lines show sampled trajectories and
the gray region shows the reachable set.

For problem instances with θ = {0, 1} we compare the
results with a classical geometrical approach [1, Chap. 3.5]

in which different enclosure techniques are discussed; in this
paper, we use the one based on principal component analy-
sis (see also [30]). Simpler techniques, such as a box enclo-
sure result in unacceptably large overapproximations. The
approximation in [30] is accurate, but computed based on
vertices, which is not feasible for larger instances of the pow-
ertrain problem. The comparison of reachable sets at both
guard sets for θ = 1 is shown in Fig. 7. One can see that
both approaches have small overapproximation error, with
an even smaller error for the classical geometric approach,
but the new approach scales much more favorably. For both
guards and θ = 0, the classical approach consumes 12.56 s
(new approach: 0.133 s), and 286.7 s (new approach: 0.154
s) for θ = 1, while the classical approach is infeasible for
θ = 2.

Additionally, we compared the results to the reachabil-
ity tool SpaceEx [11]. There, the geometric intersection is
computed using linear programming, by which one can solve
higher-dimensional problems compared to vertex-based ge-
ometrical approaches, but one needs good normal vectors
for bounding halfspaces, while their absence might result in
substantial overapproximations. For the powertrain exam-
ple the overapproximation is substantial so that we could
only compute rather tight results for θ = 0 and an initial set
R0.05(0), which is 5% of the original set in each direction.
We used the following SpaceEx parameters: 0.01 flowpipe
tolerance, 100% clustering, and the template directions are
chosen octogonal plus 500 random directions. The results
are shown together with the mapping approach in Fig. 8.
Due to the large number of required directions, the computa-
tional time of SpaceEx is 10023 s compared to 0.133 s for the
mapping approach. However, we emphasize that SpaceEx is
a general-purpose tool, while our approach requires that all
trajectories in a location actually hit the guard set.

One reason why the mapping approach outperforms the
classical geometric approach is that the guard intersection
of the presented example is bounded by a zonotope with
2020 generators for 101 continuous state variables, which
is a compact representation of a polyhedral set bounded by
2
(
2020
100

)
= 3.04·10171 halfspaces, a number that is out of reach

for classical approaches. However, classical approaches are
still required when guard sets are hit by only some of the
trajectories.

−0.0305 −0.03 −0.0295
4

6

8

10

12

14

16

x
1

x
3

R
map
g R

geo
g

(a) First guard.

0.02 0.03 0.04
6

8

10

12

14

16

18

20

x
3

x
1

R
map
g R

geo
g

(b) Second guard.

Figure 7: Guard intersection using the geometrical
(geo) and the mapping (map) approach for n = 9
(θ = 1). The gray area shows the reachable set us-
ing the geometrical approach, black lines indicate
the bounds of the reachable set of the mapping ap-
proach.

−0.05 0 0.05 0.1
−20

0

20

40

60

80

x
2

x
1

SpaceEx

mapping
approach

guard set

R
0
.0

5
(0

)

(a) Projection onto x1, x2.

−0.05 0 0.05 0.1

0

20

40

60

80

x
1

x
3

SpaceEx

mapping
approach

guard set

R
0
.0

5
(0

)

(b) Projection onto x1, x3.

Figure 8: Guard intersection for n = 7 (Θ = 0) using
SpaceEx and the mapping approach. The gray and
black areas show the reachable set obtained from
SpaceEx and the mapping approach.

7. CONCLUSIONS
We present a new approach for avoiding geometric inter-

section operations in reachability analysis of hybrid systems
by overapproximating the intersection with a nonlinear map
for guard sets modeled as halfspaces. The approach scales
well with the system dimension, making it possible to verify
systems which were previously out of reach. An important
factor for the accuracy of the presented approach is the time
interval of possible guard intersection times. When this time
interval is too large, it might be necessary to split the reach-
able set used as the initial set for the mapping onto the
guard, in order to refine the computation. As mentioned in
the introduction, if the time interval is unbounded, a classi-
cal geometrical approach has to be applied.

Intermediate results of the presented approach can be used
for other reachability problems. For example, the lineariza-
tion error of nonlinear reachability problems based on the
Lagrangian remainder (see [4]) can be drastically tightened
when computed as in Theorem 1. Also, the linear part of
the Taylor series in Proposition 3 can be used to map nor-
mal vectors of polyhedral reachable sets to distinctive nor-
mal vectors of the guard intersection, which is useful for the
classical geometric approach when bounding the intersection
using linear programming.

Acknowledgments
This research was supported in part by U.S. National Science
Foundation grant number CCF-0926181 and the U.S. Air
Force Office of Scientific Research grant number FA9550-06-
1-0312.

8. REFERENCES
[1] M. Althoff. Reachability Analysis and its Application

to the Safety Assessment of Autonomous Cars.
Dissertation, Technische Universität München, 2010.
http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-
20100715-963752-1-4.

[2] M. Althoff and B. H. Krogh. Zonotope bundles for the
efficient computation of reachable sets. In Proc. of the
50th IEEE Conference on Decision and Control, pages
6814–6821, 2011.

[3] M. Althoff, C. Le Guernic, and B. H. Krogh.
Reachable set computation for uncertain time-varying
linear systems. In Hybrid Systems: Computation and
Control, pages 93–102, 2011.

[4] M. Althoff, O. Stursberg, and M. Buss. Reachability
analysis of nonlinear systems with uncertain
parameters using conservative linearization. In Proc.
of the 47th IEEE Conference on Decision and Control,
pages 4042–4048, 2008.

[5] D. Avis, D. Bremner, and R. Seidel. How good are
convex hull algorithms? Computational Geometry:
Theory and Applications, 7:265–301, 1997.

[6] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma
Polyhedra Library: Toward a complete set of
numerical abstractions for the analysis and verification
of hardware and software systems. Science of
Computer Programming, 72:3–21, 2008.

[7] O. Botchkarev and S. Tripakis. Verification of hybrid
systems with linear differential inclusions using
ellipsoidal approximations. In Hybrid Systems:
Computation and Control, LNCS 1790, pages 73–88.
Springer, 2000.

[8] A. Chutinan and B. H. Krogh. Computational
techniques for hybrid system verification. IEEE
Transactions on Automatic Control, 48(1):64–75, 2003.

[9] E. Clarke, A. Fehnker, Z. Han, B. Krogh,
O. Stursberg, and M. Theobald. Tools and Algorithms
for the Construction and Analysis of Systems, chapter
Verification of Hybrid Systems based on
Counterexample-Guided Abstraction Refinement,
pages 192–207. LNCS 2619. Springer, 2003.

[10] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang,
F. Pigorsch, C. Scholl, U. Waldmann, and B. Wirtz.
Exact state set representations in the verification of
linear hybrid systems with large discrete state space.
In Proc. of the 5th Int. Symposium on Automated
Technology for Verification and Analysis, pages
425–440, 2007.

[11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid
systems. In Proc. of the 23rd International Conference
on Computer Aided Verification, LNCS 6806, pages
379–395. Springer, 2011.

[12] A. Girard. Reachability of uncertain linear systems
using zonotopes. In Hybrid Systems: Computation and
Control, LNCS 3414, pages 291–305. Springer, 2005.

[13] A. Girard and C. Le Guernic. Efficient reachability
analysis for linear systems using support functions. In
Proc. of the 17th IFAC World Congress, pages
8966–8971, 2008.

[14] A. Girard and C. Le Guernic. Zonotope/hyperplane
intersection for hybrid systems reachability analysis.
In Proc. of Hybrid Systems: Computation and Control,
LNCS 4981, pages 215–228. Springer, 2008.

[15] A. Girard, C. Le Guernic, and O. Maler. Efficient
computation of reachable sets of linear time-invariant
systems with inputs. In Hybrid Systems: Computation
and Control, LNCS 3927, pages 257–271. Springer,
2006.

[16] A. Hamadeh and J. Goncalves. Reachability analysis

of continuous-time piecewise affine systems.
Automatica, 44(12):189–3194, 2008.

[17] T. A. Henzinger and P.-H. Ho. HyTech: The Cornell
Hybrid Technology Tool. In Hybrid Systems II, LNCS
999, pages 265–294. Springer, 1995.

[18] T. A. Henzinger, B. Horowitz, R. Majumdar, and
H. Wong-Toi. Beyond HyTech: Hybrid systems
analysis using interval numerical methods. In Hybrid
Systems: Computation and Control, LNCS 1790,
pages 130–144. Springer, 2000.

[19] W. Kühn. Rigorously computed orbits of dynamical
systems without the wrapping effect. Computing,
61:47–67, 1998.

[20] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal
techniques for reachability analysis of discrete-time
linear systems. IEEE Transactions on Automatic
Control, 52(1):26–38, 2007.

[21] G. Lafferriere, G. J. Pappas, and S. Yovine. A new
class of decidable hybrid systems. In Hybrid Systems:
Computation and Control, LNCS 1569, pages 137–151.
Springer, 1999.

[22] A. Lagerberg. A benchmark on hybrid control of an
automotive powertrain with backlash. Technical
Report R005/2007, Signals and Systems, Chalmers
University of Technology, 2007.

[23] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A
time-dependent Hamilton–Jacobi formulation of
reachable sets for continuous dynamic games. IEEE
Transactions on Automatic Control, 50:947–957, 2005.

[24] N. S. Nedialkov and M. von Mohrenschildt. Rigorous
simulation of hybrid dynamic systems with symbolic
and interval methods. In Proc. of the American
Control Conference, pages 140–147, 2002.

[25] M. Nordin and P.-O. Gutman. Controlling mechanical
systems with backlash – a survey. Automatica, 38:1633
– 1649, 2002.

[26] E.-A. M. A. Rabeih. Torsional Vibration Analysis of
Automotive Drivelines. PhD thesis, University of
Leeds, 1997.

[27] S. V. Raković, P. Grieder, M. Kvasnica, D. Q. Mayne,
and M. Morari. Computation of invariant sets for
piecewise affine discrete time systems subject to
bounded disturbances. In Proc. of the 43rd IEEE
Conference on Decision and Control, pages 1418–1423,
2004.

[28] N. Ramdani and N. S. Nedialkov. Computing
reachable sets for uncertain nonlinear hybrid systems
using interval constraint-propagation techniques.
Nonlinear Analysis: Hybrid Systems, 5(2):149–162,
2010.

[29] F. M. Schlaepfer and F. C. Schweppe.
Continuous-time state estimation under disturbances
bounded by convex sets. IEEE Transactions on
Automatic Control, 17(2):197–205, 1972.

[30] O. Stursberg and B. H. Krogh. Efficient representation
and computation of reachable sets for hybrid systems.
In Hybrid Systems: Computation and Control, LNCS
2623, pages 482–497. Springer, 2003.

