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Abstract— We present an approach to verify the planned
maneuvers of an automated car. The main idea is to compute
the occupancy of the automated car on the road using reachable
sets, which makes it possible to check if one collides with other
traffic participants, or leaves the drivable area. The specialty
of the presented approach is that all possible uncertainties
in the form of sensor noise, uncertain friction coefficient,
and uncertain initial states, are considered. Maneuvers are
periodically verified on-board to account for the variety of
possible traffic situations, requiring an efficient algorithm.
Thus, the underlying vehicle model has to be a compromise
between accuracy and simplicity. The inexactness of the model
is compensated by adding disturbance to the model such that
it contains high-order model behavior. This is demonstrated by
exploring the state space with rapidly-exploring random trees
(RRTs) of a high-order model and check whether it leaves the
reachable area of the low-order model used for verification.

I. I NTRODUCTION

A major motivation for developing (semi-)automated cars
is the vision of accident-free driving, which can also be seen
as the precondition for making automated cars a reality. The
main challenges in verifying the safety of those vehicles is
that (i) every traffic situation is different, (ii) the vehicle
behavior has to be safe considering all sources of uncertainty,
(iii) the vehicle has to be safe even when certain decision-
making components fail. In this work we address all three
issues: Our approach is flexible by verifying each traffic
situation individually on-board. We compute all possible
states which the ego-vehicle and other traffic participants
can reach from a set of possible initial states, under a set
of possible inputs and parameters. We also describe a fail-
safe verification procedure, i.e., the vehicle comes to a safe
stop even when decision-making components fail.

Since the safety verification relies on mathematical models
of vehicle behavior, the result can only be as good as the
model describing the real behavior. Due to the time con-
straints of the verification procedure, the vehicle dynamics
model has to be chosen such that only the main effects are
considered. However, in this work, we show that even high-
order models are represented by the reachability analysis of
low-order models when the set of initial states is enlarged
and disturbance is added. From now on, we refer to this
property as behavior inclusion.

We relax the problem of behavior inclusion by checking
only a finite number of test maneuvers: evasive maneuver,
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moose test, and cornering. One way to check behavior
inclusion is to check if the reachable set of the high-order
model is enclosed by the one of the low-order model. Note
that this requires to project the states of the high-order model
onto the ones of the low-order model. However, the reachable
set computation of the high-order model is too challenging
for current reachable set algorithms due to the large number
of state variables and the large nonlinearity measure. Instead,
we try to falsify behavior inclusion by searching for states
of the high-order model, which are not in the reachable set
of the low-order model. We use rapidly-exploring random
trees (RRTs) to guide the simulation such that interesting
simulation traces are further explored, while uninteresting
ones are abandoned. If no falsification can be found during
intensive offline testing, the reachable set of the low-order
model (computed online) is assumed to contain all high-order
behaviors.

A. Related Work

Literature on reachability analysis of dynamical systems
with continuous or hybrid (mixed discrete/continuous) dy-
namics is summarized in [1]. Since the vehicle model in this
paper has nonlinear continuous dynamics, we focus on this
class of systems: Most approaches compute reachable sets of
nonlinear systems by abstracting to differential inclusions of
simpler dynamics, either by simplifying the dynamics within
regions of a fixed state space partition [2], [3], resulting in
a hybrid system, or by simplification in the vicinity of the
reachable set [4]–[6]. The latter approach generally outper-
forms fixed state space partitions since it does not require
the consideration of hybrid dynamics. Approaches which
do not use abstraction are mostly based on optimization
techniques which are computationally too expensive for an
online verification [7]–[9]. The method applied in this work
is based on [5], which uses zonotopes as a set representation
for nonlinear systems in contrast to the other referenced
approaches. As a consequence, the proposed approach, which
abstracts to linear systems, is efficient, since zonotopes show
great performance for linear systems [10].

There is a rich literature on finding counterexamples for
(safety) specifications of dynamic systems. In this work, we
use RRTs, which were originally developed for planning
problems in robotics [11]. The extension to other control
problems, such as discrete and hybrid systems, is describedin
[12]. Recently, variants of the classical RRT algorithm have
been used for falsifying properties of dynamic systems by
optimizing the coverage of the state space [13]–[15]. Other
coverage-based methods find trajectories that are representa-



tive for neighboring trajectories based on sensitivity analysis
[16] or approximate bisimulation metrics [17]. While RRTs
are specialized for increasing coverage of the state space,
another line of Monte-Carlo-based techniques guides simu-
lations such that temporal logic properties are falsified with
high probability [18].

In a previous work, the authors verified maneuvers of
automated cars using reachability analysis [19]. This work
is an extension in many respects: We use RRTs to check
whether the high-order dynamics is enclosed by computing
the reachable set of the low-order model when enlarg-
ing uncertainties. In addition, we consider uncertain road-
tire friction, which is considered the most influential and
unpredictable parameter of the vehicle dynamics, and we
consider load transfers in the low-order model to improve
the reachable set results. Finally, a description of how the
trajectory planner interacts with the verification module is
presented.

B. Outline

In Sec. II we introduce the fail-safe procedure for safety
verification. The models of the low- and high-order vehicle
dynamics, including the control law of the vehicle, are shown
in Sec. III. The reachable set computation is presented in Sec.
IV and the RRT algorithm in Sec. V. Finally, the results
of the reachability analysis and the model falsification are
presented in Sec. VI.

II. FAIL -SAFE VERIFICATION PROCEDURE

Given a reference trajectory of the vehicle planner, the
presented verification procedure decides if this trajectory
can be safely followed. This decision is made based on the
occupancy of other traffic participants and the ego-vehicle. If
the occupancy of the ego-vehicle does not intersect with that
of other vehicles for any of the considered consecutive time
intervals[tk, tk+1], and does not leave the drivable area, the
maneuver is safe (see Fig. 1).
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Fig. 1. Verification by checking emptiness of occupancy intersection.

The occupancy of other vehicles is based on an assumption
of maximum acceleration and a simple set of traffic rules,
such as respecting speed limits and driving in dedicated lanes
(see the example in [19]). If the other traffic participant isan
automated car, it might simply broadcast its own predicted
occupancy. The occupancy of the ego-vehicle has to be
computed in more detail, since it has to be checked whether
the reference trajectory can be tracked under all disturbances
and if the deviation is small enough to avoid crashes. In
this paper, we focus on the computation of the reachable

set of the ego-vehicle. The road occupancy is obtained from
the reachable set by enlarging the set of center of gravity
positions based on the vehicle body dimensions and the set
of vehicle orientations [19].

The interaction between the trajectory planner and the
verification planner is important, especially since the tra-
jectory planner might not find a safe trajectory on time.
Thus, we propose a fail-safe approach, i.e., even if the
planning algorithm or the verification algorithm does not
terminate on time, the automated vehicle comes to a safe
stop. In order to achieve the fail-safe property, we consider
reference trajectories that consist of two parts: The first part
describes the actual maneuver the vehicle should follow, and
the second part describes a braking trajectory, which brings
the vehicle to a safe stop (see Fig. 1).Safe stopmeans that the
vehicle should not stop in, e.g., lanes with oncoming traffic
or in railroad intersections. Note that the braking maneuver is
only executed when the vehicle does not find a new trajectory
on time.

In order to ensure that the vehicle always follows a
verified maneuver, new maneuvers are restricted to branch
off previously verified maneuvers at specific positions. These
positions are chosen such that the new maneuver is already
verified when the vehicle approaches it. This is predictable
since the required time of the proposed verification algorithm
is proportional to the execution time of the planned maneu-
ver. Given the ratioλ = tver

texec
of verification timetver to

maneuver execution timetexec, the planning algorithm has
to plan a reference trajectory which branches off the previous
one afterλtnew time, wheretnew is the execution time of
the new maneuver (see Fig. 1). In case the verification takes
unexpectedly longer, one can still use the previously verified
one. The vehicle model for checking these plans is presented
next.

III. V EHICLE DYNAMICS

We briefly introduce the low-order dynamic model used
for the reachability analysis and the high-order model to
check the validity of the reachable sets.

A. Low-Order Model

The basis of the low-order model is a bicycle model
which describes the basic effects of the lateral dynamics for
constant velocity, which is, e.g., used for yaw stabilization of
vehicles. The namebicycle modelrefers to the fact that the
front and rear wheel pairs are each lumped into one wheel,
since the roll dynamics is not considered (see Fig. 2 and
[20, Chap. 2.6]). In order to model the controlled vehicle,
we add the possibility to accelerate the vehicle and include
the equations describing the position on the road. These two
enhancements result in the model described in our previous
work [19]. In the current work, we additionally consider the
load transfer of the vehicle due to longitudinal acceleration
ax (neglecting suspension dynamics), such that the vertical
forces on the front and rear axisFz,f andFz,r become

Fz,f =
mglr −maxh

lr + lf
, Fz,r =

mglf +maxh

lr + lf
,



with parameters from Tab. I. These forces are inserted into
the derivation of the equations for the slip angle (at the
center of gravity)β and the yaw ratėΨ [20, Chap. 2.6]. The
dynamics for the inputsδ (steering angle),ax (longitudinal
acceleration), and the parameters in Tab. I are:

β̇ =
µ

v(lr + lf )

(

CS,f(glr − axh)δ

− (CS,r(glf + axh) + CS,f(glr − axh))β

+ (CS,r(glf + axh)lr − CS,f (glr − axh)lf )
Ψ̇

v

)

− Ψ̇

Ψ̈ =
µm

Iz(lr + lf)

(

lfCS,f(glr − axh)δ

+ (lrCS,r(glf + axh)− lfCS,f (glr − axh)) β

−
(
l2fCS,f(glr − axh) + l2rCS,r(glf + axh)

) Ψ̇

v

)

v̇ =ax

ṡx =v cos(β +Ψ)

ṡy =v sin(β +Ψ)

Rewriting the above equations in state space form yields
a 6-dimensional model with the state vectorx =
[β, Ψ, Ψ̇, v, sx, sy]

T . Note that we do not use the cornering
stiffnessC, as is typically done for bicycle models, but
separate the effect of the friction coefficientµ, the cornering
stiffness coefficientCS , and the vertical forceFz , such that
Ci = µCS,iFz,i and i = {f, r} for the front and rear axle.
This separation is done because the friction coefficient is the
most dominant parameter, which is investigated later. The
uncertainty of the friction is specified by an interval in Tab.
I, representing dry conditions.

[

sx
sy

]

Ψ

βlr
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δ

x
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Fig. 2. Bicycle model.

TABLE I

BICYCLE MODEL PARAMETERS.

description symbol value unit
vehicle mass m 1093.3 kg
moment of inertia (yaw) Iz 1791.6 kg m2

distance from c.g. to front axle lf 1.1562 m
distance from c.g. to rear axle lr 1.4227 m
height of c.g. above ground h 0.6137 m
cornering stiffness coefficient CS,i 20.898 1/rad
friction coefficient µ [0.8, 1] —

B. High-Order Model

The high-order model is taken out of [21, Appendix A].
Unlike the bicycle model, this model considers the vertical
load of all 4 wheels due to roll, pitch, and yaw, their

individual spin and slip, and nonlinear tire dynamics. The
multi-body dynamics is described by3 masses: The unsprung
mass and the sprung mass of the front and rear axles. The
forces between these masses are described by the dynamics
of the suspension and the tire model.

We considered all suspension forces in [21, Appendix A]
originating from springs, dampers, and anti-roll bars. We do
not consider flexibilities in the steering system, bump stops,
and squat/lift forces caused by the suspension geometry.
The vehicle parameters are taken from vehicle14 in [21,
Appendix E], which is a BMW 320i. Parameters of that
vehicle applicable to the bicycle model are shown in Tab.
I.

For the tire dynamics we use the PAC2002 Magic-Formula
tire model, which is widely used in industry [22]. The
combined lateral and longitudinal tire forces are computed
from the slip angle, the camber angle, and the vertical tire
force described in [21, Appendix A]. The tire parameters for
all 4 wheels are taken from the example of a PAC2002 tire
property file in [22]. The cornering stiffness coefficientCS,i

required for the bicycle model is obtained from the nonlinear
model by linearizing at zero slip angle.

Rewriting all equations as a state space model yields
28 state variables. All state variables, including their initial
values, are listed in Tab. II, where the pairslf , rf , lr, rr
indicate left/right and front/rear. Denoting the initial state
variables of the bicycle model by a superscriptedb, the initial
states of the high-order model due to coordinate system
transformations and zero initial tire slip assumption are:
Ψ0 = −Ψb

0, Ψ̇0 = −Ψ̇b
0, ω0 = vx,0/R, vx,0 = cos(−βb

0)v
b
0,

vy,0 = sin(−βb
0)v

b
0, vyf,0 = vy,0+lfΨ̇0, vyr,0 = vy,0−lrΨ̇0,

zi,0 = Fzi,0/(2Kzt) (i ∈ {r, f}), sx,0 = sbx,0, sy,0 = −sby,0,
which use the effective tire radiusR, the distances from the
center of gravity to the front and rear axlelf , lr, the tire
spring rateKzt, and the vertical forcesFzf,0, Fzr,0 of the
front and rear due to gravity.

TABLE II

INITIAL VALUES OF THE HIGH-ORDER MODEL.

sprung mass unsprung mass other
init. init. init.

name val. name val. name val.
yaw ang. Ψ0 roll ang. (f) 0 wheel speed (lf) ω0

yaw rate Ψ̇0 roll rate (f) 0 wheel speed (rf) ω0

roll angle 0 roll ang. (r) 0 wheel speed (lr) ω0

roll rate 0 roll rate (r) 0 wheel speed (rr) ω0

pitch ang. 0 y-vel. (f) vyf,0 pin joint diff. (f) 0
pitch rate 0 y-vel. (r) vyr,0 pin joint diff. (r) 0
x-velocity vx,0 z-pos. (f) zf,0 x-position sx,0
y-velocity vy,0 z-vel. (f) 0 y-position sy,0
z-position 0 z-pos. (r) zr,0
z-velocity 0 z-vel. (r) 0

C. Vehicle Controller

The vehicle controller is identical to the one proposed
in [19], except that the controller parameter vectork =
[0.2, 2, 0.3, 1, 10]T is slightly changed to smaller gains so
that the control performance is still good for larger sensor



noise. We use a positioning system that combines GPS data
with inertial measurements to accurately measure the posi-
tionssx, sy, the yaw angleΨ, the yaw rateΨ̇, and the veloc-
ity v. The corresponding sensor noise is combined in the vec-
tor u = [ux, uy, uΨ, uΨ̇, uv]

T ∈ [−1, 1]0.08×[−1, 1]0.08×
[−1, 1]0.2π/180× [−1, 1]0.2π/180× [−1, 1]0.08. The refer-
ence values for the control are denoted by a subscriptedd and
are held constant for time intervals[tk, tk+1], wheretk = k r,
k ∈ N is the time step, andr ∈ R

+ is the step size. These
values are combined inw = [sx,d, sy,d, Ψd, Ψ̇d, vd]

T . With
the introduced variables, the control law for the steering
angleδ and the vehicle accelerationax is

δ =k1

(

cos(Ψd)(sy,d − sy − uy)− sin(Ψd)(sx,d − sx − ux)
)

+ k2(Ψd −Ψ− uΨ) + k3(Ψ̇d − Ψ̇− uΨ̇),

ax =k4

(

cos(Ψd)(sx,d − sx − ux) + sin(Ψd)(sy,d − sy − uy)
)

+ k5(vd − v − uv).

Combining the vehicle controller with the low- and high-
order model yields the corresponding controlled vehicle
dynamics, denoted bẏx = f(x,w, u, p), where p := µ
is the uncertain friction coefficient. The uncertain friction
coefficient could also be modeled as part of the uncertain
inputu; however, uncertain road friction is treated differently
in the subsequent reachability analysis, which is emphasized
by this separate variable.

IV. REACHABILITY ANALYSIS

This section describes the basic principle for computing
reachable sets subject to sensor noise and uncertain friction
coefficient. We denote the solution of the vehicle dynamics
ẋ = f(x,w, u, p) for x(0) = x0, t ∈ [0, tf ], and trajectories
w(·), u(·), p(·) by χ(t, x0, w(·), u(·), p(·)). Note thatw(·)
refers to a trajectory, wherew(t) refers to the value of the
trajectory at timet. The exact reachable set for a given
reference trajectoryw∗(·) and a set of sensor noise valuesU
is

Re([0, tf ]) =
{

χ(t, x0, w(·), u(·), p(·))
∣
∣
∣t ∈ [0, tf ],

x0 ∈ R(0), w(t) = w∗(t), u(t) ∈ U , p(t) ∈ P
}

.

The uncertain inputu(t) is a piecewise continuous function,
whereas the reference functionw(t) is constant within time
intervalsτk = [tk, tk+1] and updated at timestk. Although
p(t) may vary continuously over time, we restrict this
function to be piecewise constant, as forw(t), in order to
apply a more accurate reachability approach for uncertain
parameters. Since for nonlinear systems, the reachable set
cannot be computed exactly, we compute overapproximations
R([0, tf ]) ⊇ Re([0, tf ]).

The overapproximations in this work are obtained by
linearizing the nonlinear dynamicṡx = f(x,w, u, p) so
that techniques for linear systems can be applied as pro-
posed in an earlier work [5]. In order to guarantee an
overapproximative result, the linearization error is considered

as an additional uncertain input, as presented in the next
subsection.

A. Basic Procedure

For a concise notation of the linearization procedure, the
state vectorx and the input vectoru are combined to form
a new vectorz = [xT , uT ]T . The reference trajectory is
not included, since it is certain, and thus a linearization
with respect to that vector is not required. The parameter
p, however, is uncertain, but its influence is not linearized.
Although this linearization is possible, it would result in
much larger linearization errors in the vehicle dynamics (this
has been tested, but results are not shown due to space
limitations). In addition, the parameter influences the system
dynamics by a multiplication with the state (unlike more
complicated nonlinear operations), which can be elegantly
expressed by uncertain state and input matrices for which
efficient reachable set approaches exist for constant [23] and
time-varying parameters [24].

Using a first-order Taylor expansion around the lineariza-
tion point [z∗T , w∗T ]T , the original differential equation of
the ith coordinate is enclosed by the differential inclusion

∀t ∈ τk :

ẋi ∈ fi(z
∗, w∗, p)

︸ ︷︷ ︸

=ci(p)

+
∂fi(z, w

∗, p)

∂z

∣
∣
∣
z=z∗

(z − z∗)
︸ ︷︷ ︸

=[A(p)(x−x∗)+B(p)(u−u∗)]i

⊕Li(τk),

(1)

where⊕ denotes a Minkowski addition1 andL is the set of
Lagrange remainders

Li(τk)=
{1

2
(z − z∗)T

∂2fi(z, w
∗, p)

∂z2

∣
∣
z=ξ

(z − z∗)
∣
∣
∣

ξ ∈ R(τk)× U , p ∈ P
}

.

For more detailed information on the computation ofL, the
interested reader is referred to [19], [25].

The linearization pointz∗(τk) = [x∗(τk), u
∗]T is chosen

asu∗ = center(U) andx∗(τk) = x̃(tk), where we linearize
along the nominal trajectorỹx(·) obtained by a simulation
starting in the center ofR(0) subject to the inputu∗.

For each time interval[tk, tk+1] (tk+1 = tk+r), the system
is linearized, making it possible to apply the superposition
principle for an inputv(t) so thatx(tk+1) = xh(tk+1) +
xi(r), where

xh(tk+1) = eArx(tk) (initial state solution)

xi(r) =

∫ r

0

eA(r−t)v(t) dt (input solution).
(2)

This approach is also used when computing with sets,
yielding the reachable set of a time intervalR([tk, tk+1]) in
3 steps (see Fig. 3). These steps involve the multiplication
of sets (A⊗ B := {a b|a ∈ A, b ∈ B}):

1) Initial state solution:
Rh(tk+1) = {eA(p)r|p ∈ P} ⊗R(tk)

1Given are sets in Euclidean spaceA, B: A⊕B = {a+b|a ∈ A, b ∈ B}



2) Convex hull computationCH(R(tk),R
h(tk+1)) for

the approximation within[tk, tk+1].
3) Addition of the reachable set of the input solution

Ri(r) and an error termD (see [25]) making the result
overapproximative:
R(tk+1) = CH(R(tk),Rh(tk+1))⊕Ri(r) ⊕D.

When the set of uncertain inputs does not contain the origin,
the above procedure has to be slightly modified [25]. For
a tight overapproximation, it is important to account for
parametric dependencies, which are addressed in the next
subsection.

R(tk)

Rh(tk+1)

CH(R(tk),
Rh(tk+1))

R(τk)

➀ ➁ ➂

enlargement

by Ri(r)⊕D

Fig. 3. Computation of the reachable set for a time interval[tk, tk+1].

B. Considering Parametric Dependencies

In order to consider parametric dependencies, we take
advantage of the special structure whereby the parameterp
influences the system matrixA(p), the input matrixB(p),
and the constant inputc(p). After normalizing the param-
eter p ∈ P = [p, p], such that it is mapped to values
β(p) = (2p− p− p)/(p− p) ∈ [−1, 1], we can express the
aforementioned variables of the vehicle model asA(β) =
CA + βGA, B(β) = CB + βGB , c(β) = cc + βgc, where
CA, GA ∈ R

n×n, CB, GB ∈ R
n×m, cc, gc ∈ R

n×1, and
β ∈ [−1, 1]. The matricesA(β), B(β) can be bounded by a
matrix zonotope

H =
{

CH +

κ∑

i=1

βiG
(i)
H

∣
∣
∣βi ∈ [−1, 1], CH , G

(i)
H ∈ R

n×n
}

,

which is used later to bound the matrix exponential. The
matrix CH is referred to as the matrix center andG(i)

H is
referred to as a matrix generator. The vectorc(β) can be
analogously bounded by a zonotope which equals a matrix
zonotope, except that the center matrix and the generator
matrices are replaced by a center vector and generator
vectors. Matrix zonotopes are a generalization of interval
matrices and thus provide tighter bounds for matrix sets [23].

We overapproximatively compute the exponential matrix
eA(β)r using a finite Taylor series up to orderη with a
remainder termE(r), whereE(r) is computed as in [23]:

eA(β)r ∈

η
∑

i=0

(A(β)r)i

i!
⊕ E(r). (3)

When the system matrix is bounded by a general matrix
zonotope, it is difficult to tightly bound the set of possible
exponential matrices. However, in the event of only one

uncertain parameter, we propose a new and tight overap-
proximation:

Theorem 1 (Matrix Exponential Set (Single Parameter)):
The set of matrix exponentials{eAr|A ∈ A}, where
A = {C + βG|β ∈ [−1, 1], CH , G

(i)
H ∈ R

n×n} is a
matrix zonotope with one generator matrix, can be tightly
overapproximated by

{eAr|A ∈ A} ⊆ K(r) ⊕ E(r).

The matrix exponential remainderE(r) is computed as in
[23] andK(r) is a matrix zonotope with the center

CK =

η
∑

l=0

Dl
rl

l!
+

⌊η/2⌋
∑

l=1

G
(2l)
K ,

where⌊·⌋ is the floor function, and the generators

G
(l)
K =

{∑η
i=l F

(l)
i

ri

i! , for unevenl

0.5
∑η

i=l F
(l)
i

ri

i! , for evenl.

The matrix center and generators use auxiliary matrices,
which are iteratively obtained for a giveni ∈ N

+:

Di = Di−1C

F
(1)
i = Di−1G+ F

(1)
i−1C

l = 2 . . . (i− 1) : F
(l)
i = F

(l−1)
i−1 G+ F

(l)
i−1C

F
(i)
i = F

(i−1)
i−1 G,

whereD0 = I (I is the identity matrix),F (1)
0 = 0. �

Proof: We first show that(C + βG)i = Di +
∑i

l=1 β
lF

(l)
i

by induction:

(C + βG)i = (Di−1 +

i−1∑

l=1

βlF
(l)
i−1)

︸ ︷︷ ︸

=(C+βG)i−1

(C + βG)

= Di−1C
︸ ︷︷ ︸

=Di

+ β(Di−1G+ F
(1)
i−1C)

︸ ︷︷ ︸

=βF
(1)
i

+
i−1∑

l=2

βl(F
(l−1)
i−1 G+ F

(l)
i−1C)

︸ ︷︷ ︸
∑i−1

l=2 βlF
(l)
i

+ βiF
(i−1)
i−1 G

︸ ︷︷ ︸

βiF
(i)
i

.

Using the Taylor terms of the matrix exponential in (3), we
obtain

η
∑

i=0

(C + βG)iri

i!
=

η
∑

i=0

(Di +
∑i

l=1 β
lF

(l)
i )ri

i!

=

η
∑

i=0

Di
ri

i!
︸ ︷︷ ︸

=:C̃K

+

η
∑

l=1

βl

η
∑

i=l

F
(l)
i

ri

i!
︸ ︷︷ ︸

=:G̃
(l)
K

When computing the set of matrices forβ ∈ [−1, 1], the even
powers have the rangeβ2l ∈ [0, 1], while the uneven powers
are in the rangeβ2l+1 ∈ [−1, 1]. Since matrix zonotopes
have generators with ranges[−1, 1], the matrix generator



values representing even powers can be multiplied by0.5
and the center part can be added to the center of the matrix
zonotope, tightening the result. Thus,C̃K becomesCK and
G̃

(l)
K becomesG(l)

K , as stated in the theorem. �

Besides the initial state solution, the constant inputc(β)
is subject to the same parameter (see (1)). Neglecting this
dependence, the straightforward computation of the set of
input solutions (see (2)) would be performed as in [25] by
∫ r

0
eAt dt ⊗ C, usingA(β) ∈ A, c(β) ∈ C. However, this

dependence is important, since the values ofc(β) might have
a dominant effect depending on the linearization point. Using
Theorem 1, this dependence can be taken care of by inserting
(3) into (2), such that one obtains the partial input solution

xi,c(r) =

η
∑

i=0

Ai(β)c(β)
ri+1

(i + 1)!
⊕

∫ r

0

E(r) dt

︸ ︷︷ ︸

⊆E(r) r, see [25]

c(β).

The termsAi(β)c(β) = (C + βG)i(cc + βgc) can be
computed similarly, as shown in the proof of Theorem 1,
yielding a similar result enclosed by a zonotope. The second
input L (see (1)) contributing to the set of input solutions
Ri does not have these dependencies and is computed as in
previous work [23].

We use zonotopes as a representation for reachable sets
R([tk, tk+1]), since they are efficient (complexity with re-
spect to the system dimensionn is O(n3)), numerically sta-
ble, and are the only known representation that can efficiently
compute the set multiplication with matrix zonotopes.

V. RAPIDLY-EXPLORING RANDOM TREES

In this section, we describe the RRT algorithm designed
to falsify the reachable set of the low-order model. In case of
a violation, the reachable set computation of the low-order
model is adapted by enlarging the set of initial states and
the additive disturbanceV , such thatP ẋ ∈ f(x̃, w, u, p)⊕V ,
whereP is the projection matrix from the high-order vehicle
statex to the low-order vehicle statẽx.

RRTs have been used in [13] to underapproximate reach-
able sets. In contrast to [13], which tries to generally cover
the state space, we consider the problem of covering the
area around a reference trajectory. Although we use the same
basic technique, we make a modification to generate the same
number of samples for each time interval, see Fig. 4:

1) Initialize the discrete set of states for the next time
interval asX (τk+1) = ∅.

2) Generate a samplexs from the state space.
3) Find the nearest statexn according to a distance

measureρ so thatxn = argmin(ρ(xs, x
(i))), where

x(i) ∈ X (τk).
4) Obtain the inputu which drivesxn to the new state

xadd closest toxs.
5) Add xadd to the set of states for the next time interval

X (τk+1).
6) Repeat steps 2-5 for a predefined number of samples,

then go to the next time interval and start with step 1.

When initializing X (τk+1) = X (τk), one obtains the ap-
proach in [13].

xn
xadd

xs

results of
different
inputs

x(i)

tk−2 tk−1 tk tk+1

x

t

Fig. 4. RRT concept for trajectory tracking.

We sample the spaceXrel relative to the nominal tra-
jectory x∗(t) used for linearization, which is chosen as a
multidimensional rectangle centered at the origin with edge
lengths lβ = 0.4, lΨ = 0.4, lΨ̇ = 4, lv = 2, lsx = 4,
lsy = 4, which are chosen such that the reachable sets
for all time intervals are enclosed. Best results have been
obtained by first choosingxs as the vertices ofXrel and
then uniformly samplingXrel. Combined deterministic and
stochastic sampling has been reported as advantageous for
sampling-based planning, too [26].

The distance measure is simply chosen asρ(xs, x
(i)) =

‖N(xs − x(i))‖2 with the normalization matrixN =
diag( 1

lβ
, 1
lΨ
, 1
lΨ̇
, 1
lv
, 1
lsx

, 1
lsy

). The normalization is important
since otherwise the coordinates of high numerical value
would be preferred.

The optimal u that drives xn to xs, i.e., minimizes
ρ(xadd, xs), is chosen by testing all vertices of the set of
possible inputsU . For the RRT computation, we add the
uncertain frictionµ as an additional uncertain input to the
other inputsu (see Sec. III-C) in order to simplify the nota-
tion. Thus, we obtain a manageable set of64 inputs. In [13],
the system dynamics is linearized and linear programming
is used to obtain the optimal input. However, for the vehicle
dynamics, the input matrix does not have full rank, so that
this technique cannot be used. Other optimization techniques
are too time consuming due to the high order of the model
(28 state variables). In addition, sampling over all corner
cases ofu is always numerically stable.

VI. N UMERICAL EXPERIMENTS

We demonstrate the proposed techniques for reachable sets
and RRTs on three standard maneuvers: Evasive maneuver
(lane change and braking), moose test (double lane change),
cornering (braking towards the apex, followed by accelerat-
ing). We first give a detailed description of the maneuvers
and then present numerical results.

A. Tested Maneuvers

The capabilities of a vehicle can be roughly described by
Kamm’s circle, which shows the border of possible combined
lateral accelerationax and longitudinal accelerationay,
combined ina = [ax, ay]

T . We design the reference tra-
jectories by providing the directionΦ and the absolute value



aabs = ‖a‖2 of the acceleration in vehicle-fixed coordinates,
ensuring that the accelerations are within Kamm’s circle. In
addition, we restrict the jerkσ = ‖ȧ‖2 of the vehicle, since
the steering, acceleration, and braking cannot be changed
instantaneously.

We encode the maneuvers by the directionΦ, the abso-
lute valueaabs, and their duration. When the acceleration
changes, the acceleration rateσmax = 50 [m/s3] towards
the new accelerationa is applied, resulting in a trajectory
for ax and ay. The reference values of the maneuvers are
obtained from the acceleration as:

vd(t) =

∫ t

0

ax(τ)dτ, Ψ̇d(t) =
ay(t)

vd(t)
, Ψd(t) =

∫ t

0

Ψ̇d(τ)dτ,

sx,d(t) =

∫ t

0

cos(Ψd(τ))vd(τ)dτ,

sy,d(t) =

∫ t

0

sin(Ψd(τ))vd(τ)dτ.

In Tab. III we summarize the tested maneuvers. Note that all
maneuvers are highly dynamic, i.e., relatively close to the
maximum possible tire forces.

TABLE III

SPECIFICATION OF TESTED MANEUVERS.

aabs [m/s2] Φ [rad] duration [s]
evasive maneuver
[0, 6, 6, 0] [0, 0.75,−0.75,−1]Π [0.4, 0.75, 0.63, 0.65]
moose test
[0, 8, 8, 0, 8, 8, 0] 0.5[0, 1,−1, 0,−1, 1, 0]Π [0.4, 0.84, 1, 1, 0.84, 1, 0.4]
cornering
[0, 6, 4.8, 0] [0, 0.7, 0.3, 0]Π [0.4, 1, 1, 0.4]

B. Results

For each of the presented maneuvers we compute a RRT
and compare the results with reachability analysis. We com-
pute two different reachable sets: The first one considers the
uncertain friction as presented in Sec. IV; the second one is
computed identically, except that the specific frictionµ = 0.9
is considered instead. For both cases, we present the added
disturbance for which all RRT states of all maneuvers and
time intervals are contained in the corresponding reachable
setsR([tk, tk+1]). In order to efficiently check enclosure
of the RRT states, we modify the reachable sets in a post-
processing procedure by replacing them by their enclosing
boxes for each time interval.

When considering uncertain friction, one only has to add
disturbance to the longitudinal acceleration (V = 0 × 0 ×
0 × [0,−1] × 0 × 0) in order to enclose all RRT states.
The reason for the required disturbance is that in the high-
order model, the vehicle slows down for large slip angles
due to tire friction – an effect that is not modeled by the
bicycle model. In the other case, when uncertain friction
is not directly modeled, the additive disturbance has to be
enlarged byV = [−0.15, 0.15]× 0× 0× [0,−1]× 0× 0 in
order to account for the uncertainty in the slip angleβ due
to uncertain friction. These numbers have been obtained by

successively enlarging the uncertain input of statexi when
the reachable interval of that state has been violated. Thiscan
be easily automated given an increment of the enlargement
for each coordinate.

In addition to the additive disturbance, we enlarged the ini-
tial set of states, which is chosen asR(0) = [−0.02, 0.02]×
[−0.05, 0.05]× [−0.05, 0.05]× [14.8, 15.2] × [−0.2, 0.2] ×
[−0.2, 0.2], by 5% in each direction for the reachable set
computations. The time step for updating the reference
trajectory isr = 0.01 s.

The reachable set for fixed friction is slightly tighter
than for uncertain friction, where both pass the falsification
test. This is illustrated for different projections in Fig.
5 for the moose test; other plots are neglected due to
space restrictions, which show similar results. However, the
reachable set computations without uncertain parameters are
much more efficient. The computation times for a prototype
implementation in MATLAB on an Intel i7 Processor with
1.6 GHz and 6 GB memory are shown in Tab. IV. For
comparison, we also added the computation time of a single
simulation run of the high-order model using the standard
Runge-Kutta solver (ode45) in MATLAB. The computation
times are obtained under the assumption that the linearization
is done in a parallel process together with the reachability
computation of the linearized system. One can observe that
even for the MATLAB implementation, the fixed-friction
case is faster than the execution time of the maneuvers.
Future implementations in C++ should improve these num-
bers. Note that the reachable set computations of uncertain
friction would have become numerically unstable (reachable
set grows excessively fast) when the parameter dependence
discussed in Sec. IV-B had not been considered.

TABLE IV

COMPUTATIONAL TIMES IN SECONDS.

maneuver comp. time comp. time sim. time
maneuver time [s] (no unc. par.) (unc. par.) (high-or.)
ev. maneu. 2.43 1.30 3.97 3.40
moose test 5.48 2.97 8.93 7.14
cornering 2.8 1.53 4.86 4.18

VII. C ONCLUSIONS

We have presented two versions of reachable set com-
putations: One which directly considers uncertain friction,
another one which considers it indirectly by adding distur-
bance. It is shown that in both cases, the sets contain all
states of a high-order vehicle model generated by a RRT
when adding disturbance and slightly enlarging the set of
initial states. The computation with a fixed friction parameter
is considerably faster and thus preferred, unless the friction
coefficient has high uncertainty. When using a fixed friction
parameter, the MATLAB prototype was already faster than
the execution time of the maneuver. The approach also shows
that the simulation of the high-order model takes an amount
of time similar to that of the reachable set computation,
which encloses the high-order behavior.
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Fig. 5. Reachable set for the moose test (double lane change maneuver).
The white box shows the set of initial states, black circles show states
from the RRT generation every5r = 0.05 [s], the gray regions show the
reachable sets: with uncertain parameters (dark gray), without uncertain
parameters (light gray).

In the future, we plan to implement the presented reacha-
bility algorithm on a real vehicle and try to falsify the reach-
able sets by real world driving experiments. The RRT ap-
proach is a required step for tuning additive disturbance and
gaining enough insight before conducting time-consuming
experiments.
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