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Formal and Compositional Analysis of Power
Systems using Reachable Sets

Matthias Althoff

Abstract—Power system stability analysis becomes more im-
portant in the presence of ever increasing variations in operating
conditions. Traditionally, the operation of power systems is
verified for specific operating conditions. In this work, the
stability analysis is performed for a set of operating conditions
using reachability analysis, which makes it possible to compute
the bounds of all possible system trajectories. Thus, reachability
analysis can be used to rigorously check specifications. Contrary
to previous work, the presented approach does not require
model simplifications when the system is described by semi-
explicit, nonlinear, index-1 differential-algebraic equations. The
main obstacle in reachability analysis is the scalability towards
larger systems, which is addressed by investigating compositional
techniques. As a result, transient stability and variable energy
production can be analyzed for the IEEE 14-bus and 30-bus
benchmark systems, for which the computation times are orders
of magnitude faster than the simulation of all cases starting in
the corners of the set of possible initial states.

Index Terms—Reachability analysis, stability analysis, com-
positional analysis, power systems, transient stability analysis,
uncertain energy production, differential-algebraic equations,
formal verification.

I. I NTRODUCTION

The ongoing trend towards decentralized power generation
with a considerable share of renewable energy sources results
in a less predictable operation of power systems. New anal-
ysis techniques are required to consider all possible future
behaviors to ensure a reliable operation of power systems.
In this paper, reachability analysis is proposed as a formal
technique to verify if specifications are met under uncertain
operating conditions. Reachability analysis computes theset of
all possible (infinitely many) trajectories of a dynamic model
when the uncertainty of initial states, time-varying inputs, and
parameters is bounded by sets.

This work focuses on large deviations from the initial oper-
ating condition, such that small-signal analysis techniques can
no longer be applied [1, Chap. 12]. The dominant technique in
power systems for model-based analysis of large disturbances
is numerical simulation, which is easy to implement, but
can only provide satisfying results when the actual operating
condition is known and there are no parametric and input
uncertainties. The knowledge of the actual operating condition
requires constant simulation of the system for a set of probable
contingencies when new SCADA (Supervisory Control And
Data Acquisition) measurements are available at a cycle time
of around 10-30 minutes [2]. Due to increasingly varying
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operating conditions, the measurements at the last cycle might
have considerably drifted. In order to rigorously considerthose
drifts, one has to assume a set of possible initial states covering
changes between SCADA updates. However, the number of
required simulations grows exponentially with the number
of state, input, and parametric variables due to a necessary
gridding of the multidimensional set bounding all variables.
Besides the exponential complexity, numerical simulationis
not a formal technique, i.e., one cannot certify whether the
effect of a control action complies with the system specifica-
tion: 1) it does not show that all states (infinitely many) of
an initial set return to the operating point, and 2) it is unclear
for how long a simulation has to be run until a particular
trajectory can be considered stable. The aforementioned issues
are alleviated by faster simulation using parallel-in-space [3]–
[5] and parallel-in-time algorithms [6] and by Monte Carlo
simulation [7]–[9] to address uncertain prediction.

Instead of explicitly simulating the behavior for stability
analysis, direct methods compute regions in the state space
from which the system state returns to the original operating
point [10]–[12]. Those regions are essential to quickly check
if control actions are capable of stabilizing the system without
requiring time-consuming simulations. Direct methods require
Lyapunov functions, which can only be found for simplified
system dynamics using network preserving and network reduc-
tion methods, where the latter is the dominant technique, see
e.g. [10]–[15]. While network preserving methods work with
ordinary differential equations (ODEs), network preserving
methods use more general models described by differential-
algebraic equations (DAEs) [16]–[19]. A challenge for bothis
to find the so-calledcritical value of the Lyapunov function
to underapproximate the region of attraction. Especially for
systems with several generators, the critical value is rather
conservative, resulting in an underapproximation of the region
of attraction [10], [11]. Another disadvantages of direct meth-
ods is that one cannot check if phase, voltage, and frequency
constraints are met since direct methods only analyze if a
steady state of a disturbed system is eventually reached.

Reachability analysis is a complementary analysis technique
besides simulation techniques and direct methods. Differing
from simulation techniques, reachability analysis can prove
whether system specifications are fulfilled in the presence of
uncertainties, such as uncertain initial states and uncertain
inputs/disturbances. Direct methods are a formal technique
since they can guarantee stability when the initial state starts
in the computed region of attraction. However, other than
reachability analysis, direct methods cannot formally verify
whether constraints are met (e.g. whether frequencies and volt-
ages remain within permitted ranges). Since formal analysis of
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the nonlinear dynamics of power systems is undecidable [20],
one cannot compute exact reachable sets for this system class,
requiring instead the computation of an overapproximationof
the reachable set, which includes all behaviors of the modeled
system. However, when the overapproximation is too large,
one might not be able to verify the system although all
specifications are met in reality. General literature reviews on
reachability analysis of dynamic systems can be found in [21]–
[24]. Most previous work on reachability analysis in power
systems has been limited to small problems due to the initial
computational costs of first attempts. In [25], [26], reachability
analysis is performed for a single-machine-infinite-bus system
modeled by ordinary differential equations with only2 state
variables. A slightly larger double-machine-infinite-bussystem
with 2 buses described by ODEs resulting in5 state variables is
considered in [27], where simulations are performed to approx-
imate the reachable set resulting in a non-formal approach,i.e.
one cannot prove that the controller meets the specifications
under all eventualities. A 3-bus system is considered in [28] to
investigate effects on wind variability. More recent work of the
same authors considers the effects of wind variability for the
39-bus New England system model [29] and similar studies
on the effect of uncertain energy production on frequency
deviation are studied in [30] for a reduced-order model of
the U.S. power system. The computations in [28]–[30] are
simplified by linearizing the system dynamics so that the
results are not overapproximative anymore and thus do not
qualify for formal analysis.

To the best knowledge of the author, none of the previous
methods for reachability analysis of power systems considers
the original DAE system arising in power system modeling,
instead relying on simplification of the system dynamics to
ordinary differential equations. In the previous work of the
author [31], a new method is presented which can compute
the reachable set of the original DAE systems. The approach
proposed in [31] has a complexity ofO(n5), where n is
the number of state variables. Although the complexity is
polynomial, the analysis of large systems results in enormous
computational costs. In this work, the computational costsare
drastically reduced by investigating compositional techniques,
making it possible to compute reachable sets of the IEEE 30-
bus benchmark system in less time compared to the IEEE
14-bus version when no compositional techniques are ap-
plied. Another extension compared to [31] and other previous
works is the investigation of the effect of uncertain energy
production–not only on frequency, but also on bus voltage and
phase under consideration of nonlinear effects.

II. PROBLEM FORMULATION

We consider power systems that can be modeled as a set
of semi-explicit, nonlinear, index-1 DAEs, which applies to
almost all power systems (see e.g. [32]). For brevity of the pre-
sentation it is assumed that the parameters of the power system
are known and constant over time, resulting in a set of time-
invariant DAEs. Extensions required for uncertain parameters
are presented in [33]. The vectors of differential variables,
algebraic variables, and inputs are respectively denoted by

x ∈ Rnd , y ∈ Rna , andu ∈ Rm, wherend, na, andm are the
corresponding numbers of variables. For a set of consistent
initial statesR(0) and a set of possible inputs/disturbancesU ,
the system equations are

ẋ = f(x(t), y(t), u(t)),

0 = g(x(t), y(t), u(t)),
(1)

where[xT (0), yT (0)]T ∈ R(0), u(t) ∈ U . The initial state is
consistent wheng(x(0), y(0), u(0)) = 0 and it is assumed
that (1) has a unique solutionγ(t, x(0), y(0), u(·)) for all
consistent initial statesx(0), y(0) and all piecewise continuous
input trajectoriesu(·), where u(t) refers to an input at a
specific point in timet. No other assumption besides unique
solutions are required. The goal of this work is to compute
the reachable setRe([0, tf ]) of (1) for a time interval[0, tf ]:

Re([0, tf ]) =
{

γ(t, x(0), y(0), u(·))
∣
∣
∣[xT (0), yT (0)]T ∈ R(0),

{

u(t) ∈ U , t ∈ [0, tf ]
}

.

The superscripte on Re([0, tf ]) denotes the exact reachable
set, which cannot be computed for nonlinear DAE systems as
mentioned in the introduction [20]. For this reason, algorithms
are presented which compute as tight as possible overap-
proximationsR([0, tf ]) ⊇ Re([0, tf ]). For simplification, the
expressionreachable setis used even whenoverapproximative
reachable setsare computed. For later derivations, the projec-
tion of the reachable set onto the coordinates of differential
variables is denoted byRd([0, tf ]) and onto the algebraic vari-
ables byRa([0, tf ]). Since reachable sets contain the union of
all possible simulations, the same types of analysis performed
with simulations can be performed with reachable sets. Note
that reachability can in principle also be applied to chaotic
systems [34]. In this work, the focus is on transient stability
analysis and the effects of uncertain energy production.

III. PRELIMINARIES

The presented approach is based on known techniques
for computing reachable sets of linear differential inclusions,
which are recapitulated in this section. Reachable set computa-
tions are typically performed iteratively for short time intervals

τk := [tk, tk+1].

In this work, constant-size time intervalstk := k r are used to
focus on the main innovations, wherek ∈ N is the time step
andr ∈ R+ is referred to as the time increment. An extension
to variable time increments is described in [35].

The iterative computation of reachable sets for linear
systems requires set-based addition orMinkowski addition
(X⊕Y := {x+y|x ∈ X , y ∈ Y}) and set-based multiplication
(X ⊗ Y := {x y|x ∈ X , y ∈ Y}). Note that the symbol
for set-based multiplication is often omitted for simplicity of
notation, and that one or both operands can be singletons. A
brief description of the main steps for obtaining reachablesets
for a single time interval is provided below.

In this section, the reachability analysis of linear differential
inclusion ˙̃x ∈ Ãx̃(t) ⊕ Ũ is recapitulated, wherẽx ∈ Rnd ,
Ã ∈ Rnd×nd , and Ũ ⊂ Rnd is a set of uncertain inputs. A
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tilde is used for the variables of the linear differential inclusion
to distinguish the variables from the ones of the original
nonlinear DAEs. For further computations, some variables and
sets are introduced:uc is the center ofŨ , Ũ∆ := Ũ ⊕ (−uc)
is the deviation ofŨ from the centeruc, the reachable set of
the affine dynamics ˙̃x = Ãx̃(t) + uc is Rd

a(t), the reachable
set of the particular solution due to the uncertain inputŨ∆ is
Rd

p(Ũ∆, t), and the partial reachable set correcting the initial
assumption that trajectories are straight lines betweentk and
tk+1 is Rd

ǫ . According to [23], the reachable set for a time
interval τk is computed as shown in Fig. 1:

1) Starting fromRd(tk), compute the set of all solutions
Rd

a(tk+1) for the affine dynamics ˙̃x = Ãx̃(t) + uc at
time tk+1.

2) Obtain the convex hull ofRd(tk) and Rd
a(tk+1) to

approximate the reachable set for the time intervalτk.
3) ComputeRd(τk) by considering uncertain inputs by

addingRd
p(Ũ∆, r) and accounting for the curvature of

trajectories by addingRd
ǫ .

Rd(tk)

Rd
a(tk+1)

convex hull of
Rd(tk), Rd

a(tk+1)

Rd(τk)

➀ ➁ ➂

enlarge-
ment

Fig. 1. Steps for computing the reachable set for a linear system.

Using r = tk+1 − tk, the solution ofRd
a(tk+1) is

Rd
a(tk+1) = eÃrRd(tk) +

∫ r

0

eÃ(r−t) dt uc

︸ ︷︷ ︸

=:xp(r)

,

wherexp(r) is bounded by integrating the finite Taylor series
eÃr =

∑η
i=0(Ãr)i/(i!) up to orderη to which the remainder

Ep(r) is added:

xp(r) ∈
( η
∑

i=0

Ãiri+1

(i+ 1)!
⊕ Ep(r)

)

︸ ︷︷ ︸

=:Γ(r)

uc.

The remainder can be overapproximated by an interval matrix
Ep(r) := [−W (r) r,W (r) r], i.e., by a matrix with lower
and upper bounds on each element, whereW (r) = e|Ã|r −
∑η

i=0
|Ã|iri

i! . For later derivations,W̃ (r) := W (r)r is also
introduced. The required enlargement of the convex hull (see
3rd step in Fig. 1) is achieved by addingRd

ǫ to account for
the curvature of trajectories fromRd(tk) to Rd

a(tk+1) (see
[23]) and by adding the reachable setRd

p(Ũ∆, r) due to the
uncertain and convex input set̃U∆ (see [36]):

Rd
ǫ :=

(
F ⊗Rd(tk)

)
⊕
(
F̃ ⊗ uc

)

Rd
p(Ũ∆, r) :=

η
⊕

i=0

(

Ãi ri+1

(i + 1)!
Ũ∆

)

⊕
(
[−W̃ (r), W̃ (r)] ⊗ |Ũ∆|

)
,

with

F :=

(
η
⊕

i=2

[(

i
−i
i−1 − i

−1

i−1

)

ri, 0
] Ãi

i!

)

⊕ [−W (r),W (r)]

F̃ :=

(
η+1
⊕

i=2

[(

i
−i
i−1 − i

−1

i−1

)

ri, 0
] Ãi−1

i!

)

⊕ [−W̃ (r), W̃ (r)].

The absolute value|Ũ∆|i := sup
{
|ui|
∣
∣u ∈ Ũ∆

}
is defined

elementwise. The reachable sets for the next point in time and
time interval are obtained by combining all previous results
(see [36]):

Rd(tk+1) :=eArRd(tk)⊕ Γ(r)uc ⊕Rd
p(Ũ∆, r),

Rd(τk) :=CH
(
Rd(tk), e

ArRd(tk)⊕ Γ(r)uc

)

⊕Rd
ǫ ⊕Rd

p(Ũ∆, r),

(2)

whereCH() returns the convex hull. Throughout this work,
zonotopes are used to represent the reachable sets. How-
ever, the proposed algorithms and computations apply to all
kinds of set representations. Zonotopes are used since they
can efficiently represent reachable sets in high-dimensional
spaces while operations required for reachability analysis can
efficiently be applied to them. Details on the definition of
zonotopes and operations on them are described in Sec. VI.

IV. REACHABILITY ANALYSIS OF NONLINEAR DAE
SYSTEMS

Other than for linear systems, no closed-form solution
exists for general nonlinear DAEs. In order to exploit the
efficient methods of the previous section based on the closed-
form solution of linear systems, an abstraction of the original
nonlinear DAEs to linear differential inclusions is performed
for each consecutive time intervalτk. The linear differential
inclusions are computed such that the resulting abstraction
is strictly overapproximative, i.e. it contains all behaviors of
the original dynamics. By re-computing the abstraction for
each time interval, the overapproximation remains small and
accurate results are obtained while traversing the nonlinear
state space far away from the original operating point.

A. Abstraction to Linear Differential Inclusions

The abstraction of the nonlinear DAEs to linear differential
inclusions is based on linearizing the system dynamics and
adding the linearization errors as uncertain input. For a concise
notation, the vectorz := [xT , yT , uT ]T , the linearization
point z∗ := [x∗T , y∗T , u∗T ]T , and Rz := R(τk) × U are
introduced. To efficiently obtain a suitable linearizationpoint,
the volumetric centerscd, ca, cu of the setsRd(tk), Ra(tk),
and U , are introduced. In a previous work it is shown that
the center of the reachable set of the current time interval
is the best linearization point when the linearization error is
computed via an evaluation of the Lagrange remainder using
bounds on absolute values [33, Prop. 2]. Although a refined
technique is used for the linearization error computation in
this work, the center of the reachable set remains the best
choice for the linearization error. To circumvent the problem
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that the reachable set is required for an optimal lineariza-
tion point, which in turn is required for the computation of
the reachable set, the center of the differential variablesis
approximated by a one-step Euler integration. This yields
x∗ = cd + 0.5r · f(cd, ca, cu), where the step size is0.5r
because the center of the reachable setRd(τk) for the time
interval τk is expected to be reached after half the interval
duration of tk+1 − tk = r from the centercd of Rd(tk).
Besides the linearization point of the dynamic variables, the
linearization point of the inputs is chosen asu∗ = cu and
the linearization point of the algebraic part is computed such
that it is consistent with the constraint0 = g(x∗, y∗, u∗)
using the Newton-Raphson method. The linearization of the
original dynamics in (1) is performed using a first-order Taylor
expansion with Lagrangian remainder:

ẋi = fi(z(t)) ∈ fi(z
∗) +

∂fi(z)

∂z

∣
∣
∣
z=z∗

(z(t)− z∗)

⊕

{
1

2
(z(t)− z∗)T

∂2fi(z)

∂z2

∣
∣
∣
z=ξ

(z(t)− z∗)

∣
∣
∣
∣
ξ, z(t) ∈ Rz

}

︸ ︷︷ ︸

=:Ld
i

,

0 = gj(z(t)) ∈ gj(z
∗) +

∂gj(z)

∂z

∣
∣
∣
z=z∗

(z(t)− z∗)

⊕

{
1

2
(z(t)− z∗)T

∂2gj(z)

∂z2

∣
∣
∣
z=ξ

(z(t)− z∗)

∣
∣
∣
∣
ξ, z(t) ∈ Rz

}

︸ ︷︷ ︸

=:La
j

,

(3)

whereLd
i denotes the projection ofLd onto theith coordinate.

The Lagrangian remaindersLd and La enclose all higher-
order terms ifz∗, ξ, z(t) ∈ Rz [37, p. 87]. For subsequent
derivations, it is required to separate the effects from differ-
ential variables, algebraic variables, and inputs. Therefor, the
following sub-matrices of the Jacobians are introduced:

∂f(z)

∂z

∣
∣
∣
z=z∗

= [A, C, B],
∂g(z)

∂z

∣
∣
∣
z=z∗

= [D, F, E], (4)

where A ∈ Rnd×nd , B ∈ Rnd×m, C ∈ Rnd×na , D ∈
Rna×nd , E ∈ Rna×m, F ∈ Rna×na , and nd, na,m are
the number of differential, algebraic, and input variables,
respectively. Inserting the abbreviationz = [xT , yT , uT ]T

and the matricesA-F into (3), and introducingHd,(i)(ξ) :=
∂2fi(z)
∂z2 )

∣
∣
z=ξ

, Ha,(j)(ξ) :=
∂2gj(z)
∂z2 )

∣
∣
z=ξ

, Rz
∆ := Rz ⊕ (−z∗),

ν(t) := z(t)− z∗, yields

ẋ ∈f(z∗) +A(x(t) − x∗

︸ ︷︷ ︸

=:∆x(t)

) +B(u(t)− u∗

︸ ︷︷ ︸

=:∆u(t)

) + C(y(t)− y∗
︸ ︷︷ ︸

=:∆y(t)

)

⊕
{1

2
σ
∣
∣
∣σi = νTHd,(i)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

, (5)

0 ∈g(z∗) +D(x(t) − x∗

︸ ︷︷ ︸

=:∆x(t)

) + E(u(t)− u∗

︸ ︷︷ ︸

=:∆u(t)

) + F (y(t)− y∗
︸ ︷︷ ︸

=:∆y(t)

)

⊕
{1

2
φ
∣
∣
∣φj = νTHa,(j)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

. (6)

Note thatF is invertible because of the index-1 property, so
that one can reformulate (6) to

∆y(t) ∈ −F−1
(

g(z∗) +D∆x(t) + E∆u(t)
)

(7)

⊕
{

−
1

2
F−1φ

∣
∣
∣φj = νTHa,(j)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

.

Inserting (7) into (5) results in a differential inclusion

ẋ ∈f(z∗) +A∆x(t) +B∆u(t)

− CF−1
(
g(z∗) +D∆x(t) + E∆u(t)

)
⊕ L

=(w + Ã∆x(t) + B̃∆u(t))⊕ L,

(8)

where

w := f(z∗)− CF−1g(z∗), (9)

Ã := A− CF−1D, B̃ := B − CF−1E,

and

L =
{1

2
(σ − CF−1φ)

∣
∣
∣σi = νTHd,(i)(ξ)ν,

φj = νTHa,(j)(ξ)ν, ξ ∈ Rz , ν ∈ Rz
∆

}

.
(10)

One can further simplify (8) by combining the singletonw
and the sets̃B(U ⊕ (−u∗)) andL to a new setŨ :

˙̃x ∈ Ãx̃(t)⊕ Ũ , (11)

x̃(t) := ∆x(t), Ũ := w ⊕ B̃(U ⊕ (−u∗)) ⊕ L.

The obtained differential inclusion can be solved as described
in Sec. III. Still remaining is the determination of linearization
errors.

B. Computation of the Linearization Error

The problem with evaluating (11) is that the set of lin-
earization errorsL is not known in advance, consequentlyŨ
is unknown, as well. As an initial guess the most recently
computed linearization error̃L is enlarged by a user-defined
factorλL ∈ R+ around the volumetric center̂cL of L̃:

L = ĉL ⊕ λL(L̃ ⊕ (−ĉL)). (12)

In the event that the enclosure assumption (L ⊇ L) is not
correct after computing the reachable set and the associated
set of linearization errors,L has to be further enlarged. In
order to bound the set of linearization errors, one additionally
checks ifL ⊆ Lmax, whereLmax is set by the user. If the
above inclusion is not fulfilled, the reachable set has to be split
in order to reduce the linearization error or the time increment
r has to be reduced.

The set of linearization errorsL is computed based on the
reachable setRd(τk) of the linear differential inclusion (11)
after replacing the input set̃U by U = w⊕B̃(U⊕(−u∗))⊕L,
which considers the linearization error assumptionL instead
of L. After applying the procedures in Sec. III on the linear
differential inclusion (11), one obtains the reachable setof
the differential variablesRd(τk). For computing the set of
linearization errors, the reachable set of the differential and
algebraic variables is required, which can be solely recon-
structed by the reachable set of the differential variables. This
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is achieved by firstly starting withx(t) = x∗ + ∆x(t) and
y(t) = y∗ + ∆y(t), secondly replacing∆y(t) with (7), and
thirdly substituting specific values by sets:

R(τk) =

[
x∗

y∗ − F−1g(z∗)

]

⊕

[
I

−F−1D

]

(Rd(τk)− x∗)

⊕

[
0

−F−1E

]

(U − u∗)⊕

[
0

−F−1

]

L
a
.

(13)

The reachable setR(τk) is used to compute the set of
linearization errorsL as presented in [31]. The computa-
tion of the linearization error is the bottleneck in terms of
computational costs of the presented approach. When using
zonotopes as a set representation, all operations required
for the reachability analysis excluding the linearizationerror
computation have complexityO(n3), wheren is the number
of dynamic and algebraic variables. The linearization error
computation, however, has complexityO(n5). For this rea-
son, compositional techniques are investigated to scale the
approach to larger power systems as presented in the next
section. The overall algorithm of all previously mentioned
steps is presented in Alg. 1.

Algorithm 1 reachNext(Rd(tk),L,U , Ã, B̃, w, r,Lmax, λL)

Require: Previous setRd(tk), previous linearization error
L, input setU , linearized system matrix̃A, linearized
input matrixB̃, constant inputw, time incrementr, max.
linearization errorLmax, factorλL

Ensure: Rd(tk+1),R(τk), split
1: repeat
2: L = ĉL ⊕ λL(L ⊕ (−ĉL)) (see (12))
3: U = w ⊕ B̃(U ⊕ (−u∗))⊕ L (see (11))
4: computeRd(τk) using (2) based onU
5: computeR(τk) using (13)
6: computeL by evaluating (10) according to [31]
7: until L ⊆ L ∨ L * Lmax

8: if L * Lmax then
9: split = true

10: else
11: split = false
12: Ũ = w ⊕ B̃(U ⊕ (−u∗))⊕ L (see (11))
13: computeRd(tk+1)using (2) based oñU
14: end if

V. COMPOSITIONAL REACHABLE SET COMPUTATION

In order to improve the scalability of the proposed reacha-
bility analysis, two compositional techniques are investigated.
One of them is to split the power grid into subsystems for
which the reachable set is computed separately. The other
technique compositionally computes the set of linearization
errors, while abstracting the dynamics to linear differential
inclusions using the full model.

Before applying compositional analysis techniques, one has
to partition the power system into subsystems. Partitioning
of power systems is a well-known problem for different
aspects of power systems. Examples include coherency-based

decomposition [38], [39] and graph-based decomposition [40].
Since this work focuses on the compositional computation
of reachable sets for a given partition, we assume that a
reasonable partition is already provided, where transmission
lines are the interfaces. Since the transmission lines are the
subsystem interfaces, the bus phase angles and the bus voltage
are internal variables when the bus is within the subsystem,
and a system input otherwise. The assignment of the variables
to the dynamic and algebraic state vectorsx, y as well as to
the input vectoru are described in Sec. VII-A.

A. Compositional Reachable Set Computation

This subsection describes the first option investigated for
compositional analysis by splitting the power system into
subsystems. The reachable set of each subsystem is computed
as presented in Alg. 1. The input sets representing inputs tothe
complete system are known, however, the input sets originat-
ing from the interfaces of the subsystem are unknown. They
depend on the reachable set of neighboring subsystems, which
in turn depend on the reachable sets of other subsystems.
The basic idea for breaking this mutual dependence apart is
similar to the computation of the linearization error. First, the
interface inputs of theith subsystems are enlarged by a factor
λU (analogously to (12))

Û (i) = ĉ
(i)
U ⊕ ((λU − 1)Λ(i) + I)(U (i) ⊕ (−ĉ

(i)
U )), (14)

whereΛ is a diagonal matrix that contains ones for indices
corresponding to interface inputs and zeros otherwise. Based
on the system inputÛ (i), the reachable set of the corre-
sponding subsystem is computed as presented in Alg. 1. For
aggregating the reachable sets of the complete system by
partial reachable setsR(i)(τk) of the ith subsystem, matrices
Φ(i) are introduced, which map the local states of theith

subsystem to the states of the full system. The matricesΦ(i)

contain ones when states are correlated, and zeros otherwise,
so that the complete reachable set is obtained using the
Cartesian product:

R(τk) = Φ(1)R(1)(τk)×Φ(2)R(2)(τk)×. . .×Φ(ns)R(ns)(τk),
(15)

wherens is the number of subsystems and the computation of
linear maps and Cartesian products of zonotopes is performed
as presented in Sec. VI. In order to check if the assumption on
the set of interface inputs is correct for all subsystems, further
matricesΥ(i) are introduced, which map the states of the
complete system to the interface inputs of theith subsystem.
Again, the matrix contains ones for corresponding states and
interface inputs and zeros otherwise. If

∀i : Υ(i)R(τk) ⊆ Λ(i)Û (i)

the assumption is overapproximative and thus valid. Other-
wise, one has to re-apply the enlargement in (14) for the
subsystems that violate the assumption. This procedure is
summarized in Alg. 2 under the assumption that no split is
required.
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Algorithm 2 reachNextCompositional(R(i),d(tk), λU ,U
(i),

otherInputsToReachNext)

Require: Previous setR(i),d(tk) and input setU (i) for each
subsystem, factorλU , otherInputsToReachNext).

Ensure: R(i),d(tk+1),R(τk)
1: ∀i : inputEnclosure(i) = false

2: repeat
3: for i = 1 . . . ns do
4: if inputEnclosure(i) == false then
5: obtain Û (i) based onU (i) using (14)
6: Alg. 1 based on̂U (i) → R(i),d(tk+1),R

(i)(τk)
7: end if
8: end for
9: R(τk) = Φ(1)R(1)(τk)× . . .× Φ(ns)R(ns)(τk)

10: for i = 1 . . . ns do
11: if Υ(i)R(τk) ⊆ Λ(i)Û (i) then
12: inputEnclosure(i) = true

13: else
14: inputEnclosure(i) = false

15: end if
16: U (i) = Λ(i)Û (i) ⊕ (I − Λ(i))U (i)

17: end for
18: until ∀i : inputEnclosure(i) == true

B. Compositional Linearization Error Computation

In some power systems, generators might be strongly cor-
related, resulting in unsatisfactory overapproximationsof the
compositional algorithm in Alg. 2. Since most of the compu-
tation time is spent on evaluating the linearization error,one
could only compute the linearization error compositionally,
while maintaining all the correlations for the reachable set
computation in Alg. 1.

Using a decomposition of the full system into subsystems
as in the previous subsection, the Lagrangian remainder in
(10) is evaluated compositionally. For this purpose, the set of
input values from subsystem interfaces has to be considered
resulting in the set of inputs for each subsystem as proposed
in (14). The partial Lagrange remainders of theith subsystem
denoted byL(i) are combined to the complete Lagrange
remainder as for the reachable set in (15):

L(τk) = Φ(1)L(1)(τk)×Φ(2)L(2)(τk)× . . .×Φ(ns)L(ns)(τk).

As previously mentioned, the Lagrange remainder has com-
plexity O(n5), where n is the number of state variables,
whereas all other operations have complexityO(n3) when
using zonotopes as the set representation. Thus, the com-
positional computation of the linearization error has similar
computational savings than the completely compositional com-
putation as presented in the previous subsection.

VI. SET REPRESENTATION BYZONOTOPES

So far, all set-based computations have been introduced
independently of the set representation so that all kinds of
set representations can be used in principle. Typical set repre-
sentations are: polytopes [41], zonotopes [42], ellipsoids [43],

support functions [44], and oriented hyperrectangles [45]. As
shown in Sec. III, the set operations required for reachability
analysis of linear systems are matrix and interval matrix mul-
tiplication, Minkowski addition, absolute value computation,
and convex hull. All of these can be efficiently computed
using zonotopes, which makes zonotopes very attractive for
reachability computations of linear systems [42], [46].

Definition VI.1 (Zonotope) Given a centerc ∈ Rn and so-
called generatorsg(i) ∈ Rn, a zonotope is defined as

Z :=
{

x ∈ Rn
∣
∣
∣x = c+

p
∑

i=1

βig
(i), βi ∈ [−1, 1]

}

We write in shortZ = (c, g(1), . . . , g(p)) and define the order
of a zonotope asρ := p

n
, wherep is the number of generators.

A zonotope can be seen as the Minkowski addition of line
segments[−1, 1]g(i), which provides an intuition of how a
zonotope is constructed as presented in Fig. 2.

c

g(1) g(2) g(3)

c⊕ g(1) c⊕ g(1) ⊕ g(2) c⊕ g(1) ⊕ g(2) ⊕ g(3)

construction
direction

”⊕””⊕”

Fig. 2. Step-by-step construction of a two-dimensional zonotope.

The multiplication with a matrixM ∈ Ro×n and the
Minkowski addition of two zonotopesZ1 = (c, g(1), . . .,
g(p1)) andZ2 = (d, h(1), . . ., h(p2)), are a direct consequence
of the zonotope definition (see [47]):

Z1 ⊕Z2 = (c+ d, g(1), . . . , g(p1), h(1), . . . , h(p2))

M ⊗Z1 = (M c,M g(1), . . . ,M g(p1))
(16)

Additionally, the convex hull ofZ1 andeArZ1 is required (see
[46]):

CH(Z1, e
ArZ1) ⊆

1

2
(c1 + eArc1, g

(1) + eArg(1), . . . , g(p1) + eArg(p1),

c1 − eArc1, g
(1) − eArg(1), . . . , g(p1) − eArg(p1)).

(17)

After introducing the matrix of generatorsG =
[
g(1), . . . , g(p)

]
and the alternative notation of a zonotope by

Z = (c,G), the Cartesian product of two zonotopesZ1 = (c,
G) andZ2 = (d, H) is

Z1 ×Z2 =

([
c
d

]

,

[
G 0

0 H

])

,

where0 is a matrix of zeros of proper dimension. For the
multiplication of an interval matrixM with a zonotope, the
matrix M is split into a real-valued matrixM ∈ Rn×n and
an interval matrix with radiusS ∈ Rn×n, such thatM =
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M ⊕ [−S, S]. After introducingSj as thej th row of S, the
result is overapproximated as shown in [23, Theorem 3.3] by

MZ1 ⊆(MZ1 ⊕ [−S, S]Z1)

⊆(Mc1,Mg(1), . . . ,Mg(p1), h(1), . . . , h(n))

h
(i)
j =

{

Sj(|c|+
∑p1

k=1 |g|
(k)), for i = j

0, for i 6= j
.

The overapproximative result of a quadratic mapZQ ⊇
{ϕ|ϕi = xTQ(i)x, x ∈ Z1} for a discrete set of matrices
Q(i) ∈ Rn×n, i = 1 . . . n, is computed according to [48] as

ZQ = (d, h(1), . . . , h(σ))

with σ =
(
p+2
2

)
− 1 generators, the centerdi = cTQ(i)c +

0.5
∑p

s=1 g
(s)TQ(i)g(s) and the generators

j =1 . . . p : h
(j)
i =cTQ(i)g(j) + g(j)

T
Q(i)c

j =1 . . . p : h
(p+j)
i =0.5g(j)

T
Q(i)g(j)

l =

p−1
∑

j=1

p
∑

k=j+1

1 : h
(2p+l)
i =g(j)

T
Q(i)g(k) + g(k)

T
Q(i)g(j)

The complexity of constructing this overapproximation with
respect to the dimensionn is O(n5).

VII. C ASE STUDIES

The introduced methods are applied to the transient stability
analysis of power systems and to the analysis of uncertainty
in renewable energy production. Transient stability analysis
requires considering the nonlinearities of the dynamics since
the operating condition is strongly perturbed. The analysis of
the effects of uncertain energy production is presented in [28]–
[30], but without considering nonlinear effects in contrast to
the work presented here.

A. Power System Modeling

The mathematical models used for the case studies are
standard models. The generator dynamics is borrowed from
[28] and the power grid models are the IEEE 14-bus and
30-bus benchmark systems [49]. The dynamic variables of
the ith generator are the generator phase angleδ̃i [rad], the
angular velocityωi [rad/s], and the torqueTm,i [p.u.] (p.u.:
per unit). The commanded power productionPc,i [p.u.] is a
system input. The generator phase anglesδi = δ̃i − Θs are
chosen relative to the slack bus angleΘs which has a constant
angular velocityωs (in the previous work [31], the phase of the
first generator is chosen as the reference phase). The dynamic
equations of the chosen generator model are according to [28]:

δ̇i = ωi − ωs

ω̇i = −
Di

Mi

(ωi − ωs) +
1

Mi

Tm,i −
1

Mi

Pg,i

Ṫm,i = −
1

TSV,iRD,iωs

(ωi − ωs)−
1

TSV,i

Tm,i +
1

TSV,i

Pc,i.

(18)

Parameters of each generator are the rotational inertiaMi

[MJ/Hz2], the damping coefficientDi [s/rad], the time constant

of the governorTSV,i [s], and the proportional gain of the
governor 1

RD,i
[-]. For simplicity, the same model is used for

all generators and synchronous condensers, where the latter
are generators that produce no active power. The parameter
values are chosen identical to [28] for each generator and
synchronous condensers and are listed in Tab. I.

The power flow equations are obtained using standard
methods, see e.g. [50, p.174]. The algebraic variables of the
ith bus are the absolute value of the bus voltageVi [p.u], the
phase angle of the bus voltagẽΘi [rad], the active powerPi

[p.u.], the reactive powerQi [p.u.], and the generator voltage
Ei [p.u.] if the bus is connected to a generator. The bus
phase angles with respect to the slack bus are denoted by
Θi = Θ̃i − Θs. The buses are connected via admittances
Yij = Yji, where i and j are the indices of the connected
buses. The admittance from the generator to theith generator
bus is Yg,i, where |Yg,i| [p.u.], Ψg,i = ∠Yg,i [rad] are the
absolute values and phase angles, respectively. The absolute
value and the angle of the admittances are denoted by|Yij |
andΨij = ∠Yij , respectively. The active and reactive power
of each bus results from the generator productionPg,i, Qg,i

and a demand of that nodePd,i, Qd,i. The parameters of the
power grid are chosen according to the corresponding IEEE
benchmark problem and can be found in [49].

The numbering of the power network buses is renumbered
from the original IEEE benchmark problems, whereNg is the
number of generators andNl is the number of load buses. In
this work, the first bus (i = 1) is connected to a generator and
serves as the slack bus. Further, the power system hasNg so-
calledgenerator buses, which are connected to the generators.
Those buses (including the slack bus) produce active and
reactive power according to the following equations (see [50]):

Pg,i = EiVi|Yg,i| cos(Ψg,i + δi −Θi)− V 2
i |Yg,i| cos(Ψg,i),

Qg,i = −EiVi|Yg,i| sin(Ψg,i + δi −Θi) + V 2
i |Yg,i| sin(Ψg,i).

The remainingNl buses are referred to asload buses(i =
Ng + 1 . . .Ng + Nl). The power flow equations as in [50,
p.174] of each bus are

Pi = Pg,i + P d
g,i + Pd,i

=

Ng+Nl∑

j=1

ViVj |Yij | cos(Ψij +Θj −Θi),

Qi = Qg,i +Qd
g,i +Qd,i

= −

Ng+Nl∑

j=1

ViVj |Yij | sin(Ψij +Θj −Θi),

(19)

wherePg,i andQg,i are the active and reactive power produced
by generators with the dynamics according to (18), whileP d

g,i

andQd
g,i are directly injected active and reactive powers from

renewable energy sources. The power drop-out of theith power
plant is modeled by setting the active and reactive power in
(19) and (18) to zero (Pg,i = 0, Qg,i = 0). In order to
write the power system in the standard form of time-invariant,
semi-explicit, index-1 DAEs as presented in (1), the dynamic,
algebraic, and input variables are renamed. The following
assignments are for a specific subsystem, i.e., the number of



JOURNAL OF XX, VOL. X, NO. X, JANUARY XXXX 8

generators busesNg and the number of load busesNl are
specific to the considered subsystem. Additionally, the number
of cut transmission linesNi for the considered subsystem
is introduced. It is also required to consider variables of
neighboring subsystems. Thej th voltage of thekth subsystem
is denoted bŷVk,j and an analogous notation is used forΘ̂k,j .
The function[k, j] = h(i) returns the subsystem numberk of
which the bus with numberj is connected to the considered
subsystem andi takes integers up to the number of cut
transmission lines (i = 1 . . .Ni), thus providing the first,
second, and further input sources. The algebraic variablesare
assigned as follows:

i = 1 . . .Ng : yi = Ei,
i = 1 . . .Nl : yNg+i = VNg+i,
i = 2 . . . (Ng +Nl) : yNg+Nl+i−1 = Θi.

Note thatΘ1 is not considered in the above assignment since
it is the phase of the slack bus and thus always0. The dynamic
variables are

i = 1 . . .Ng : xi = δi,
i = 1 . . .Ng : xNg+i = ωi,
i = 1 . . .Ng : x2Ng+i = Tm,i,

and the inputs are assigned as follows:

i = 1 . . .Ng : ui = Pc,i,
i = 1 . . . (Ng +Nl) : uNg+i = P d

g,i,

i = 1 . . . (Ng +Nl) : u2Ng+Nl+i = Qd
g,i,

i = 1 . . .Ni, [k, j] = h(i) : u3Ng+2Nl+i = V̂k,j ,

i = 1 . . .Ni, [k, j] = h(i) : u3Ng+2Nl+Ni+i = Θ̂k,j .

When theith power plant is not on the grid, the variableEi

is removed from (19), (18), and is no longer an unknown
variable. We replaceyi = Ei by yi = Vi during the power
drop-out, since the power plant can no longer control the
voltage at theith bus. All equations are automatically generated
by symbolic computations in MATLAB to exclude errors
during manual implementation.

TABLE I
PARAMETERS OF THE GENERATORS.

∀i: Mi Di |Yg,i| Ψg,i TSV,i RD,i ωs
1

15π
0.04 5 −π

2
1 0.05 120π

B. Transient Stability Analysis

The transient stability analysis is performed as follows.
After a pre-fault phase of0.1 s, the power plant producing
the most power is taken off the grid (e.g. caused by a short
circuit) for 0.03 s and afterwards reconnected. In the post-fault
phase, the dynamics is computed until all continuous state
variables reach the set of initial states. In all case studies, the
center of the initial set is the steady state solution denoted
by a superscripted zero. For all power generators the initial
phase isδi(0) ∈ δ0i ⊕ 0.005 · [−1, 1], the initial rotational
speed isωi(0) ∈ ω0

i ⊕ 0.1 · [−1, 1], and the initial torque is
Tm,i(0) ∈ T 0

m,i ⊕ 0.001 · [−1, 1].
The first case study is based on the IEEE 14-bus benchmark

system, enhanced by the generator dynamics as introduced in
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(a) Projections on differential variables of the 14-bus system.
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(b) Projections on algebraic variables of the 14-bus system.
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(c) Projections on differential variables of the 30-bus system.
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(d) Projections on algebraic variables of the 30-bus system.

Fig. 3. Selected projections of reachable sets for transient stability analysis.
Black lines show random simulations, gray areas show reachable sets, and
the white box the initial set. For algebraic variables, darkgray represents pre-
fault and post-fault sets, light gray represents fault-on sets, and medium gray
represents sets for all fault phases obtained by compositionally computing the
linearization error.

Sec. VII-A. In that case study, it is investigated whether itis
better to compute the reachable set of subsystems as described
in Sec. V-A, or to compute the linearization error composi-
tionally as described in Sec. V-B. For that purpose, the power
system is split into two subsystems as shown in Fig. 5. The



JOURNAL OF XX, VOL. X, NO. X, JANUARY XXXX 9

separate computation of the subsystems results in an explosion
of the reachable set after0.27 s in the considered case study
(not illustrated due to space limitations). This is becausethe
transmission line voltages and phase angles between interfaces
of subsystems can be chosen arbitrarily within the uncertain
sets Û (i). This includes trajectories that excite oscillations,
whereas all variables are correlated for the complete system,
such that those behaviors are excluded in reality. However,
when computing the linearization error compositionally, cor-
relations between states are preserved. This is demonstrated
by comparing the results of the monolithic and compositional
linearization error computation for selected projectionsof the
reachable set in Fig. 3. Although a different shade of gray is
used to plot the reachable sets of the compositional approach
for the linearization error computation, the difference can
only be observed after zooming in for most projections. The
accuracy of the results in Fig. 3 is indicated by simulationsof
system trajectories from randomly chosen initial states, which
are plotted as black lines. Note that the results for the algebraic
variables jump after the pre-fault and fault-on phase since
the system model switches. Besides the 14-bus system, the
compositional linearization error computation is also studied
for the IEEE 30-bus benchmark system. Using the same
generator models and parameters as for the 14-bus system, the
reachable sets for the 30-bus system are presented in Fig. 3 for
the full system and the partition into four subsystems (a figure
showing the subsystems is not shown due to space limitations).
Again, the overapproximation is marginal for most variables.

Although the overapproximation of the compositional com-
putation of the linearization error is small, the savings in
computation time are significant. This is because the lineariza-
tion error computation consumes around90% of the overall
computation time. Thus, the compositional linearization error
computation is clearly preferred over the compositional com-
putation of the reachable set, since the latter results in signifi-
cant overapproximation, while the savings in computational
time are comparable for both methods. The computational
times until all states return to the initial set (return time)
using the compositional linearization error computation are
listed in Tab. II for the considered case studies when the
linearization errors of subsystems are computed in parallel
using 4 cores. All computations are performed in MATLAB
on an Intel XEON X5690 processor with3.47 Ghz. Note that
the 30-bus system can be computed in less time than the
14-bus system when using compositional linearization error
computation with four subsystems. Considering that a single
simulation takes around1.5 s using the ode15s solver in
MATLAB, the simulations of all corner cases of the 30-bus
system with18 dynamic variables requires218 simulations,
which requires a computation time of393216 s, which takes
around100 times longer than the formal analysis.

C. Critical Clearing Time

Reachability analysis can also be used to determine the
critical clearing time for a set of initial states rather than a
single initial state. Since a single simulation run is faster than
a complete reachability analysis, one should start determining

the critical clearing time by simulating the system for different
fault clearing times starting from the center of initial states
x0,c. The critical clearing time forx0,c is tcrit = 0.323 s
for the previously considered IEEE 14-bus scenario in Sec.
VII-B. When computing several simulations starting from the
initial set specified in Sec. VII-B using the critical clearing
time tcrit = 0.323 s obtained forx0,c, some trajectories are
stable and return to the original steady state, while other
trajectories converge to another steady state as depicted in Fig.
4 for selected projections. The steady state from which the
trajectories start is referred to as steady stateα, where steady
stateβ is the other possible steady state. The reachable set
computation for this scenario computes untiltcrit = 0.323 s.
Afterwards, the reachable set computation does not converge
anymore and grows over all bounds. The reason is that
trajectories diverge at the critical clearing time causinga large
sensitivity for the algebraic state with respect to the dynamic
state. As a consequence, the linearization error computations
become very large so that the overapproximative computation
of the linearization error no longer converges. In Fig. 4, the
reachable set until the clearing time is shown for selected
projections.

In order to determine the critical clearing time for all
initial states, the recommended strategy is to start from the
critical clearing time obtained by a single simulation and then
iteratively decrease the critical clearing time until all states
return to the original operating region as presented in Sec.
VII-B.
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Fig. 4. Selected projections of reachable sets for the critical clearing time
analysis of the IEEE 14-bus example. Black lines show randomsimulations
for the time intervalt ∈ [0, 4] s, gray areas show reachable sets until the
critical clearing time (t ∈ [0, tcrit]), and the white box the initial set. The
right figures show zoomed regions within the left figures.
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D. Effects of Variable Energy Production

The effect of variable renewable energy production are
demonstrated for the 14-bus system, where the generated
active power at bus13 and 14 are directly injected (see
[28]), where∀t ∈ [0, 5]s : P d

g,13(t), P
d
g,14(t) ∈ { t

5P
∗|P ∗ ∈

[0.04, 0.06]p.u.} modeling that the production uncertainty
grows linearly over time. The conventional power plants
produce only active power at bus1 and 2: Pc,1 = 2 [p.u.]
andPc,2 = 0.4 [p.u.]. Selections on reachable sets over time
for the time interval[0, 5] s are presented in Fig. 6 together
with random simulations for which a constant input is changed
every0.2 s, causing jumps of algebraic variables.
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Fig. 5. IEEE 14-bus benchmark system. Gray lines show subsystem borders.

TABLE II
COMPUTATION TIMES AND TIMES TO RETURN TO INITIAL SET.

IEEE 14-bus IEEE 30-bus
subsystems 1 2 1 2 4
computation times 1536 s 853 s 5002 s 2025 s 1428 s
return times 4.0 s 4.0 s 4.4 s 4.4 s 4.4 s
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Fig. 6. Selected variable bounds over time due to variationsin renewable
energy production. Black lines show random simulations, the gray area shows
the reachable sets.

VIII. C ONCLUSIONS

The paper demonstrates a novel method to rigorously an-
alyze power systems subject to varying operating conditions
using reachability analysis. The consideration of semi-explicit,
nonlinear, index-1 DAEs instead of ODEs makes it possible
to not only analyze the frequency, but also the phases and
voltages of each bus, which is especially useful to verify if

cascading effects are avoided. The presented approach is based
on an abstraction to linear differential inclusions, whichis
also of interest to other analysis techniques in power systems
or for checking if linear models are justified. In order to
improve the scalability, compositional techniques are proposed
on the system level and on the level of the linearization error
computation. The case studies revealed that the compositional
computation of the linearization error is preferable sincethe
computational savings are comparable, while the correlations
between state variables are much better preserved.

The presented approach can be used for the same types of
analysis for which simulation techniques are applied. Although
a single simulation is computed faster than a reachable set,
the simulation of all corner cases takes more time than the
computation of the reachable set. For the30-bus system,
reachability analysis is around100 times faster than sim-
ulating all corner cases due to the polynomial complexity
of the presented approach. Note that the intention of the
presented approach is not to replace simulation techniques,
but complement them for a more rigorous analysis. Simulation
techniques are especially useful to obtain a first idea about
the system behavior, while reachability analysis can provide
rigorous results in the presence of uncertainties.

A further application of reachability analysis is to compute
the largest invariant set around a steady state [51], i.e., the
largest set that cannot be left when starting in that set.
Incorporating the proposed approach into an algorithm for
computing the largest invariant set is part of future work.
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