
1 PHILOSOPHY AND ARCHITECTURE

An Introduction to CORA 2015
(Tool Presentation)

Matthias Althoff

Technische Universität München, 85748 Garching, Germany

Abstract

The philosophy, architecture, and capabilities of the COntinuous Reachability Analyzer
(CORA) are presented. CORA is a toolbox that integrates various vector and matrix set rep-
resentations and operations on them as well as reachability algorithms of various dynamic
system classes. The software is designed such that set representations can be exchanged
without having to modify the code for reachability analysis. CORA has a modular design,
making it possible to use the capabilities of the various set representations for other purposes
besides reachability analysis. The toolbox is designed using the object oriented paradigm,
such that users can safely use methods without concerning themselves with detailed infor-
mation hidden inside the object. Since the toolbox is written in MATLAB, the installation
and use is platform independent.

1 Philosophy and Architecture

The COntinuous Reachability Analyzer (CORA)1 is a MATLAB toolbox for prototype design
of algorithms for reachability analysis. The toolbox is designed for various kinds of systems with
purely continuous dynamics (linear systems, nonlinear systems, differential-algebraic systems,
parameter-varying systems, etc.) and hybrid dynamics combining the aforementioned continuous
dynamics with discrete dynamics. Let us denote the continuous part of the solution of a hybrid
system for a given initial discrete state by χ(t;x0, u(·), p), where t ∈ R is the time, x0 ∈ Rn is
the continuous initial state, u(t) ∈ Rm is the system input at t, u(·) is the input trajectory, and
p ∈ Rp is a parameter vector. The continuous reachable set at time t = r can be defined for a
set of initial states X0, a set of input values U(t), and a set of parameter values P, as

Re(r) =
{

χ(r;x0, u(·), p) ∈ Rn
∣
∣x0 ∈ X0,∀t : u(t) ∈ U(t), p ∈ P

}

.

CORA solely supports over-approximative computation of reachable sets since (a) exact reach-
able sets cannot be computed for most system classes [1] and (b) over-approximative computa-
tions qualify for formal verification. Thus, CORA computes over-approximations for particular
points in time R(t) ⊇ Re(t) and for time intervals: R([t0, tf]) =

⋃

t∈[t0,tf]
R(t).

CORA is built with the aim to construct one’s own reachable set computation in a short amount
of time. This is achieved by the following design choices:

• CORA is built for MATLAB, which is a script-based programming environment. Since the
code does not have to be compiled, one can stop the program at any time and directly see
the current values of variables. This makes it especially easy to understand the workings
of the code and to debug new code.

1https://www6.in.tum.de/Main/SoftwareCORA

1

https://www6.in.tum.de/Main/SoftwareCORA

1 PHILOSOPHY AND ARCHITECTURE

• CORA is an object-oriented toolbox that uses modularity, operator overloading, inheri-
tance, and information hiding. One can safely use existing classes and just adapt classes
one is interested in without redesigning the whole code. Operator overloading makes it
possible to write formulas that look almost identical to the ones derived in scientific papers
and thus reduce programming errors. Most of the information for each class is hidden and
is not relevant to users of the toolbox. Most classes use identical methods so that set
representations and dynamic systems can be effortlessly replaced.

• CORA interfaces with the established toolboxes MPTtoolbox2 and INTLAB3, which are
also written in MATLAB. Results of CORA can be easily transferred to those toolboxes
and vice versa.

1.1 Related Tools

Over the last years, many tools for formal verification of hybrid systems and for handling of
continuous set representations have been developed. The following list of related tools is without
any order; it is intended that related tools are grouped together. Tools based on, or supporting
reachability analysis are SpaceEx, Ellipsoidal Toolbox, Flow*, COSY, VNODE-LP, A Toolbox
of Level Set Methods, and Ariadne. Tools based on constraint solving are dReach, HySAT, and
HSolver. KeYmaera is an interactive theorem prover for verifying hybrid systems.

SpaceEx SpaceEx 4 [2] is the successor of PHAVer [3] for the computation of reachable sets
of continuous and hybrid systems. PHAVer mainly focuses on hybrid systems with piecewise
constant bounds on the derivatives. Linear continuous dynamics have to be abstracted by regions
of constant bounds on the derivatives in PHAVer, resulting in scalability issues due to a large
number of required regions. This problem is completely solved in SpaceEx by making use of
a wrapping-free algorithm for linear continuous systems [4]. SpaceEx uses support functions
as its main set representation, which scale very well for hybrid systems with linear continuous
dynamics [5, 6]. SpaceEx computes reachable sets by computing successor sets of the reachable
set for consecutive time intervals. The same basic approach is used in CORA.

SpaceEx does not only have a powerful analysis core, but is also easy to use due to a web-based
graphical user interface and a graphical model editor. The model editor and its underlying
language make it possible to construct complex models from simple components.

Ellipsoidal Toolbox The Ellipsoidal Toolbox 5 [7] is a MATLAB toolbox like CORA, but
with a focus on ellipsoids as a set representation rather than zonotopes. Another difference is
that different algorithms are used to compute abstractions of the system dynamics. Similarly
to CORA, the toolbox supports a number of operations, such as Minkowski sum (under and
over-approximation), intersection of ellipsoids with other set types, projections of ellipsoids, etc.

Flow* Flow* 6 [8] also computes reachable sets of continuous and hybrid systems. It uses
Taylor models to represent reachable sets, which can represent non-convex sets and are especially
promising for reachability analysis of nonlinear models [9]. Instead of abstracting the dynamics
on the level of the differential equation as done by SpaceEx and CORA, the abstraction is

2http://people.ee.ethz.ch/~mpt/3/
3http://www.ti3.tu-harburg.de/rump/intlab/
4http://spaceex.imag.fr/
5http://systemanalysisdpt-cmc-msu.github.io/ellipsoids/
6http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/

2

http://people.ee.ethz.ch/~mpt/3/
http://www.ti3.tu-harburg.de/rump/intlab/
http://spaceex.imag.fr/
http://systemanalysisdpt-cmc-msu.github.io/ellipsoids/
http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/

1 PHILOSOPHY AND ARCHITECTURE

performed on the level of the solution of the differential equation. This can for instance be done
using Picard iteration or truncated Lie series [10].

COSY COSY 7 is a tool for the rigorous computation of Taylor models, which are also used
in Flow*. COSY can be used to compute reachable sets of nonlinear differential-algebraic
equations [11]. It is also useful to bound arbitrary nonlinear and multivariate functions by
Taylor models [9].

VNODE-LP VNODE-LP8 is a tool for guaranteed integration of ordinary differential equa-
tions. The focus of this tool is more on guaranteeing bounds of a single trajectory rather than
computing reachable sets for safety verification. The tool computes reachable sets represented
by boxes. A distinctive feature of the present solver is that it is developed entirely using literate
programming [12].

A Toolbox of Level Set Methods A Toolbox of Level Set Methods9 [13] computes approxi-
mations of the time-dependent Hamilton-Jacobi (HJ) partial differential equation (PDE). Since
reachability problems can be reformulated as HJ PDEs [14], the toolbox computes approxima-
tions of reachable sets. The HJ PDEs are numerically solved by gridding the state space so that
one can tune the accuracy of the result by varying the number of grid points. An advantage of
this technique is that arbitrary non-convex sets can be handled. However, the approach has ex-
ponential complexity in the number of continuous state variables due to the exponential growth
of grid points.

Ariadne Ariadne10 [15] is a framework for hybrid automata verification. It differs from exist-
ing packages since it is based on the theory of computable analysis and on a rigorous function
calculus. Extensions for assume-guaranteed verification are presented in [16].

dReach dReach11 [17] is a tool for the safety verification of hybrid systems with nonlinear
continuous dynamics. The tool is based on the SMT solver dReal12 [18] for nonlinear theories
over the reals. The basic idea is to reformulate ordinary differential equations as a set of
constraints that are solved by the proposed SMT solver.

HySAT Similarly to dReach, HySAT 13 [19] is a satisfiability checker for Boolean combinations
of arithmetic constraints over real and integer-valued variables. It is the core for constraint-based
verification for hybrid systems.

HSolver HSolver14 [20] is designed for the safety verification of hybrid systems with nonlinear
continuous dynamics. Similarly to dReach, HSolver constructs constraints from the system
dynamics. The tool partitions the state space into a rectangular grid and applies interval

7http://www.bt.pa.msu.edu/index_cosy.htm
8http://www.cas.mcmaster.ca/~nedialk/vnodelp/
9http://www.cs.ubc.ca/~mitchell/ToolboxLS/index.html

10http://trac.parades.rm.cnr.it/ariadne/
11http://dreal.github.io/dReach/
12http://dreal.github.io/
13http://www.uni-oldenburg.de/en/hysat/
14http://hsolver.sourceforge.net/

3

http://www.bt.pa.msu.edu/index_cosy.htm
http://www.cas.mcmaster.ca/~nedialk/vnodelp/
http://www.cs.ubc.ca/~mitchell/ToolboxLS/index.html
http://trac.parades.rm.cnr.it/ariadne/
http://dreal.github.io/dReach/
http://dreal.github.io/
http://www.uni-oldenburg.de/en/hysat/
http://hsolver.sourceforge.net/

2 SET REPRESENTATIONS AND OPERATIONS

arithmetic to compute which cells in the grid can be entered by a valid trajectory. The constraints
are solved by pruning techniques.

KeYmaera KeYmaera15 [21] is an interactive theorem prover for hybrid systems. KeYmaera
supports differential dynamic logic (dL), which is a first-order dynamic logic for hybrid programs
[22]. Hybrid programs are a different formalism for hybrid systems that are particularly suitable
for logic-based verification.

Pioneering Tools Many of the aforementioned tools benefited from pioneering tools, which
are no longer strongly supported: HyTech16 [23], HyperTech [24], d/dt [25], Checkmate17 [26],
VeriShift [27], and VERDICT [28].

Tools for Timed Automata There also exist dedicated tools for the verification of timed
automata, i.e. hybrid systems whose continuous state variables all have the dynamics ẋi =
1: UPPAL18 [29], Kronos/Open-Kronoshttp:19 [30], and STeP20 [31]. While UPPAL is still
maintained, the development of the other mentioned tools for timed automata seems to have
stopped.

1.2 Architecture

The architecture of CORA can essentially be grouped into the following parts based on a sepa-
ration of concerns as presented in Fig. 1 using UML21: Classes for set representations (Sec. 2),
classes for matrix set representations (Sec. 3), classes for the analysis of continuous dynamics
(Sec. 4), classes for the analysis of hybrid dynamics (Sec. 5), and a class for the partitioning of
the state space (Sec. 6).

The class diagram in Fig. 1 shows that hybrid systems (class hybridAutomaton) consists of sev-
eral instances of the location class. Each location object has a continuous dynamics (classes
inheriting from contDynamics), several transitions (class transition), and a set representation
(classes inheriting from contSet) to describe the invariant of the location. Each transition has
a set representation to describe the guard set enabling a transition to the next discrete state.
More details on the semantics of those components can be found in Sec. 5.

Note that some classes subsume the functionality of other classes. For instance, nonlinear
differential-algebraic systems (class nonlinDASys) are a generalization of nonlinear systems
(class nonlinearSys). The reason why less general systems are not removed is because for
those systems very efficient algorithms exist that are not applicable to more general systems.

2 Set Representations and Operations

The basis of any efficient reachability analysis is an appropriate set representation. On the one
hand, the set representation should be general enough to describe the reachable sets accurately,

15http://symbolaris.com/info/KeYmaera.html
16http://embedded.eecs.berkeley.edu/research/hytech/
17http://www.mathworks.com/matlabcentral/fx_files/15441/3/content/doc/main.htm
18http://www.uppaal.org/
19http://www-verimag.imag.fr/~tripakis/openkronos.html
20http://www-step.stanford.edu/
21http://www.uml.org/

4

http://symbolaris.com/info/KeYmaera.html
http://embedded.eecs.berkeley.edu/research/hytech/
http://www.mathworks.com/matlabcentral/fx_files/15441/3/content/doc/main.htm
http://www.uppaal.org/
http://www-verimag.imag.fr/~tripakis/openkronos.html
http://www-step.stanford.edu/
http://www.uml.org/

2 SET REPRESENTATIONS AND OPERATIONS

contDynamics

linearSys (Sec. 4.1)

linParamSys (Sec. 4.2)

linVarSys (Sec. 4.3)

linProbSys (Sec. 4.4)

nonlinearSys (Sec. 4.5)

nonlinParamSys (Sec. 4.6)

nonlinDASys (Sec. 4.7)

transition (Sec. 5.3)

location (Sec. 5.2)

hybridAutomaton (Sec. 5.1)

partition (Sec. 6)

matrixSet

matPolytope (Sec. 3.1)

matZonotope (Sec. 3.2)

intervalMatrix (Sec. 3.3)

zonotope (Sec. 2.1)

zonotopeBundle (Sec. 2.2)

quadZonotope (Sec. 2.3)

probZonotope (Sec. 2.4)

mptPolytope (Sec. 2.5)

intervalhull (Sec. 2.6)

vertices (Sec. 2.7)

contSet

Generalization

Composition

Required interface

Participating interface

1..N

1..N

1..N
1

1

1

1

11 1

1

1

1

1

0..1

Figure 1: Unified Modeling Language (UML) class diagram of CORA 2015.

on the other hand, it is crucial that the set representation makes it possible to run efficient and
scalable operations on them. CORA provides a palette of set representations as depicted in
Fig. 2, which also shows conversions supported between set representations.

Important operations for sets are:

• display: Displays the parameters of the set in the MATLAB workspace.

• plot: Plots a two-dimensional projection of a set in the current MATLAB figure.

• mtimes: Overloads the ’*’ operator for the multiplication of various objects with a set.
For instance if M is a matrix of proper dimension and Z is a zonotope, M ∗ Z returns the
linear map {Mx|x ∈ Z}.

• plus: Overloads the ’+’ operator for the addition of various objects with a set. For
instance if Z1 and Z2 are zonotopes of proper dimension, Z1+ Z2 returns the Minkowsi
sum {x+ y|x ∈ Z1, y ∈ Z2}.

• intervalhull: Returns an interval hull that encloses the set (see Sec. 2.6).

5

2 SET REPRESENTATIONS AND OPERATIONS

zonotope (Sec. 2.1)

(class zonotope)

interval hull (Sec. 2.6)

(class intervalhull)

MPT Polytope (Sec. 2.5)

(class mptPolytope)

vertices (Sec. 2.7)

(class vertices)

zonotope bundle (Sec. 2.2)

(class zonotopeBundle)

polynomial zonotope (Sec. 2.3)

(class quadZonotope)

probabilistic zonotope (Sec. 2.4)

(class probZonotope)

mSigma

exactPolytope

zonotopeBundle

(constructor of

that class)

zonotope

a

b

c

d

e

f

vertices

exactPolytope

intervalhull

polytope

intervalhull

vertices interval-
hull

a: zonotope

b: intervalhull

c: mptPolytope

d: intervalhull

e: vertices

f: zonotope

Figure 2: Set conversions supported. Solid arrows represent exact conversions, while dashed
arrows represent over-approximative conversions. The arrows are labeled by the corresponding
method to carry out the conversion.

2.1 Zonotopes

A zonotope is a geometric object in Rn. Zonotopes are parameterized by a center c ∈ Rn and
generators g(i) ∈ Rn and defined as

Z =
{

c+

p
∑

i=1

βig
(i)
∣
∣
∣βi ∈ [−1, 1], c ∈ Rn, g(i) ∈ Rn

}

. (1)

We write in short Z = (c, g(1), . . . , g(p)). A zonotope can be interpreted as the Minkowski
addition of line segments l(i) = [−1, 1]g(i), and is visualized step-by-step in a two-dimensional
vector space in Fig. 3. Zonotopes are a compact way of representing sets in high dimensions.
More importantly, operations required for reachability analysis, such as linear maps M ⊗ Z :=
{Mz|z ∈ Z} (M ∈ Rq×n) and Minkowski addition Z1 ⊕ Z2 := {z1 + z2|z1 ∈ Z1, z2 ∈ Z2} can
be computed efficiently and exactly, and others such as convex hull computation can be tightly
over-approximated [32]. The most important methods implemented are listed in Tab. 1.

2.2 Zonotope Bundles

A disadvantage of zonotopes is that they are not closed under intersection, i.e., the intersection
of two zonotopes does not return a zonotope in general. In order to overcome this disadvantage,
zonotope bundles are introduced in [36]. Given a finite set of zonotopes Zi, a zonotope bundle is
Z∩ =

⋂s
i=1Zi, i.e. the intersection of zonotopes Zi. Note that the intersection is not computed,

but the zonotopes Zi are stored in a list, which we write as Z∩ = {Z1, . . . ,Zs}
∩. The most

important methods implemented are listed in Tab. 2.

6

2 SET REPRESENTATIONS AND OPERATIONS

0 1 2

0

1

2

c

l(1)

(a) c⊕ l(1)
−1 0 1 2 3

−1

0

1

2

3

c

l(1) l(2)

(b) c⊕ l(1) ⊕ l(2)
−2 0 2 4

−1

0

1

2

3

c

l(1) l(2)

l(3)

(c) c⊕ . . .⊕ l(3)

Figure 3: Step-by-step construction of a zonotope.

Table 1: Most important methods of the class zonotope.

name description

cartesianProduct returns the Cartesian product of two zonotopes.
center returns the center of the zonotope.
deleteZeros deletes generators whose entries are all zero.
dim returns the dimension of a zonotope.
display standard method (see Sec. 2).
enclose generates a zonotope that encloses two zonotopes of equal dimension according to [33,

Equation 2.2 + subsequent extension].
enlarge enlarges the generators of a zonotope by a vector of factors for each dimension.
exactPolytope returns an exact polytope in halfspace representation according to [33, Theorem 2.1].
inParallelotope checks if a zonotope is a subset of a parallelotope, where the latter is represented as a

zonotope.
intervalhull standard method (see Sec. 2) according to [33, Proposition 2.2].
mtimes standard method (see Sec. 2) for numeric matrices, intval/intervalMatrix according

to [33, Theorem 3.3] and matZonotope according to [34, Sec. 4.4.1].
plot standard method (see Sec. 2).
plus standard method (see Sec. 2) for numeric vectors, and zonotopes according to [33,

Equation 2.1].
polytope returns an over-approximating polytope in halfspace representation according to heuris-

tics in [33, Sec. 2.5.6.].
project returns a zonotope, which is the projection of the input argument onto the specified

dimensions.

quadratic-

Multiplication

given a zonotope Z and a discrete set of matrices Q(i) ∈ Rn×n for i = 1 . . . n,
quadraticMultiplication computes {ϕ|ϕi = xTQ(i)x, x ∈ Z} as described in [35,
Lemma 1].

randPoint generates a random point within a zonotope.
reduce returns an over-approximating zonotope with fewer generators. Depending on the

options struct, the reduction is performed according to [32, Sec. 3.4] or the methodology
in [33, Section 2.5.5].

split splits a zonotope into two or more zonotopes that enclose the original zonotope. De-
pending on the options struct, the split is performed as described in [33, Proposition
3.8] or [36, Section V.A].

underapproximate returns the vertices of an under-approximation.
vertices returns a vertices object including all vertices of the zonotope.
volume computes the volume of a zonotope according to [37, p.40].
zonotope constructor of the class.

2.3 Polynomial Zonotopes

Zonotopes are a very efficient representation for reachability analysis of linear systems [32] and of
nonlinear systems that can be well abstracted by linear differential inclusions [33]. However, more
advanced techniques, such as in [38], abstract more accurately to nonlinear difference inclusions.
As a consequence, linear maps of reachable sets are replaced by nonlinear maps. Zonotopes are
not closed under nonlinear maps and are not particularly good at over-approximating them. For
this reason, polynomial zonotopes are introduced in [38]. Polynomial zonotopes are a new non-

7

2 SET REPRESENTATIONS AND OPERATIONS

Table 2: Most important methods of the class zonotopeBundle.

name description

and returns the intersection with a zonotope bundle or a zonotope.
display standard method (see Sec. 2).
enclose generates a zonotope bundle that encloses two zonotope bundles of equal dimension

according to [36, Proposition 5].
encloseTight generates a zonotope bundle that encloses two zonotope bundles in a possibly tighter

way than enclose as outlined in [36, Sec. VI.A].
enlarge enlarges the generators of each zonotope in the bundle by a vector of factors.
exactPolytope returns an exact polytope in halfspace representation by applying [33, Theorem 2.1] to

each zonotope.
intervalhull standard method (see Sec. 2) according to [36, Proposition 6].
mtimes standard method (Sec. 2) according to [36, Proposition 1].
plot standard method (Sec. 2).
plus standard method (see Sec. 2) according to [36, Proposition 2].
polytope returns an over-approximating polytope in halfspace representation.
project returns a zonotope bundle, which is the projection of the input argument onto the

specified dimensions.
reduce returns an over-approximating zonotope bundle with less generators.
reduceCombined reduces the order of a zonotope bundle, not by reducing each zonotope separately as in

reduce, but in a combined fashion.
shrink shrinks the size of individual zonotopes by explicitly computing the intersection of in-

dividual zonotopes.
split splits a zonotope bundle into two or more zonotopes bundles. In contrast to the function

for zonotopes, the split is exact.
volume computes the volume of a zonotope bundle.
zonotopeBundle constructor of the class.

convex set representation and can be efficiently stored and manipulated. The new representation
shares many similarities with Taylor models [39] (as briefly discussed later) and is a generalization
of zonotopes.

Given a starting point c ∈ Rn, multi-indexed generators f ([i],j,k,...,m) ∈ Rn, and single-indexed
generators g(i) ∈ Rn, a polynomial zonotope is defined as

PZ =
{

c+

p
∑

j=1

βjf
([1],j) +

p
∑

j=1

p
∑

k=j

βjβkf
([2],j,k) + . . .+

p
∑

j=1

p
∑

k=j

. . .

p
∑

m=l

βjβk . . . βm
︸ ︷︷ ︸

η factors

f ([η],j,k,...,m)

+

q
∑

i=1

γig
(i)
∣
∣
∣βi, γi ∈ [−1, 1]

}

. (2)

The scalars βi are called dependent factors, since changing their values does not only affect the
multiplication with one generator, but with other generators too. On the other hand, the scalars
γi only affect the multiplication with one generator, so they are called independent factors. The
number of dependent factors is p, the number of independent factors is q, and the polynomial
order η is the maximum power of the scalar factors βi. The order of a polynomial zonotope is
defined as the number of generators ξ divided by the dimension, which is ρ = ξ

n
. For a concise

notation and later derivations, we introduce the matrices

E[i] = [f ([i],1,1,...,1)

︸ ︷︷ ︸

=:e([i],1)

. . . f ([i],p,p,...,p)

︸ ︷︷ ︸

=:e([i],p)

] (all indices are the same value),

F [i] = [f ([i],1,1,...,1,2) f ([i],1,1,...,1,3) . . . f ([i],1,1,...,1,p)

f ([i],1,1,...,2,2) f ([i],1,1,...,2,3) . . . f ([i],1,1,...,2,p)

f ([i],1,1,...,3,3) . . .] (not all indices are the same value),

G = [g(1) . . . g(q)],

8

2 SET REPRESENTATIONS AND OPERATIONS

and E =
[
E[1] . . . E[η]

]
, F =

[
F [2] . . . F [η]

]
(F [i] is only defined for i ≥ 2). Note that the

indices in F [i] are ascending due to the nested summations in (2). In short form, a polynomial
zonotope is written as PZ = (c,E, F,G).

For a given polynomial order i, the total number of generators in E[i] and F [i] is derived using
the number

(
p+i−1

i

)
of combinations of the scalar factors β with replacement (i.e. the same factor

can be used again). Adding the numbers for all polynomial orders and adding the number of
independent generators q, results in ξ =

∑η
i=1

(
p+i−1

i

)
+ q generators, which is in O(pη) with

respect to p. The non-convex shape of a polynomial zonotope with polynomial order 2 is shown
in Fig. 4.

x1

x
2

polynomial zonotope

PZ = (0, E, F,G)

sample

E[1] =

[

−1 0
0 0.5

]

E[2] =

[

1 1
0.5 0.3

]

F [2] =

[

−0.5
1

]

G =

[

0.3
0.3

]

3

2

1

0

−1

0 2 4

Figure 4: Over-approximative plot of a polynomial zonotope as specified in the figure. Random
samples of possible values demonstrate the accuracy of the over-approximative plot.

So far, polynomial zonotopes are only implemented up to polynomial order η = 2 so that the
subsequent class is called quadZonotope due to the quadratic polynomial order. The most
important methods implemented are listed in Tab. 3.

2.4 Probabilistic Zonotopes

Probabilistic zonotopes have been introduced in [40] for stochastic verification. A probabilistic
zonotope has the same structure as a zonotope, except that the values of some βi in (1) are
bounded by the interval [−1, 1], while others are subject to a normal distribution 22. Given
pairwise independent Gaussian distributed random variables N (µ,Σ) with expected value µ
and covariance matrix Σ, one can define a Gaussian zonotope with certain mean:

Zg = c+

q
∑

i=1

N (i)(0, 1) · g(i),

where g(1), . . . , g(q) ∈ Rn are the generators, which are underlined in order to distinguish them
from generators of regular zonotopes. Gaussian zonotopes are denoted by a subscripted g:
Zg = (c, g(1...q)).

A Gaussian zonotope with uncertain mean Z is defined as a Gaussian zonotope Zg, where the
center is uncertain and can have any value within a zonotope Z, which is denoted by

Z := Z ⊞ Zg, Z = (c, g(1...p)), Zg = (0, g(1...q)).

or in short by Z = (c, g(1...p), g(1...q)). If the probabilistic generators can be represented by
the covariance matrix Σ (q > n) as shown in [40, Proposition 1], one can also write Z =

22Other distributions are conceivable, but not implemented.

9

2 SET REPRESENTATIONS AND OPERATIONS

Table 3: Most important methods of the class quadZonotope.

name description

cartesianProduct returns the Cartesian product of a quadZonotope and a zonotope.
center returns the starting point c.
display standard method (see Sec. 2).
enclose generates an over-approximative quadZonotope that encloses two quadZonotopes.
generators returns the generators of a quadZonotope.
intervalhull standard method (see Sec. 2). Other than for the zonotope class, the generated interval

hull is not tight in the sense that it touches the quadZonotope.
intervalhull-

Accurate

over-approximates a quadZonotope by a tighter interval hull as when applying
intervalhull.

mtimes standard method (see Sec. 2) as stated in [36, Equation 14] for numeric matrix multi-
plication and as described in [33, Theorem 3.3] for interval matrices.

plot standard method (see Sec. 2).
plus standard method (see Sec. 2) for numeric vectors, zonotope objects, and quadZonotope

objects.
pointSet computes a user-defined number of random points within the quadZonotope.
pointSetExtreme computes a user-defined number of random points when only allowing the values {−1, 1}

for βi, γi (see (2)).
polytope returns an over-approximating polytope in halfspace representation.
project returns a quadZonotope, which is the projection of the input argument onto the specified

dimensions.

quadratic-

Multiplication

given a quadZonotope Z and a discrete set of matrices Q(i) ∈ Rn×n for i = 1 . . . n,
quadraticMultiplication computes {ϕ|ϕi = xTQ(i)x, x ∈ Z} as described in [38,
Corollary 1].

quadZonotope constructor of the class.
randPoint computes a random point within the quadZonotope.
randPointExtreme computes a random point when only allowing the values {−1, 1} for βi, γi (see (2)).
reduce returns an over-approximating quadZonotope with fewer generators. The redistribution

technique is according to [38, Proposition 2] and the standard technique according to [32,
Sec. 3.4].

splitLongestGen splits the longest generator factor and returns two quadZonotope objects.
splitOneGen splits one generator factor and returns two quadZonotope objects.
zonotope computes an enclosing zonotope as presented in [38, Proposition 1].

(c, g(1...p),Σ). As Z is neither a set nor a random vector, there does not exist a probability
density function describing Z . However, one can obtain an enclosing probabilistic hull which is
defined as f̄Z (x) = sup

{
fZg(x)

∣
∣E[Zg] ∈ Z

}
, where E[] returns the expectation and fZg(x) is

the probability density function (PDF) of Zg. Combinations of sets with random vectors have
also been investigated, e.g. in [41]. Analogously to a zonotope, it is shown in Fig. 5 how the
enclosing probabilistic hull (EPH) of a Gaussian zonotope with two non-probabilistic and two
probabilistic generators is built step-by-step from left to right. The most important methods
implemented are listed in Tab. 4.

2.5 MPT Polytopes

There exist two representations for polytopes: The halfspace representation (H-representation)
and the vertex representation (V-representation). The halfspace representation specifies a convex
polytope P by the intersection of q halfspaces H(i): P = H(1) ∩H(i) ∩ . . . ∩H(q). A halfspace is
one of the two parts obtained by bisecting the n-dimensional Euclidean space with a hyperplane
S, which is given by S := {x|cTx = d}, c ∈ Rn, d ∈ R. The vector c is the normal vector of the
hyperplane and d the scalar product of any point on the hyperplane with the normal vector.
From this follows that the corresponding halfspace is H := {x|cTx ≤ d}. As the convex polytope
P is the nonempty intersection of q halfspaces, q inequalities have to be fulfilled simultaneously.

10

2 SET REPRESENTATIONS AND OPERATIONS

−4
−2

0
2

4

−4

−2

0

2

4

0

0.05

0.1

0.15

0.2

(a) PDF of (0, g(1)).

−4
−2

0
2

4

−4
−2

0
2

4
0

0.05

0.1

(b) PDF of (0, g(1,2)).

−5

0

5

−5

0

5
0

0.05

0.1

(c) EPH of (0, g(1...2), g(1...2)).

Figure 5: Construction of a probabilistic zonotope.

Table 4: Most important methods of the class probZonotope.

name description

center returns the center of the probabilistic zonotope.
display standard method (see Sec. 2).
enclose generates a probabilistic zonotope that encloses two probabilistic zonotopes Z , A⊗ Z

(A ∈ Rn×n) according to [40, Section VI.A].
enclosing-

Probability

computes values to plot the mesh of a two-dimensional projection of the enclosing prob-
ability hull.

max computes an over-approximation of the maximum on the m-sigma bound according
to [40, Equation 3].

mean returns the uncertain mean of a probabilistic zonotope.
mSigma converts a probabilistic zonotope to a common zonotope where for each generator, an

m-sigma interval is taken.
mtimes standard method (see Sec. 2) as stated in [40, Equation 4] for numeric matrix multipli-

cation. The multiplication of interval matrices is also supported.
plot standard method (see Sec. 2).
plus standard method (see Sec. 2) for numeric vectors, zonotope objects, and probZonotope

objects as described in [40, Equation 4].
probReduce reduces the number of single Gaussian distributions to the dimension of the state space.
probZonotope constructor of the class.
pyramid implementation of [40, Section VI.C] to obtain the probability of intersecting a polytope.
reduce returns an over-approximating zonotope with fewer generators.
sigma returns the Σ matrix of a probabilistic zonotope.

H-Representation of a Polytope A convex polytope P is the bounded intersection of q
halfspaces:

P =
{

x ∈ Rn
∣
∣C x ≤ d, C ∈ Rq×n, d ∈ Rq

}

.

When the intersection is unbounded, one obtains a polyhedron [42].

A polytope with vertex representation is defined as the convex hull of a finite set of points in
the n-dimensional Euclidean space. The points are also referred to as vertices and are denoted
by v(i) ∈ Rn. A convex hull of a finite set of r points is obtained from their linear combination:

Conv(v(1), . . . , v(r)) :=
{ r∑

i=1

αiv
(i)
∣
∣v(i) ∈ Rn, αi ∈ R, αi ≥ 0,

r∑

i=1

αi = 1
}

.

Given the convex hull operator Conv(), a convex and bounded polytope can be defined in vertex
representation as follows:

V-Representation of a Polytope For r vertices v(i) ∈ Rn, a convex polytope P is the set
P = Conv(v(1), . . . , v(r)).

11

3 MATRIX SET REPRESENTATIONS AND OPERATIONS

The halfspace and the vertex representation are illustrated in Fig. 6. Algorithms that convert
from H- to V-representation and vice versa are presented in [43].

v(i)

Conv(v(1), . . . , v(r))

(a) V − representation

S = {x|cTx = d}

H(i)

H(1) ∩H(2) . . . ∩H(q)

(b) H − representation

Figure 6: Possible representations of a polytope.

The class mptPolytope is a wrapper class that interfaces with the MATLAB toolbox Multi-
Parametric Toolbox (MPT) for the methods listed in Tab. 5.

Table 5: Most important methods of the class mptPolytope.

name description

and computes the intersection of two mptPolytopes.
display standard method (see Sec. 2).
enclose computes the convex hull of two mptPolytopes.
in determines if a zonotope is enclosed by a mptPolytope.
interval encloses a mptPolytope by INTLAB intervals.
intervalhull encloses a mptPolytope by an intervalhull.
iscontained returns if a mptPolytope is contained in another mptPolytope.
is empty returns 1 if a mptPolytope is empty and 0 otherwise.
mldivide computes the set difference of two mptPolytopes.
mptPolytope constructor of the class.
mtimes standard method (see Sec. 2) for numeric and interval matrix multiplication.
plot standard method (see Sec. 2).
plus standard method (see Sec. 2) for numeric vectors and mptPolytope objects.
vertices returns a vertices object including all vertices of the polytope.
volume computes the volume of a polytope.

2.6 Interval Hulls

An interval hull I is the closest axis-aligned box of a set. It can easily be represented as a
multidimensional interval: I = [x, x], x ∈ Rn, x ∈ Rn, ∀i : xi ≤ xi. We provide the methods in
Tab. 6.

2.7 Vertices

The vertices class has two main purposes: It is the class that performs the plotting since all
other set representations are first converted to vertices to perform the plotting. Second, if one
defines a point cloud as a set of potential vertices, this class computes enclosures of all points.
The methods are listed in Tab. 7.

3 Matrix Set Representations and Operations

Besides vector sets as introduced in the previous section, it is often useful to represent sets of
possible matrices. This occurs for instance, when a linear system has uncertain parameters as
described later in Sec. 4.2. CORA supports the following matrix set representations:

12

3 MATRIX SET REPRESENTATIONS AND OPERATIONS

Table 6: Most important methods of the class intervalhull.

name description

abs returns the absolute value bound of an interval hull: |I|i = sup
{

|xi|
∣

∣x ∈ I
}

.
and computes the intersection of two intervalhulls.
center returns the center of the intervalhull.
display standard method (see Sec. 2).
edgeLength determines the edge lengths of the interval hull.
enclose computes an interval hull that encloses two interval hulls.
halfspace generates halfspace representation of the intervalhull.
in determines if a zonotope is enclosed by the intervalhull.
inf returns the infimum of an intervalhull.
interval converts an intervalhull to INTLAB intervals.
intervalhull constructor of the class.
is empty returns 1 if a intervalhull is empty and 0 otherwise.
le overloads <= operator: Is one interval hull equal or the subset of another interval hull?
lt overloads < operator: Is one interval hull equal or the subset of another interval hull?
mptPolytope converts an intervalhull object to a mptPolytope object.
mtimes standard method (see Sec. 2) for numeric and interval matrix multiplication.
or over-approximates the union of interval hulls.
plot standard method (see Sec. 2).
plus standard method (see Sec. 2) for numeric vectors and intervalhull objects.
polytope converts an interval hull object to a polytope.
radius computes radius of an enclosing circle.
rdivide overloads the ./ operator; elementwise division of intervals by a vector.
sup returns the supremum of an intervalhull.
vertices returns a vertices object including all vertices.
volume computes the volume of an interval hull.
zonotope converts an intervalhull object to a zonotope object.

Table 7: Most important methods of the class vertices.

name description

collect collects cell arrays (MATLAB-specific container) of vertices.
display standard method (see Sec. 2).
intervalhull encloses all vertices by an intervalhull.
mtimes standard method (see Sec. 2) for numeric matrix multiplication.
parallelotope computes a enclosing parallelotope for provided facet normals.
plot standard method (see Sec. 2).
plus standard method (see Sec. 2) for nuemric vectors.
vertices constructor of the class.
zonotope computes a zonotope that encloses all vertices according to [44, Section 3].

• Matrix polytope (Sec. 3.1)

• Matrix zonotope (Sec. 3.2); specialization of a matrix polytope.

• Interval matrix (Sec. 3.3); specialization of a matrix zonotope.

For each matrix set representation, the conversion to all other matrix set computations is im-
plemented. Of course, conversions to specializations are realized in an over-approximative way,
while the other direction is computed exactly. Note that we use the term matrix polytope instead
of polytope matrix. The reason is that the analogous term vector polytope makes sense, while
polytope vector can be misinterpreted as a vertex of a polytope. We do not use the term matrix
interval since the term interval matrix is already established. Important operations for matrix
sets are

• display: Displays the parameters of the set in the MATLAB workspace.

• mtimes: Overloads the ’*’ operator for the multiplication of various objects with a matrix
set. For instance if M set is a matrix set of proper dimension and Z is a zonotope,
M set ∗ Z returns the linear map {Mx|M ∈ M set, x ∈ Z}.

13

3 MATRIX SET REPRESENTATIONS AND OPERATIONS

• plus: Overloads the ’+’ operator for the addition of various objects with a matrix set. For
instance if M1 set and M2 set are interval matrices of proper dimension, M1 set+ M2 set

returns the Minkowski sum {M1 +M2|M1 ∈ M1 set,M2 ∈ M2 set}.

• expm: Returns the set of matrix exponentials for a matrix set.

• intervalMatrix: Computes an enclosing interval matrix.

• vertices: returns the vertices of a matrix set.

3.1 Matrix Polytopes

A matrix polytope is analogously defined as a V-polytope (see Sec. 2.5):

A[p] =
{ r∑

i=1

αiV
(i)
∣
∣
∣V (i) ∈ Rn×n, αi ∈ R, αi ≥ 0,

∑

i

αi = 1
}

. (3)

The matrices V (i) are also called vertices of the matrix polytope. When substituting the matrix
vertices by vector vertices v(i) ∈ Rn, one obtains a V-polytope (see Sec. 2.5). The methods in
Tab. 8 are implemented.

Table 8: Most important methods of the class matPolytope.

name description

display standard method (see Sec. 3).
expmInd operator for the exponential matrix of a matrix polytope, evaluated independently.
expmIndMixed operator for the exponential matrix of a matrix polytope, evaluated independently.

Higher order terms are computed using interval arithmetic.
intervalMatrix standard method (see Sec. 3).
matPolytope constructor of the class.
matZonotope computes an enclosing matrix zonotope.
mpower overloaded ’∧’ operator for the power of matrix polytopes.
mtimes standard method (see Sec. 3) for numeric matrix multiplication or multiplication with

another matrix polytope.
plot plots a 2-dimensional projection of a matrix polytope.
powers computes the powers of a matrix zonotope up to a certain order.
plus standard method (see Sec. 3) for a matrix polytope or a numeric matrix.
polytope converts a matrix polytope to a polytope.
simplePlus computes the Minkowski addition of two matrix polytopes.
vertices standard method (see Sec. 3).

3.2 Matrix Zonotopes

A matrix zonotope is defined analogously to zonotopes (see Sec. 2.1):

A[z] =
{

G(0) +
κ∑

i=1

piG
(i)
∣
∣
∣pi ∈ [−1, 1], G(i) ∈ Rn×n

}

(4)

and is written in short form as A[z] = (G(0), G(1), . . . , G(κ)), where the first matrix is referred
to as the matrix center and the other matrices as matrix generators. The order of a matrix
zonotope is defined as ρ = κ/n. When exchanging the matrix generators by vector generators
g(i) ∈ Rn, one obtains a zonotope (see e.g. [32]). The methods for matrix zonotopes are listed
in Tab. 9.

14

4 CONTINUOUS DYNAMICS

Table 9: Most important methods of the class matZonotope.

name description

concatenate concatenates the center and all generators of two matrix zonotopes.
display standard method (see Sec. 3).
dependentTerms considers dependency in the computation of Taylor terms for the matrix zonotope ex-

ponential according to [34, Proposition 4.3].
dominantVertices computes the dominant vertices of a matrix zonotope according to a heuristics.
expmInd operator for the exponential matrix of a matrix zonotope, evaluated independently.
expmIndMixed operator for the exponential matrix of a matrix zonotope, evaluated independently.

Higher order terms are computed using interval arithmetic.
expmMixed operator for the exponential matrix of a matrix zonotope, evaluated dependently. Higher

order terms are computed using interval arithmetic [34, Section 4.4.4].
expmOneParam operator for the exponential matrix of a matrix zonotope when only one parameter is

uncertain [45, Theorem 1].
expmVertex computes the exponential matrix for a selected number of dominant vertices obtained

by the dominantVertices method.
infNorm returns the maximum of the infinity norm of a matrix zonotope.
infNormRed returns a fast over-approximation of the maximum of the infinity norm of a matrix

zonotope.
intervalMatrix standard method (see Sec. 3).
matPolytope converts a matrix zonotope into a matrix polytope representation.
matZonotope constructor of the class.
mpower overloaded ’∧’ operator for the power of matrix zonotopes.
mtimes standard method (see Sec. 3) for numeric matrix multiplication or multiplication with

another matrix zonotope according to [34, Equation 4.10].
plot plots 2-dimensional projection of a matrix zonotope.
plus standard method (see Sec. 3) for a matrix zonotope or a numerical matrix.
powers computes the powers of a matrix zonotope up to a certain order.
reduce reduces the order of a matrix zonotope.
uniformSampling creates samples uniformly within a matrix zonotope.
vertices standard method (see Sec. 3).
volume computes the volume of a matrix zonotope by computing the volume of the correspond-

ing zonotope.
zonotope converts a matrix zonotope into a zonotope.

3.3 Interval Matrices

An interval matrix is a special case of a matrix zonotope and specifies the interval of possible
values for each matrix element:

A[i] = [A,A], ∀i, j : aij ≤ aij, A,A ∈ Rn×n.

The matrix A is referred to as the lower bound and A as the upper bound of A[i]. The methods
for interval matrices are listed in Tab. 10.

4 Continuous Dynamics

This section introduces various classes to compute reachable sets of continuous dynamics. One
can directly compute reachable sets for each class, or include those classes into a hybrid automa-
ton for the reachability analysis of hybrid systems. Note that besides reachability analysis, the
simulation of particular trajectories is also supported. CORA supports the following continuous
dynamics:

• Linear systems (Sec. 4.1)

• Linear systems with uncertain fixed parameters (Sec. 4.2)

• Linear systems with uncertain varying parameters (Sec. 4.3)

15

4 CONTINUOUS DYNAMICS

Table 10: Most important methods of the class intervalMatrix.

name description

abs returns the absolute value bound of an interval matrix.
display standard method (see Sec. 3).
dependentTerms considers dependency in the computation of Taylor terms for the interval matrix

exponential according to [34, Proposition 4.4].
dominantVertices computes the dominant vertices of an interval matrix zonotope according to a heuris-

tics.
expm operator for the exponential matrix of an interval matrix, evaluated dependently.
expmAbsoluteBound returns the over-approximation of the absolute bound of the symmetric solution to

the computation of the exponential matrix.
expmInd operator for the exponential matrix of an interval matrix, evaluated independently.
expmNormInf returns the over-approximation of the norm of the difference between the interval ma-

trix exponential and the exponential from the center matrix according to [34, Theorem
4.2].

expmVertex computes the exponential matrix for a selected number of dominant vertices obtained
by the dominantVertices method.

exponentialRemainder returns the remainder of the exponential matrix according to [34, Proposition 4.1].
infNorm returns the maximum of the infinity norm of an interval matrix.
intervalhull converts an interval matrix to an interval hull.
intervalMatrix constructor of the class.
matPolytope converts an interval matrix to a matrix polytope.
matZonotope converts an interval matrix to a matrix zonotope.
mpower overloaded ’∧’ operator for the power of interval matrices.
mtimes standard method (see Sec. 3) for numeric matrix multiplication or multiplication with

another interval matrix according to [34, Equation 4.11].
plot plots a 2-dimensional projection of an interval matrix.
plus standard method (see Sec. 3) for another interval matrix or a numeric matrix.
powers computes the powers of an interval matrix up to a certain order.
randomIntervalMatrix generates a random interval matrix with a specified center and a specified delta matrix

or scalar.
uniformSampling creates samples uniformly within an interval matrix.
vertices standard method (see Sec. 3).
volume computes the volume of an interval matrix by computing the volume of the corre-

sponding interval hull.

• Linear probabilistic systems (Sec. 4.4)

• Nonlinear systems (Sec. 4.5)

• Nonlinear systems with uncertain fixed parameters (Sec. 4.6)

• Nonlinear differential-algebraic systems (Sec. 4.7)

For each class the same methods are implemented:

• display: Displays the parameters of the continuous dynamics in the MATLAB workspace.

• initReach: Initializes the reachable set computation.

• reach: Computes the reachable set for the next time interval.

• simulate: Produces a single trajectory that numerically solves the system for a particular
initial state and a particular input trajectory.

There exist some further auxiliary methods for each class, but those are not relevant unless one
aims to change details of the provided algorithms. In contrast to the set representations, all
continuous systems have the same methods, therefor the methods are not listed for the individual
classes. We mainly focus on the method initReach, which is computed differently for each class.

16

4 CONTINUOUS DYNAMICS

4.1 Linear Systems

The most basic system dynamics considered in this software package are linear systems of the
form

ẋ(t) = Ax(t) +Bu(t), x(0) ∈ XO ⊂ Rn, u(t) ∈ U ⊂ Rn (5)

For the computation of reachable sets, we use the equivalent system

ẋ(t) = Ax(t) + ũ(t), x(0) ∈ XO ⊂ Rn, ũ(t) ∈ Ũ = B ⊗ U ⊂ Rn, (6)

where C ⊗ D = {C D|C ∈ C,D ∈ D} is the set-based multiplication (one argument can be a
singleton).

The method initReach computes the required steps to obtain the reachable set for the first
point in time r and the first time interval [0, r] as follows. Given is the linear system in (6). For
further computations, we introduce the center of the set of inputs uc and the deviation from the
center of Ũ , Ũ∆ := Ũ ⊕ (−uc). According to [33, Section 3.2], the reachable set for the first time
interval τ0 = [0, r] is computed as shown in Fig. 7:

1. Starting from XO, compute the set of all solutions Rd
h for the affine dynamics ẋ(t) =

Ax(t) + uc at time r.

2. Obtain the convex hull of XO and Rd
h to approximate the reachable set for the first time

interval τ0.

3. Compute Rd(τ0) by enlarging the convex hull, firstly to bound all affine solutions within
τ0 and secondly to account for the set of uncertain inputs Ũ∆.

XO

Rd
h

convex hull of
XO, R

d
h

Rd(τ0)

➀ ➁ ➂

enlargement

Figure 7: Steps for the computation of an over-approximation of the reachable set for a linear
system.

4.2 Linear Systems with Uncertain Fixed Parameters

This class extends linear systems by uncertain parameters that are fixed over time:

ẋ(t) = A(p)x(t) + ũ(t), x(0) ∈ XO ⊂ Rn, p ∈ P, ũ(t) ∈ Ũ = {B(p)⊗ U|U ⊂ Rn, p ∈ P},
(7)

The set of state and input matrices is denoted by

A = {A(p)|p ∈ P}, B = {B(p)|p ∈ P} (8)

An alternative is to define each parameter as a state variable x̃i with the trivial dynamics ˙̃xi = 0.
The result is a nonlinear system that can be handled as described in Sec. 4.5. The problem of
which approach to use for any particular case is still open.

17

4 CONTINUOUS DYNAMICS

The method initReach computes the reachable set for the first point in time r and the first
time interval [0, r] similarly as for linear systems with fixed parameters. The main difference is
that we have to take into account an uncertain state matrix A and an uncertain input matrix
B. The initial state solution becomes

Rd
h = eArXO = {eArx0|A ∈ A, x0 ∈ XO}. (9)

Similarly, the reachable set due to the input solution changes as described in [33, Section 3.3].

4.3 Linear Systems with Uncertain Varying Parameters

This class extends linear systems with uncertain, but fixed parameters to linear systems with
time-varying parameters:

ẋ(t) = A(t)x(t) + ũ(t), x(0) ∈ XO ⊂ Rn, A(t) ∈ A, ũ(t) ∈ Ũ .

The set of state matrices can be represented by any matrix set introduced in Sec. 3. The
provided methods of the class are identical to the ones in Sec. 4.2, except that the computation
is based on [46].

4.4 Linear Probabilistic Systems

In contrast to all other systems, we consider stochastic properties in the class linProbSys. The
system under consideration is defined by the following linear stochastic differential equation
(SDE) which is also known as the multivariate Ornstein-Uhlenbeck process [47]:

ẋ = Ax(t) + u(t) + Cξ(t), (10)

x(0) ∈ Rn, u(t) ∈ U ⊂ Rn, ξ ∈ Rm

where A and C are matrices of proper dimension and A has full rank. There are two kinds of
inputs: the first input u is Lipschitz continuous and can take any value in U ⊂ Rn for which
no probability distribution is known. The second input ξ ∈ Rm is white Gaussian noise. The
combination of both inputs can be seen as a white Gaussian noise input, where the mean value
is unknown within the set U .

In contrast to the other system classes, we compute enclosing probabilistic hulls, i.e. a hull over
all possible probability distributions when some parameters are uncertain and do not have a
probability distribution. In the probabilistic setting (C 6= 0), the probability density function
(PDF) at time t = r of the random process X(t) defined by (10) for a specific trajectory
u(t) ∈ U is denoted by fX(x, r). The enclosing probabilistic hull (EPH) of all possible probability
density functions fX(x, r) is denoted by f̄X(x, r) and defined as: f̄X(x, r) = sup{fX(x, r)|X(t)
is a solution of (10) ∀t ∈ [0, r], u(t) ∈ U , fX(x, 0) = f0}. The enclosing probabilistic hull for a
time interval is defined as f̄X(x, [0, r]) = sup{f̄X(x, t)|t ∈ [0, r]}.

4.5 Nonlinear Systems

So far, reachable sets of linear continuous systems have been presented. Although a fairly large
group of dynamic systems can be described by linear continuous systems, the extension to non-
linear continuous systems is an important step for the analysis of more complex systems. The
analysis of nonlinear systems is much more complicated since many valuable properties are no
longer valid. One of them is the superposition principle, which allows the homogeneous and

18

4 CONTINUOUS DYNAMICS

the inhomogeneous solution to be obtained separately. Another is that reachable sets of linear
systems can be computed by a linear map. This makes it possible to exploit that geometric
representations such as ellipsoids, zonotopes, and polytopes are closed under linear transforma-
tions, i.e. they are again mapped to ellipsoids, zonotopes and polytopes, respectively. In CORA,
reachability analysis of nonlinear systems is based on abstraction. We present abstraction by
linear systems as presented in [33, Section 3.4] and by polynomial systems as presented in [38].
Since the abstraction causes additional errors, the abstraction errors are determined in an over-
approximative way and added as an additional uncertain input so that an over-approximative
computation is ensured.

General nonlinear continuous systems with uncertain parameters and Lipschitz continuity are
considered. In analogy to the previous linear systems, the initial state x(0) can take values from
a set XO ⊂ Rn and the input u takes values from a set U ⊂ Rm. The evolution of the state x is
defined by the following differential equation:

ẋ(t) = f(x(t), u(t)), x(0) ∈ XO ⊂ Rn, u(t) ∈ U ⊂ Rm,

where u(t) and f(x(t), u(t)) are assumed to be globally Lipschitz continuous so that the Taylor
expansion for the state and the input can always be computed, a condition required for the
abstraction.

➀

➁

➂

➃

➄

➅

➆

Initial set: R(0) = XO, time step: k = 1

Compute system abstraction (linear/polynomial)

Obtain required abstraction errors L̄ heuristically

Compute Rabstract(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L̄

Compute L based on Rabstract(τk)

L ⊆ L̄ ? Enlarge L̄

Compute R(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L

Cancellation of redundant reachable sets

Next initial set: R(tk+1), time step: k := k + 1

Yes

No

Figure 8: Computation of reachable sets – overview.

A brief visualization of the overall concept for computing the reachable set is shown in Fig.
8. As in the previous approaches, the reachable set is computed iteratively for time intervals
t ∈ τk = [k r, (k + 1)r] where k ∈ N+. The procedure for computing the reachable sets of the
consecutive time intervals is as follows:

➀ The nonlinear system ẋ(t) = f(x(t), u(t)) is either abstracted to a linear system as shown

19

4 CONTINUOUS DYNAMICS

in (6) or after introducing z = [xT , uT]T a polynomial system of the form

ẋi = fabstract(x, u) =wi +
1

1!

o∑

j=1

Cijzj(t) +
1

2!

o∑

j=1

o∑

k=1

Dijkzj(t)zk(t)

+
1

3!

o∑

j=1

o∑

k=1

o∑

l=1

Eijklzj(t)zk(t)zl(t) + . . .

(11)

The set of abstraction errors L ensures that f(x, u) ∈ fabstract(x, u)⊕L, which allows the
reachable set to be computed in an over-approximative way.

➁ Next, the set of required abstraction errors L̄ is obtained heuristically.

➂ The reachable set Rabstract(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L̄ is computed.

➃ The set of abstraction errors L is computed based on the reachable set Rabstract(τk).

➄ When L * L̄, the abstraction error is not admissible, requiring the assumption L̄ to be
enlarged. If several enlargements are not successful, one has to split the reachable set and
continue with one more partial reachable set from then on.

➅ If L ⊆ L̄, the abstraction error is accepted and the reachable set is obtained by using the
tighter abstraction error: ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L.

➆ It remains to increase the time step (k := k+1) and cancel redundant reachable sets that
are already covered by previously computed reachable sets. This decreases the number of
reachable sets that have to be considered in the next time interval.

The method initReach computes the reachable set for a first point in time r and the first
time interval [0, r]. In contrast to linear systems, it is required to call initReach for each time
interval τk since the system is abstracted for each time interval τk by a different abstraction
fabstract(x, u).

4.6 Nonlinear Systems with Uncertain Fixed Parameters

The class nonlinParamSys extends the class nonlinearSys by considering uncertain parameters
p:

ẋ(t) = f(x(t), u(t), p), x(0) ∈ XO ⊂ Rn, u(t) ∈ U ⊂ Rm, p ∈ P ⊂ Rp.

The functionality provided is identical to nonlinearSys, except that the abstraction to polyno-
mial systems is not yet implemented.

4.7 Nonlinear Differential-Algebraic Systems

The class nonlinDASys considers time-invariant, semi-explicit, index-1 DAEs without parametric
uncertainties since they are not yet implemented. The extension to parametric uncertainties can
be done using the methods applied in Sec. 4.6. Using the vectors of differential variables x,
algebraic variables y, and inputs u, the semi-explicit DAE can generally be written as

ẋ = f(x(t), y(t), u(t))

0 = g(x(t), y(t), u(t)),

[xT (0), yT (0)]T ∈ R(0), u(t) ∈ U ,

(12)

where R(0) over-approximates the set of consistent initial states and U is the set of possible
inputs. The initial state is consistent when g(x(0), y(0), u(0)) = 0, while for DAEs with an

20

5 HYBRID DYNAMICS

index greater than 1, further hidden algebraic constraints have to be considered [48, Chapter

9.1]. For an implicit DAE, the index-1 property holds if and only if ∀t : det(∂g(x(t),y(t),u(t))
∂y

) 6= 0,
i.e. the Jacobian of the algebraic equations is non-singular [49, p. 34]. Loosely speaking, the
index specifies the distance to an ODE (which has index 0) by the number of required time
differentiations of the general form 0 = F (˙̃x, x̃, u, t) along a solution x̃(t), in order to express ˙̃x
as a continuous function of x̃ and t [48, Chapter 9.1].

To apply the methods presented in the previous section to compute reachable sets for DAEs, an
abstraction of the original nonlinear DAEs to linear differential inclusions is performed for each
consecutive time interval τk. A different abstraction is used for each time interval to minimize
the over-approximation error. Based on a linearization of the functions f(x(t), y(t), u(t)) and
g(x(t), y(t), u(t)), one can abstract the dynamics of the original nonlinear DAE by a linear
system plus additive uncertainty as detailed in [35, Section IV]. This linear system only contains
dynamic state variables x and uncertain inputs u. The algebraic state y is obtained afterwards
by the linearized constraint function g(x(t), y(t), u(t)) as described in [35, Proposition 2].

5 Hybrid Dynamics

In CORA, hybrid systems are modeled by hybrid automata. Besides a continuous state x,
there also exists a discrete state v for hybrid systems. The continuous initial state may take
values within continuous sets while only a single initial discrete state is assumed without loss of
generality23. The switching of the continuous dynamics is triggered by guard sets. Jumps in the
continuous state are considered after the discrete state has changed. One of the most intuitive
examples where jumps in the continuous state can occur is the bouncing ball example (see Sec.
7), where the velocity of the ball changes instantaneously when hitting the ground.

The formal definition of the hybrid automaton is similarly defined as in [44]. The main difference
is the consideration of uncertain parameters and the restrictions on jumps and guard sets. A
hybrid automaton HA = (V, v0,X , X 0,U ,P, inv, T, g, h, f), as it is considered in CORA, consists
of:

• the finite set of locations V = {v1, . . . , vξ} with an initial location v0 ∈ V.

• the continuous state space X ⊆ Rn and the set of initial continuous states X 0 such that
X 0 ⊆ inv(v0).

• the continuous input space U ⊆ Rm.

• the parameter space P ⊆ Rp.

• the mapping24 inv: V → 2X , which assigns an invariant inv(v) ⊆ X to each location v.

• the set of discrete transitions T ⊆ V ×V. A transition from vi ∈ V to vj ∈ V is denoted by
(vi, vj).

• the guard function g : T → 2X , which associates a guard set g((vi, vj)) for each transition
from vi to vj , where g((vi, vj)) ∩ inv(vi) 6= ∅.

• the jump function h : T×X → X , which returns the next continuous state when a transition
is taken.

• the flow function f : V × X × U × P → R(n), which defines a continuous vector field for
the time derivative of x: ẋ = f(v, x, u, p).

The invariants inv(v) and the guard sets g((vi, vj)) are modeled by polytopes. The jump function

23In the case of several initial discrete states, the reachability analysis can be performed for each discrete state
separately.

242X is the power set of X .

21

5 HYBRID DYNAMICS

is restricted to a linear map
x′ = K(vi,vj) x+ l(vi,vj), (13)

where x′ denotes the state after the transition is taken and K(vi,vj) ∈ Rn×n, l(vi,vj) ∈ Rn are
specific for a transition (vi, vj). The input sets Uv are modeled by zonotopes and are also
dependent on the location v. Note that in order to use the results from reachability analysis
of nonlinear systems, the input u(t) is assumed to be locally Lipschitz continuous. The set of
parameters Pv can also be chosen differently for each location v.

The evolution of the hybrid automaton is described informally as follows. Starting from an
initial location v(0) = v0 and an initial state x(0) ∈ X 0, the continuous state evolves according
to the flow function that is assigned to each location v. If the continuous state is within a
guard set, the corresponding transition can be taken and has to be taken if the state would
otherwise leave the invariant inv(v). When the transition from the previous location vi to the
next location vj is taken, the system state is updated according to the jump function and the
continuous evolution within the next invariant.

Because the reachability of discrete states is simply a question of determining if the continuous
reachable set hits certain guard sets, the focus of CORA is on the continuous reachable sets.
Clearly, as for the continuous systems, the reachable set of the hybrid system has to be over-
approximated in order to verify the safety of the system. An illustration of a reachable set of a
hybrid automaton is given in Fig. 9.

initial set

reachable set guard sets

guard sets

jump

etc.

invariant

unsafe set

x1

x2

location v1 location v2

Figure 9: Illustration of the reachable set of a hybrid automaton.

5.1 Hybrid Automaton

A hybrid automaton is implemented as a collection of locations. We mainly support the
following methods for hybrid automata:

• hybridAutomaton – constructor of the class.

• plot – plots the reachable set of the hybrid automaton.

• reach – computes the reachable set of the hybrid automaton.

• simulate – computes a hybrid trajectory of the hybrid automaton.

5.2 Location

Each location consists of:

• invariant – specified by a set representation of Sec. 2.

• transitions – cell array of objects of the class transition.

22

7 BOUNCING BALL EXAMPLE

• contDynamics – specified by a continuous dynamics of Sec. 4.

• name – saved as a string describing the location.

• id – unique number of the location.

The supported methods of the location class are listed in Tab. 11.

Table 11: Most important methods of the class location.

name description

display displays the parameters of the location in the MATLAB workspace.
enclosePolytopes encloses a set of polytopes using different over-approximating zonotopes.
guardIntersect intersects the reachable sets with potential guard sets and returns enclosing zonotopes

for each guard set.
location constructor of the class.
potInt determines which reachable sets potentially intersect with guard sets of a location.
reach computes the reachable set for the location.
simulate produces a single trajectory by solving the system numerically within the location start-

ing from a point rather than from a set.

5.3 Transition

Each transition consists of

• guard – specified by a set representation of Sec. 2.

• reset – struct containing the information for a linear reset.

• target – id of the target location when the transition occurs.

• inputLabel – input event to communicate over events.

• outputLabel – output event to communicate over events.

We mainly support the following methods for transitions:

• display – displays the parameters of the transition in the MATLAB workspace.

• reset – computes the reset map after a transition occurs (also called ’jump function’).

6 State Space Partitioning

It is sometimes useful to partition the state space into cells, for instance, when abstracting
a continuous stochastic system by a discrete stochastic system. CORA supports axis-aligned
partitioning using the class partition. The main methods can be found in Tab. 12.

7 Bouncing Ball Example

We demonstrate the syntax of CORA for the well-known bouncing ball example, see e.g. [50,
Section 2.2.3]. Given is a ball in Fig. 10 with dynamics s̈ = −g, where s is the vertical position
and g is the gravity constant. After impact with the ground at s = 0, the velocity changes
to v′ = −αv (v = ṡ) with α ∈ [0, 1]. The corresponding hybrid automaton can be formalized
according to Sec. 5 as

23

7 BOUNCING BALL EXAMPLE

Table 12: Most important methods of the class partition.

name description

cellCandidates finds possible cells that might intersect with a continuous set over-approximated by its
bounding box (interval hull).

cellCenter returns center of specified cell.
cellIndices returns cell indices given a set of cell coordinates.
cellIntersection2 returns the volumes of a polytope P intersected with touched cells Ci.
cellSegment returns cell coordinates given a set of cell indices.
display displays the parameters of the partition in the MATLAB workspace.
findSegment finds segment index for given state space coordinates.
findSegments return segment indices intersecting with a given interval hull.
nrOfStates returns the number of discrete states of the partition.
partition constructor of the class.
segmentIntervals returns intervals of segment.
segmentPolytope returns polytope of segment.
segmentZonotope returns zonotope of segment.

s0

v0

g

Figure 10: Bouncing ball.

V = {v1}
X = R+ × R (ball is above ground)
U = Yc = {}
T = {(z1, z1)}
inv(z1) = {[x1, x2]T |x1 ∈ R+

0 , x2 ∈ R}
g
(
(z1, z1)

)
= {[x1, x2]

T |x1 = 0, x2 ∈ R−
0 }

h
(
(z1, z1), x

)
=

[
x1

−αx2

]

f(z1, x) =

[
x2
−g

]

The MATLAB code that implements the simulation and reachability analysis of the bouncing
ball example is:

1 function bouncingBall()

2

3 %set options---

4 options.x0 = [1; 0]; %initial state for simulation

5 options.R0 = zonotope([options.x0, diag([0.05, 0.05])]); %initial set

6 options.startLoc = 1; %initial location

7 options.finalLoc = 0; %0: no final location

8 options.tStart = 0; %start time

9 options.tFinal = 5; %final time

10 options.timeStepLoc{1} = 0.05; %time step size in location 1

11 options.taylorTerms = 10;

12 options.zonotopeOrder = 20;

13 options.polytopeOrder = 10;

14 options.errorOrder=2;

15 options.reductionTechnique = ’girard’;

16 options.isHybrid = 1;

17 options.isHyperplaneMap = 0;

18 options.enclosureEnables = [5]; %choose enclosure method(s)

19 options.originContained = 0;

24

8 CONCLUSIONS

20 options.polytopeType = ’mpt’;

21 %--

22

23 %specify hybrid automaton--

24 %define large and small distance

25 dist = 1e3;

26 eps = 1e-6;

27

28 A = [0 1; 0 0]; % system matrix

29 B = eye(2); % input matrix

30 linSys = linearSys(’linearSys’,A,B); %linear continuous system

31

32 inv = intervalhull([-2*eps, dist; -dist, dist]); %invariant

33 guard = intervalhull([- eps, 0; -dist, 0]); %guard set

34 reset.A = [0, 0; 0, -0.75]; reset.b = zeros(2,1); %reset

35 trans{1} = transition(guard,reset,1,’a’,’b’); %transition

36 loc{1} = location(’loc1’,1,inv,trans,linSys); %location

37 HA = hybridAutomaton(loc); % select location for hybrid automaton

38 %--

39

40 %set input:

41 options.uLoc{1} = [0; -1]; %input for simulation

42 options.uLocTrans{1} = options.uLoc{1}; %center of input set

43 options.Uloc{1} = zonotope(zeros(2,1)); %input deviation from center

44

45 %simulate hybrid automaton

46 HA = simulate(HA,options);

47

48 %compute reachable set

49 [HA] = reach(HA,options);

50

51 %choose projection and plot--

52 options.projectedDimensions = [1 2];

53 options.plotType = ’b’;

54 plot(HA,’reachableSet’,options); %plot reachable set

55 plot(options.R0,options.projectedDimensions,’blackFrame’); %plot initial set

56 plot(HA,’simulation’,options); %plot simulation

57 %--

The reachable set and the simulation are plotted in Fig. 11 for a time horizon of tf = 5 seconds.

8 Conclusions

CORA is a toolbox for the implementation of prototype reachability analysis algorithms in
MATLAB. The software is modular and is organized into four main categories: vector set
representations, matrix set representations, continuous dynamics, and hybrid dynamics. CORA
includes novel algorithms for reachability analysis of nonlinear systems and hybrid systems with
a special focus on scalability; for instance, a power network with more than 50 continuous state
variables has been verified in [51]. The efficiency of the algorithms used means it is even possible
to verify problems online, i.e. while they are in operation [52].

One particularly useful feature of CORA is its adaptability: the algorithms can be tailored to
the reachability analysis problem in question. Forthcoming integration into SpaceEx, which has
a user interface and a model editor, should go some way towards making CORA more accessible
to non-experts.

25

REFERENCES

0 0.2 0.4 0.6 0.8 1 1.2

−1.5

−1

−0.5

0

0.5

1

x1

x
2

initial set

simulated trajectory

reachable set

Figure 11: Illustration of the reachable set of the bouncing ball. The black box shows the initial
set and the black line shows the simulated trajectory.

Acknowledgment

The author gratefully acknowledges financial support by the European Commission project
UnCoVerCPS under grant number 643921.

References

[1] G. Lafferriere, G. J. Pappas, and S. Yovine, “Symbolic reachability computation for families of linear
vector fields,” Symbolic Computation, vol. 32, pp. 231–253, 2001.

[2] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler, “SpaceEx: Scalable verification of hybrid systems,” in Proc. of the 23rd International
Conference on Computer Aided Verification, ser. LNCS 6806. Springer, 2011, pp. 379–395.

[3] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past HyTech,” International Journal
on Software Tools for Technology Transfer, vol. 10, pp. 263–279, 2008.

[4] A. Girard, C. Le Guernic, and O. Maler, “Efficient computation of reachable sets of linear time-
invariant systems with inputs,” in Hybrid Systems: Computation and Control, ser. LNCS 3927.
Springer, 2006, pp. 257–271.

[5] A. Girard and C. Le Guernic, “Efficient reachability analysis for linear systems using support func-
tions,” in Proc. of the 17th IFAC World Congress, 2008, pp. 8966–8971.

[6] G. Frehse and R. Ray, “Flowpipe-guard intersection for reachability computations with support
functions,” in Proc. of Analysis and Design of Hybrid Systems, 2012, pp. 94–101.

[7] A. A. Kurzhanskiy and P. Varaiya, The Control Handbook. CRC Press, 2010, ch. Computation of
Reach Sets for Dynamical Systems.

[8] X. Chen, E. Abraham, and S. Sankaranarayanan, “Flow*: An analyzer for non-linear hybrid sys-
tems,” in Proc. of Computer-Aided Verification, ser. LNCS 8044. Springer, 2013, pp. 258–263.

[9] M. Berz and G. Hoffstätter, “Computation and application of Taylor polynomials with interval
remainder bounds,” Reliable Computing, vol. 4, pp. 83–97, 1998.

[10] X. Chen, S. Sankaranarayanan, and E. Ábrahám, “Taylor model flowpipe construction for non-linear
hybrid systems,” in Proc. of the 33rd IEEE Real-Time Systems Symposium, 2012.

[11] J. Hoefkens, M. Berz, and K. Makino, Automatic Differentiation: From Simulation to Optimization.
Springer, 2001, ch. Efficient High-Order Methods for ODEs and DAEs, pp. 343–348.

26

REFERENCES

[12] N. S. Nedialkov, Modeling, Design, and Simulation of Systems with Uncertainties. Springer, 2011,
vol. 3, ch. Implementing a Rigorous ODE Solver through Literate Programming, pp. 3–19.

[13] I. M. Mitchell, “The flexible, extensible and efficient toolbox of level set methods,” Journal of
Scientific Computing, vol. 35, no. 2-3, pp. 300–329, 2008.

[14] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent Hamilton–Jacobi formulation of
reachable sets for continuous dynamic games,” IEEE Transactions on Automatic Control, vol. 50,
pp. 947–957, 2005.

[15] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti, and T. Villa, Reachability Problems.
Springer, 2012, ch. Ariadne: Dominance Checking of Nonlinear Hybrid Automata Using Reachability
Analysis, pp. 79–91.

[16] ——, “Assume-guarantee verification of nonlinear hybrid systems with ARIADNE,” International
Journal of Robust and Nonlinear Control, vol. 24, pp. 699–724, 2014.

[17] S. Gao, S. Kong, and E. Clarke, “Satisfiability modulo ODEs,” in Proc. of Formal Methods in
Computer-Aided Design, 2013, pp. 105–112.

[18] ——, “dReal: An SMT solver for nonlinear theories of the reals,” in Proc. of the Conference on
Automated Deduction, 2013.

[19] M. Fränzle and C. Herde, “HySAT: An efficient proof engine for bounded model checking of hybrid
systems,” Formal Methods in System Design, vol. 30, no. 3, pp. 179–198, 2007.

[20] S. Ratschan and Z. She, “Safety verification of hybrid systems by constraint propagation based
abstraction refinement,” ACM Transactions in Embedded Computing Systems, vol. 6, no. 1, pp.
1–23, 2007.

[21] A. Platzer and J.-D. Quesel, “KeYmaera: A hybrid theorem prover for hybrid systems.” in Proc. of
the Fourth International Joint Conference on Automated Reasoning, ser. LNCS, vol. 5195. Springer,
2008, pp. 171–178.

[22] A. Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer,
2010.

[23] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model checker for hybrid systems,”
Software Tools for Technology Transfer, vol. 1, pp. 110–122, 1997.

[24] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi, “Beyond HyTech: Hybrid systems
analysis using interval numerical methods,” in Hybrid Systems: Computation and Control, ser. LNCS
1790. Springer, 2000, pp. 130–144.

[25] E. Asarin, T. Dang, and O. Maler, “d/dt: A verification tool for hybrid systems,” in Proc. of the
Conference on Decision and Control, 2001, pp. 2893–2898.

[26] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid system verification,” IEEE
Transactions on Automatic Control, vol. 48, no. 1, pp. 64–75, 2003.

[27] O. Botchkarev and S. Tripakis, “Verification of hybrid systems with linear differential inclusions
using ellipsoidal approximations,” in Hybrid Systems: Computation and Control, ser. LNCS 1790.
Springer, 2000, pp. 73–88.

[28] S. Kowalewski and H. Treseler, “VERDICT - a tool for model-based verification of real-time logic
process controllers,” in Proc. of the Joint Workshop on Parallel and Distributed Real-Time Systems,
1997, pp. 217–221.

[29] G. Behrmann, A. David, K. G. Larsen, O. Möller, P. Pettersson, and W. Yi, “UPPAAL - present
and future,” in Proc. of the 40th IEEE Conference on Decision and Control, 2001, pp. 2881 – 2886.

[30] S. Tripakis, S. Yovine, and A. Bouajjani, “Checking timed Büchi automata emptiness efficiently,”
Formal Methods in System Design, vol. 26, no. 3, pp. 267–292, 2005.

[31] N. S. Bjørner, A. Browne, M. A. Colón, B. Finkbeiner, Z. Manna, H. B. Sipma, and T. E. Uribe,
“Verifying temporal properties of reactive systems: A STeP tutorial,” Formal Methods in System
Design, vol. 16, no. 3, pp. 227–270, 2000.

27

REFERENCES

[32] A. Girard, “Reachability of uncertain linear systems using zonotopes,” in Hybrid Systems: Compu-
tation and Control, ser. LNCS 3414. Springer, 2005, pp. 291–305.

[33] M. Althoff, “Reachability analysis and its application to the safety assessment of
autonomous cars,” Dissertation, Technische Universität München, 2010, http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20100715-963752-1-4.

[34] M. Althoff, B. H. Krogh, and O. Stursberg, Modeling, Design, and Simulation of Systems with Un-
certainties. Springer, 2011, ch. Analyzing Reachability of Linear Dynamic Systems with Parametric
Uncertainties, pp. 69–94.

[35] M. Althoff and B. H. Krogh, “Reachability analysis of nonlinear differential-algebraic systems,”
IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 371–383, 2014.

[36] ——, “Zonotope bundles for the efficient computation of reachable sets,” in Proc. of the 50th IEEE
Conference on Decision and Control, 2011, pp. 6814–6821.

[37] E. Gover and N. Krikorian, “Determinants and the volumes of parallelotopes and zonotopes,” Linear
Algebra and its Applications, vol. 433, no. 1, pp. 28–40, 2010.

[38] M. Althoff, “Reachability analysis of nonlinear systems using conservative polynomialization and
non-convex sets,” in Hybrid Systems: Computation and Control, 2013, pp. 173–182.

[39] J. Hoefkens, M. Berz, and K. Makino, Scientific Computing, Validated Numerics, Interval Methods.
Springer, 2001, ch. Verified High-Order Integration of DAEs and Higher-Order ODEs, pp. 281–292.

[40] M. Althoff, O. Stursberg, and M. Buss, “Safety assessment for stochastic linear systems using en-
closing hulls of probability density functions,” in Proc. of the European Control Conference, 2009,
pp. 625–630.

[41] D. Berleant, “Automatically verified reasoning with both intervals and probability density functions,”
Interval Computations, vol. 2, pp. 48–70, 1993.

[42] G. M. Ziegler, Lectures on Polytopes, ser. Graduate Texts in Mathematics. Springer, 1995.

[43] V. Kaibel and M. E. Pfetsch, Algebra, Geometry and Software Systems. Springer, 2003, ch. Some
Algorithmic Problems in Polytope Theory, pp. 23–47.

[44] O. Stursberg and B. H. Krogh, “Efficient representation and computation of reachable sets for
hybrid systems,” in Hybrid Systems: Computation and Control, ser. LNCS 2623. Springer, 2003,
pp. 482–497.

[45] M. Althoff and J. M. Dolan, “Reachability computation of low-order models for the safety verification
of high-order road vehicle models,” in Proc. of the American Control Conference, 2012, pp. 3559–
3566.

[46] M. Althoff, C. Le Guernic, and B. H. Krogh, “Reachable set computation for uncertain time-varying
linear systems,” in Hybrid Systems: Computation and Control, 2011, pp. 93–102.

[47] C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences,
H. Haken, Ed. Springer, 1983.

[48] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations. SIAM: Society for Industrial and Applied Mathematics, 1998.

[49] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial Value Problems in
Differential-Algebraic Equations. North-Holland, 1989.

[50] A. van der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems. Springer,
2000.

[51] M. Althoff, “Formal and compositional analysis of power systems using reachable sets,” IEEE Trans-
actions on Power Systems, vol. 29, no. 5, pp. 2270–2280, 2014.

[52] M. Althoff and J. M. Dolan, “Online verification of automated road vehicles using reachability
analysis,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 903–918, 2014.

28

	Philosophy and Architecture
	Related Tools
	Architecture

	Set Representations and Operations
	Zonotopes
	Zonotope Bundles
	Polynomial Zonotopes
	Probabilistic Zonotopes
	MPT Polytopes
	Interval Hulls
	Vertices

	Matrix Set Representations and Operations
	Matrix Polytopes
	Matrix Zonotopes
	Interval Matrices

	Continuous Dynamics
	Linear Systems
	Linear Systems with Uncertain Fixed Parameters
	Linear Systems with Uncertain Varying Parameters
	Linear Probabilistic Systems
	Nonlinear Systems
	Nonlinear Systems with Uncertain Fixed Parameters
	Nonlinear Differential-Algebraic Systems

	Hybrid Dynamics
	Hybrid Automaton
	Location
	Transition

	State Space Partitioning
	Bouncing Ball Example
	Conclusions

