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Neurorobotics62. Neurorobotics: From Vision to Action

Michael A. Arbib, Giorgio Metta, Patrick van der Smagt

The lay view of a robot is a mechanical human,
and thus robotics has always been inspired by at-
tempts to emulate biology. In this Chapter, we
extend this biological motivation from humans to
animals more generally, but with a focus on the
central nervous systems rather than the bodies of
these creatures. In particular, we investigate the
sensorimotor loop in the execution of sophisti-
cated behavior. Some of these sections concentrate
on cases where vision provides key sensory data.
Neuroethology is the study of the brain mecha-
nisms underlying animal behavior, and Sect. 62.2
exemplifies the lessons it has to offer robotics by
looking at optic flow in bees, visually guided be-
havior in frogs, and navigation in rats, turning
then to the coordination of behaviors and the role
of attention. Brains are composed of diverse sub-
systems, many of which are relevant to robotics,
but we have chosen just two regions of the mam-
malian brain for detailed analysis. Section 62.3
presents the cerebellum. While we can plan and
execute actions without a cerebellum, the actions
are no longer graceful and become uncoordinated.
We reveal how a cerebellum can provide a key
ingredient in an adaptive control system, tun-
ing parameters both within and between motor
schemas. Section 62.4 turns to the mirror sys-
tem, which provides shared representations which
bridge between the execution of an action and
the observation of that action when performed
by others. We develop a neurobiological model of
how learning may forge mirror neurons for hand

62.1 Definitions ........................................... 1453

62.2 Neuroethological Inspiration ................. 1454
62.2.1 Optic Flow in Bees and Robots ..... 1455
62.2.2 Visually Guided Behavior

in Frogs and Robots.................... 1456
62.2.3 Navigation in Rat and Robot........ 1457
62.2.4 Schemas

and Coordinated Control Programs1459
62.2.5 Salience and Visual Attention ...... 1461

62.3 The Role of the Cerebellum.................... 1462
62.3.1 The Human Control Loop ............. 1462
62.3.2 Models of Cerebellar Control ........ 1463
62.3.3 Cerebellar Models and Robotics.... 1466

62.4 The Role of Mirror Systems .................... 1467
62.4.1 Mirror Neurons and the

Recognition of Hand Movements .. 1467
62.4.2 A Bayesian View

of the Mirror System ................... 1470
62.4.3 Mirror Neurons and Imitation ...... 1473

62.5 Extroduction ........................................ 1474

62.6 Further Reading ................................... 1475

References .................................................. 1475

movements, provide a Bayesian view of a robot
mirror system, and discuss what must be added
to a mirror system to support robot imitation. We
conclude by emphasizing that, while neuroscience
can inspire novel robotic designs, it is also the case
that robots can be used as embodied test beds for
the analysis of brain models.

62.1 Definitions

Neurorobotics may be defined as the design of com-
putational structures for robots inspired by the study
of the nervous systems of humans and other animals.

We note the success of artificial neural networks – net-
works of simple computing elements whose connections
change with experience – as providing a medium for par-
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allel adaptive computation that has seen application in
robot vision systems and controllers but here we empha-
size neural networks derived from the study of specific
neurobiological systems. Neurorobotics has a twofold
aim: creating better machines which employ the prin-
ciples of natural neural computation; and using the study
of bio-inspired robots to improve understanding of the
functioning of the brain. Chapter 60, Biologically In-
spired Robots, complements our study of brain design
with work on body design, the design of robotic con-
trol and actuator systems based on careful study of the
relevant biology.

Walter [62.1] described two biologically inspired
robots, the electromechanical tortoises Machina spec-
ulatrix and M. docilis (though each body has wheels
not legs). M. speculatrix has a steerable photoelectric
cell, which makes it sensitive to light, and an electri-
cal contact, which allows it to respond when it bumps
into obstacles. The photoreceptor rotates until a light of
moderate intensity is registered, at which time the or-
ganism orients itself towards the light and approaches
it. However, very bright lights, material obstacles, and
steep gradients are repellent to the tortoise. The lat-
ter stimuli convert the photoamplifier into an oscillator,
which causes alternating movements of butting and
withdrawal, so that the robot pushes small objects out of
its way, goes around heavy ones, and avoids slopes. The
tortoise has a hutch, which contains a bright light. When
the machine’s batteries are charged, this bright light is
repellent. When the batteries are low, the light becomes
attractive to the machine and the light continues to ex-
ert an attraction until the tortoise enters the hutch, where
the machine’s circuitry is temporarily turned off until the
batteries are recharged, at which time the bright hutch
light again exerts a negative tropism. The second robot,
M. docilis was produced by grafting onto M. speculatrix
a circuit designed to form conditioned reflexes. In one
experiment, Walter connected this circuit to the obstacle-
avoiding device in M. speculatrix. Training consisted of
blowing a whistle just before bumping the shell.

Although Walter’s controllers are simple and not
based on neural analysis, they do illustrate an attempt
to gain inspiration from seeking the simplest mecha-
nisms that will yield an interesting class of biologically

inspired robot behaviors, and then showing how differ-
ent additional mechanisms yield a variety of enriched
behaviors. Braitenberg’s book [62.2] is very much in
this spirit and has entered the canon of neurorobotics.
While their work provides a historical background for
the studies surveyed here, we instead emphasize stud-
ies inspired by the computational neuroscience of the
mechanisms serving vision and action in the human and
animal brain. We seek lessons from linking behavior to
the analysis of the internal workings of the brain (1) at
the relatively high level of characterizing the functional
roles of specific brain regions (or the functional units
of analysis called schemas Sect. 62.2.4), and the behav-
iors which emerge from the interactions between them,
and (2) at the more detailed level of models of neu-
ral circuitry linked to the data of neuroanatomy and
neurophysiology. There are lessons for neurorobotics
to be learned from even finer-scale analysis of the bio-
physics of individual neurons and the neurochemistry
of synaptic plasticity but these are beyond the scope
of this chapter (see Segev and London [62.3] and Freg-
nac [62.4], respectively, for entry points into the relevant
computational neuroscience).

The plan of this Chapter is as follows. After some
selected examples from computational neuroethology,
the computational analysis of neural mechanisms under-
lying animal behavior, we show how perceptual and
motor schemas and visual attention provide the frame-
work for our action-oriented view of perception, and
show the relevance of the computational neuroscience
to robotic implementations (Sect. 62.2). We then pay
particular attention to two systems of the mammalian
brain, the cerebellum and its role in tuning and coordi-
nating actions (Sect. 62.3), and the mirror system and
its roles in action recognition and imitation (Sect. 62.4).
The extroduction will then invite readers to explore the
many other areas in which neurorobotics offers lessons
from neuroscience to the development of novel robot
designs. What follows, then, can be seen as a contribu-
tion to the continuing dialogue between robot behavior
and animal and human behavior in which particular
emphasis is placed on the search for the neural under-
pinnings of vision, visually guided action, and cerebellar
control.

62.2 Neuroethological Inspiration

Biological evolution has yielded a staggering variety of
creatures, each with brains and bodies adapted to spe-

cific niches. One may thus turn to the neuroethology of
specific creatures to gain inspiration for special-purpose
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robots. In Sect. 62.2.1, we will see how researchers have
studied bees and flies for inspiration for the design
of flying robots, but have also learned lessons for the
visual control of terrestrial robots. In Sect. 62.2.2, we
introduce Rana computatrix, an evolving model of vi-
suomotor coordination in frogs and toads. The name
the frog that computes, was inspired by Walter’s M.
speculatrix and inspired in turn the names of a number
of other species of neuroethologically inspired robots,
including Beer’s [62.5] computational cockroach Peri-
planeta computatrix and Cliff ’s [62.6] hoverfly Syritta
computatrix.

Moreover, we learn not only from the brains of spe-
cific creatures but also from comparative analysis of
the brains of diverse creatures, looking for homologous
mechanisms as computational variants which may then
be related to the different ecological niches of the crea-
tures that utilize them. A basic theme of brain evolution
is that new functions often emerge through modulation
and coordination of existing structures. In other words,
to the extent that new circuitry may be identified with the
new function, it need not be as a module that computes
the function autonomously, but rather as one that can
deploy prior resources to achieve the novel functional-
ity. Section 62.2.3 will introduce the role of the rat brain
in navigation, while Sect. 62.2.4 will look at the general
framework of perceptual schemas motor schemas and
coordinated control programs for a high-level view of
the neuroscience and neurorobotics of vision and action.
Finally, Sect. 62.2.5 will look at the control of visual at-
tention in mammals as a homolog of orienting behavior
in frogs and toads. All this sets the stage for our empha-
sis on the roles of the cerebellum (Sect. 62.3) and mirror
systems (Sect. 62.4) in the brains of mammals and their
implications for neurorobotics. We stress that the choice
of these two systems is conditioned by our own exper-
tise, and that studies of many other brain systems also
hold great importance for neurorobotics.

62.2.1 Optic Flow in Bees and Robots

Before we turn to vertebrate brains for much of our in-
spiration for neurorobotics, we briefly sample the rich
literature on insect-inspired research. Among the found-
ing studies in computational neuroethology were a series
of reports from the laboratory of Werner Reichardt in
Tübingen which linked the delicate anatomy of the fly’s
brain to the extraction of visual data needed for flight
control. More than 40 years ago, Reichardt [62.7] pub-
lished a model of motion detection inspired by this work
that has long been central to discussions of visual motion

in both the neuroscience and robotics literatures. Borst
and Dickinson [62.8] provide a recent study of continu-
ing biological research on visual course control in flies.
Such work has inspired a large number of robot stud-
ies, including those of van der Smagt and Groen [62.9],
van der Smagt [62.10] Liu and Usseglio-Viretta [62.11],
Ruffier et al. [62.12], and Reiser and Dickinson [62.13].

Here, however, we look in a little more detail at
honeybees. Srinivasan, Zhang, and Chahl [62.14] con-
tinued the tradition of studying image motion cues in
insects by investigating how optic flow (the flow of pat-
tern across the eye induced by motion relative to the
environment) is exploited by honeybees to guide loco-
motion and navigation. They analyzed how bees perform
a smooth landing on a flat surface: image velocity is held
constant as the surface is approached, thus automatically
ensuring that flight speed is close to zero at touchdown.
This obviates any need for explicit knowledge of flight
speed or height above the ground. This landing strat-
egy was then implemented in a robotic gantry to test
its applicability to autonomous airborne vehicles. Bar-
ron and Srinivasan [62.15] investigated the extent to
which ground speed is affected by headwinds. Honey

a) b)

c)

Fig. 62.1a–c Observation of the trajectories of honeybees
flying in visually textured tunnels has provided insights
into how bees use optic flow cues to regulate flight speed
and estimate distance flown, and balance optic flow in
the two eyes to fly safely through narrow gaps. This
information has been used to build autonomously navi-
gating robots. (b) schematic illustration of a honey-bee
brain, carrying about a million neurons within about
one cubic millimeter. (Images courtesy of M. Srini-
vasan: (a) Science 287, 851–853 (2000); (b) Virtual
Atlas of the Honeybee Brain, http://www.neurobiologie.fu-
berlin.de/beebrain/Bee/VRML/SnapshotCosmoall.jpg. (c)
(Research School of Biological Sciences, Australian Na-
tional University) A mobile robot guided by an optic flow
algorithm based on the studies exemplified in (a))
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bees were trained to enter a tunnel to forage at a sucrose
feeder placed at its far end (Fig. 62.1a). The bees used
visual cues to maintain their ground speed by adjusting
their airspeed to maintain a constant rate of optic flow,
even against headwinds which were, at their strongest,
50% of a bee’s maximum recorded forward velocity.

Vladusich et al. [62.16] studied the effect of adding
goal-defining landmarks. Bees were trained to forage
in an optic-flow-rich tunnel with a landmark positioned
directly above the feeder. They searched much more ac-
curately when both odometric and landmark cues were
available than when only odometry was available. When
the two cue sources were set in conflict, by shifting the
position of the landmark in the tunnel during tests, bees
overwhelmingly used landmark cues rather than odome-
try. This, together with other such experiments, suggests
that bees can make use of odometric and landmark cues
in a more flexible and dynamic way than previously en-
visaged. In earlier studies of bees flying down a tunnel,
Srinivasan and Zhang [62.17] placed different patterns
on the left and right walls. They found that bees bal-
ance the image velocities in the left and right visual
fields. This strategy ensures that bees fly down the mid-
dle of the tunnel, without bumping into the side walls,
enabling them to negotiate narrow passages or to fly
between obstacles. This strategy has been applied to
a corridor-following robot (Fig. 62.1c). By holding con-
stant the average image velocity as seen by the two
eyes during flight, the bee avoids potential collisions,
slowing down when it flies through a narrow passage.
The movement-sensitive mechanisms underlying these
various behaviors differ qualitatively as well as quanti-
tatively, from those that mediate the optomotor response
(e.g., turning to track a pattern of moving stripes) that
had been the initial target of investigation of the Re-
ichardt laboratory. The lesson for robot control is that
flight appears to be coordinated by a number of visuo-
motor systems acting in concert, and the same lesson
can apply to a whole range of tasks which must con-
vert vision to action. Of course, vision is but one of the
sensory systems that play a vital role in insect behavior.
Webb [62.18] uses her own work on robot design in-
spired by the auditory control of behavior in crickets to
anchor a far-ranging assessment of the extent to which
robotics can offer good models of animal behaviors.

62.2.2 Visually Guided Behavior
in Frogs and Robots

Lettvin et al. [62.19] treated the frog’s visual system from
an ethological perspective, analyzing circuitry in relation

to the animal’s ecological niche to show that different
cells in the retina and the visual midbrain region known
as the tectum were specialized for detecting predators
and prey. However, in much visually guided behavior,
the animal does not respond to a single stimulus, but
rather to some property of the overall configuration. We
thus turn to the question what does the frog’s eye tell
the frog?, stressing the embodied nervous system or,
perhaps equivalently, an action-oriented view of per-
ception. Consider, for example, the snapping behavior
of frogs confronted with one or more fly-like stimuli.
Ingle [62.20] found that it is only in a restricted region
around the head of a frog that the presence of a fly-like
stimulus elicits a snap, that is, the frog turns so that its
midline is pointed at the stimulus and then lunges for-
ward and captures the prey with its tongue. There is
a larger zone in which the frog merely orients towards
the target, and beyond that zone the stimulus elicits no
response at all. When confronted with two flies within
the snapping zone, either of which is vigorous enough
that alone it could elicit a snapping response, the frog ex-
hibits one of three reactions: it snaps at one of the flies, it
does not snap at all, or it snaps in between at the average
fly. Didday [62.21] offered a simple model of this choice
behavior which may be considered as the prototype for
a winner-take-all (WTA) model which receives a vari-
ety of inputs and (under ideal circumstances) suppresses
the representation of all but one of them; the one that
remains is the winner which will play the decisive role
in further processing. This was the beginning of Rana
computatrix (see Arbib [62.22, 23] for overviews).

Studies on frog brains and behavior inspired the
successful use of potential fields for robot navigation
strategies. Data on the strategies used by frogs to cap-
ture prey while avoiding static obstacles (Collett [62.24])
grounded the model by Arbib and House [62.25] which
linked systems for depth perception to the creation of
spatial maps of both prey and barriers. In one version
of their model, they represented the map of prey by
a potential field with long-range attraction and the map
of barriers by a potential field with short-range repul-
sion, and showed that summation of these fields yielded
a field that could guide the frog’s detour around the bar-
rier to catch its prey. Corbacho and Arbib [62.26] later
explored a possible role for learning in this behavior.
Their model incorporated learning in the weights be-
tween the various potential fields to enable adaptation
over trials as observed in the real animals. The success
of the models indicated that frogs use reactive strategies
to avoid obstacles while moving to a goal, rather than
employing a planning or cognitive system. Other work
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(e.g., Cobas and Arbib [62.27]) studied how the frog’s
ability to catch prey and avoid obstacles was integrated
with its ability to escape from predators. These models
stressed the interaction of the tectum with a variety of
other brain regions such as the pretectum (for detecting
predators) and the tegmentum (for implementing motor
commands for approach or avoidance).

Arkin [62.28] showed how to combine a computer vi-
sion system with a frog-inspired potential field controller
to create a control system for a mobile robot that could
successfully navigate in a fairly structured environment
using camera input. The resultant system thus enriched
other roughly contemporaneous applications of poten-
tial fields in path planning with obstacle avoidance for
both manipulators and mobile robots (Khatib [62.29];
Krogh and Thorpe [62.30]). The work on Rana Com-
putatrix proceeded at two levels – both biologically
realistic neural networks, and in terms of functional
units called schemas, which compete and cooperate
to determine behavior. Section 62.2.4 will show how
more general behaviors can emerge from the competi-
tion and cooperation of perceptual and motor schemas
as well as more abstract coordinating schemas too.
Such ideas were, of course, developed independently
by a number of authors, and so entered the robotics
literature by various routes, of which the best known
may be the subsumption architecture of Brooks [62.31]
and the ideas of Braitenberg cited above, whereas Ark-
in’s work on behavior-based robotics [62.32] is indeed
rooted in schema theory. Arkin et al. [62.33] present
a recent example of the continuing interaction between
robotics and ethology, offering a novel method for cre-
ating high-fidelity models of animal behavior for use in
robotic systems based on a behavioral systems approach
(i. e., based on a schema-level model of animal behav-
ior, rather than analysis of biological circuits in animal
brains), and describe how an ethological model of a do-
mestic dog can be implemented with AIBO, the Sony
entertainment robot.

62.2.3 Navigation in Rat and Robot

The tectum, the midbrain visual system which deter-
mines how the frog turns its whole body towards it prey
or orients it for escape from predators (Sect. 62.2.2), is
homologous with the superior colliculus of the mam-
malian midbrain. The rat superior colliculus has been
shown to be frog-like, mediating approach and avoid-
ance (Dean et al. [62.34]), whereas the best-studied role
of the superior colliculus of cat, monkey, and human is
in the control of saccades, rapid eye movements to ac-

quire a visual target. Moreover, the superior colliculus
can integrate auditory and somatosensory information
into its visual frame (Stein and Meredith [62.35]) and
this inspired Strosslin et al. [62.36] to use a biologically
inspired approach based on the properties of neurons in
the superior colliculus to learn the relation between vi-
sual and tactile information in control of a mobile robot
platform. More generally, then, the comparative study of
mammalian brains has yielded a rich variety of compu-
tational models of importance in neurorobotics. In this
section, we further introduce the study of mammalian
neurorobotics by looking at studies of mechanisms of
the rat brain for spatial navigation.

The frog’s detour behavior is an example of what
O’Keefe and Nadel [62.37] called the taxon (behavioral
orientation) system [as in Braitenberg, [62.38] a taxis
(plural taxes) is an organism’s response to a stimulus by
movement in a particular direction]. They distinguished
this from a system for map-based navigation, and pro-
posed that the latter resides in the hippocampus, though
Guazzelli et al. [62.39] qualified this assertion, showing
how the hippocampus may function as part of a cogni-
tive map. The taxon versus map distinction is akin to the
distinction between reactive and deliberative control in
robotics (Arkin et al. [62.33]). It will be useful to relate
taxis to the notion of an affordance (Gibson [62.40]),
a feature of an object or environment relevant to action,
for example, in picking up an apple or a ball, the iden-
tity of the object may be irrelevant, but the size of the
object is crucial. Similarly, if we wish to push a toy car,
recognizing the make of car copied in the toy is irrele-
vant, whereas it is crucial to recognize the placement of
the wheels to extract the direction in which the car can
be readily pushed. Just as a rat may have basic taxes for
approaching food or avoiding a bright light, say, so does
it have a wider repertoire of affordances for possible
actions associated with the immediate sensing of its en-
vironment. Such affordances include go straight ahead
for visual sighting of a corridor, hide for a dark hole,
eat for food as sensed generically, drink similarly, and
the various turns afforded by, e.g., the sight of the end
of the corridor. It also makes rich use of olfactory cues.
In the same way, a robot’s behavior will rely on a host
of reactions to local conditions in fulfilling a plan, e.g.,
knowing that it must go to the end of a corridor it will
nonetheless use local visual cues to avoid hitting obsta-
cles, or to determine through which angle to turn when
reaching a bend in the corridor.

Both normal and hippocampal-lesioned rats can
learn to solve a simple T-maze (e.g., learning whether
to turn left or right to find food) in the absence of any
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consistent environmental cues other than the T-shape of
the maze. If anything, the lesioned animals learn this
problem faster than normals. After the criterion was
reached, probe trials with an eight-arm radial maze were
interspersed with the usual T-trials. Animals from both
groups consistently chose the side to which they were
trained on the T-maze. However, many did not choose
the 90◦ arm but preferred either the 45◦ or 135◦ arm,
suggesting that the rats eventually solved the T-maze by
learning to rotate within an egocentric orientation sys-
tem at the choice point through approximately 90◦. This
leads to the hypothesis of an orientation vector being
stored in the animal’s brain but does not tell us where
or how the orientation vector is stored. One possible
model would employ coarse coding in a linear array of
cells, coding for turns from −180◦ to +180◦. From the
behavior, one might expect that only the cells close to
the preferred behavioral direction are excited, and that
learning marches this peak from the old to the new pre-

Hippocampal
formation

place

Hypothalamus
drive states

Prefrontal
world graph

Premotor
action selection

Affordances

Actor-critic
Dopamine

neurons

Parietal

Caudoputamen Nucleus
accumbens

Sensory
inputs

Sensory
inputs

Motor
outputs

Goal object

Consequences

Internal state

Incentives

Dynamic
remapping

Fig. 62.2 The TAM-WG model has at its basis a system, TAM (the taxon affordance model), for exploiting affordances.
This is elaborated by a system, WG (the world graph), which can use a cognitive map to plan paths to targets which
are not currently visible. Note that the model processes two different kinds of sensory inputs. At the bottom right are
those associated with, e.g., hypothalamic systems for feeding and drinking, and that may provide both incentives and
rewards for the animal’s behavior, contributing both to behavioral choices, and to the reinforcement of certain patterns
of behavior. The nucleus accumbens and caudo-putamen mediate an actor–critic style of reinforcement learning based
on the hypothalamic drive of the dopamine system. The sensory inputs at the top left are those that allow the animal to
sense its relation with the external world, determining both where it is (the hippocampal place system) as well as the
affordances for action (the parietal recognition of affordances can shape the premotor selection of an action). The TAM
model focuses on the parietal–premotor reaction to immediate affordances; the WG (world graph) model places action
selection within the wider context of a cognitive map. (after Guazzelli et al. [62.41])

ferred direction. To unlearn −90◦, say, the array must
reduce the peak there, while at the same time building
a new peak at the new direction of +90◦. If the old peak
has mass p(t) and the new peak has mass q(t), then as
p(t) declines toward 0 while q(t) increases steadily from
0, the center of mass will progress from −90◦ to +90◦,
fitting the behavioral data.

The determination of movement direction was mod-
eled by rat-ification of the Arbib and House [62.25]
model of frog detour behavior. There, prey was repre-
sented by excitation coarsely coded across a population,
while barriers were encoded by inhibition whose ex-
tent closely matched the retinotopic extent of each
barrier. The sum of excitation was passed through
a winner-takes-all circuit to yield the choice of move-
ment direction. As a result, the direction of the gap
closest to the prey, rather than the direction of the prey
itself, was often chosen for the frog’s initial movement.
The same model serves for behavioral orientation once
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we replace the direction of the prey (frog) by the di-
rection of the orientation vector (rat), while the barriers
correspond to the presence of walls rather than alley
ways.

To approach the issue of how a cognitive map can
extend the capability of the affordance system, Guazzelli
et al. [62.43] extended the Lieblich and Arbib [62.44]
approach to building a cognitive map as a world graph,
a set of nodes connected by a set of edges, where the
nodes represent recognized places or situations, and the
links represent ways of moving from one situation to
another. A crucial notion is that a place encountered in
different circumstances may be represented by multiple
nodes, but that these nodes may be merged when the
similarity between these circumstances is recognized.
They model the process whereby the animal decides
where to move next, on the basis of its current drive
state (hunger, thirst, fear, etc.). The emphasis is on spatial
maps for guiding locomotion into regions not necessarily
current visible, rather than retinotopic representations of
immediately visible space, and yields exploration and
latent learning without the introduction of an explicit
exploratory drive. The model shows: (1) how a route,
possibly of many steps, may be chosen that leads to
the desired goal; (2) how short cuts may be chosen;
and (3) through its account of node merging why, in
open fields, place cell firing does not seem to depend on
direction.

The overall structure and general mode of operation
of the complete model is shown in Fig. 62.2, which gives
a vivid sense of the lessons to be learned by studying
not only specific systems of the mammalian brain but
also their patterns of large-scale interaction. This model
is but one of many inspired by the data on the role of the
hippocampus and other regions in rat navigation. Here,
we just mention as pointers to the wider literature the
papers by Girard et al. [62.45] and Meyer et al. [62.46],
which are part of the Psikharpax project, which is doing
for rats what Rana computatrix did for frogs and toads.

62.2.4 Schemas
and Coordinated Control Programs

Schema theory complements neuroscience’s well-
established terminology for levels of structural analysis
(brain region, neuron, synapse) with a functional vo-
cabulary, a framework for analysis of behavior with no
necessary commitment to hypotheses on the localization
of each schema (unit of functional analysis), but which
can be linked to a structural analysis whenever appropri-
ate. Schemas provide a high-level vocabulary which can

be shared by brain theorists, cognitive scientists, connec-
tionists, ethologists, kinesiologists – and roboticists. In
particular, schema theory can provide a distributed pro-
gramming environment for robotics [see, e.g., the robots
schemas (RS) language of Lyons and Arbib [62.47],
and supporting architectures for distributed control as
in Metta et al. [62.48]]. Schema theory becomes specif-
ically relevant to neurorobotics when the schemas are
inspired by a model constrained by data provided by,
e.g., human brain mapping, studies of the effects of brain
lesions, or neurophysiology.

A perceptual schema not only determines whether
an object or other domain of interaction is present in the
environment but can also provide important parameters
to motor schemas (see below) for the guidance of ac-
tion. The activity level of a perceptual schema signals
the credibility of the hypothesis that what the schema
represents is indeed present, whereas other schema
parameters represent relevant properties such as size,
location, and motion of the perceived object. Given a per-
ceptual schema we may need several schema instances,
each suitably tuned, to subserve perception of several
instances of its domain, e.g., several chairs in a room.

Motor schemas provide the control systems which
can be coordinated to affect a wide variety of actions.
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movement

Hand
preshape

Hand
rotation

Slow phase
movement

Actual
grasp

Recognition
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Visual
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Size
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Orientation

Hand reaching Grasping

Visual and
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Visual,
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Target
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Fig. 62.3 Hypothetical coordinated control program for reaching
and grasping. The perceptual schemas (top) provide parameters for
the motor schemas (bottom) for the control of reaching (arm trans-
port ≈ and reaching) and grasping (controlling the hand to conform
to the object). Dashed lines indicate activation signals which estab-
lish timing relations between schemas; solid lines indicate transfer
of data. (After Arbib [62.42])
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The activity level of a motor schema instance may signal
its degree of readiness to control some course of action.
What distinguishes schema theory from usual control
theory is the transition from emphasizing a few basic
controllers (e.g., for locomotion or arm movement) to
a large variety of motor schemas for diverse skills (peel-
ing an apple, climbing a tree, changing a light bulb), with
each motor schema depending on perceptual schemas to
supply information about objects which are targets for
interaction. Note the relevance of this for robotics – the
robot needs to know not only what the object is but also
how to interact with it. Modern neuroscience (see the
works by Ungerleider and Mishkin [62.49] and Goodale
and Milner [62.50]) has indeed established that the mon-
key and human brain each use a dorsal pathway (via the
parietal lobe) for the how and a ventral pathway (via the
inferotemporal cortex) for the what. Moreover, coupling
between these two streams mediates their integration in
normal ongoing behavior.

A coordinated control program interweaves the
activation of various perceptual, motor, and coordinat-
ing schemas in accordance with the current task and
sensory environment to mediate complex behaviors. Fig-
ure 62.3 shows the original coordinated control program
(Arbib [62.42], inspired by the data of Jeannerod and
Biguer [62.51]). As the hand moves to grasp a ball, it is
preshaped so that, when it has almost reached the ball, it
is of the right shape and orientation to enclose some part
of the ball prior to gripping it firmly. The outputs of three
perceptual schemas are available for the concurrent acti-
vation of two motor schemas, one controlling the arm to
transport the hand towards the object and the other pre-
shaping the hand. Once the hand is preshaped, it is only
the completion of the fast initial phase of hand transport
that wakes up the final stage of the grasping schema to
shape the fingers under control of tactile feedback. [This
model anticipates the much later discovery of perceptual

Efferent
feedback

Cerebral
motor
cortex

Cerebellum

Motor plan
∑

Afferent feedback

+

– Skeleto-
muscular

system

Spinal
cord

Fig. 62.4 Simplified control loop relating cerebellum and cerebral motor cortex in supervising the spinal cord’s control
of the skeletomuscular system

schemas for grasping in a localized area (AIP) of pari-
etal cortex and motor schemas for grasping in a localized
area (F5) of premotor cortex; see Fig. 62.4.] The notion
of schema is thus recursive – a schema may be analyzed
as a coordinated control program of finer schemas, and
so on until such time as a secure foundation of neural
specificity is attained.

Subsequent work has refined the scheme of Fig. 62.3,
for example, Hoff and Arbib’s [62.52] model uses the
time needed for completion of each of the movements
– transporting the hand and preshaping the hand – to
explain data on how the reach to grasp responds to per-
turbation of target location or size. Moreover, Hoff and
Arbib [62.53] show how to embed an optimality princi-
ple for arm trajectories into a controller which can use
feedback to resist noise and compensate for target per-
turbations, and a predictor element to compensate for
delays from the periphery. The result is a feedback sys-
tem which can act like a feedforward system described
by the optimality principle in familiar situations, where
the conditions of the desired behavior are not perturbed
and accuracy requirements are such that normal errors
in execution may be ignored. However, when perturba-
tions must be corrected for or when great precision is
required, feedback plays a crucial role in keeping the
behavior close to that desired, taking account of delays
in putting feedback into effect. This integrated view of
feedback and feedforward within a single motor schema
seems to us of value for neurorobotics as well as the
neuroscience of motor control.

It is standard to distinguish a forward or direct model
which represents the path from motor command to motor
output, from the inverse model which models the reverse
pathway, i. e., going from a desired motor outcome to
a set of motor commands likely to achieve it. As we
have just suggested, the action plan unfolds as if it were
feedforward or open-loop when the actual parameters of

Part
G

6
2
.2



Springer Handbook of Robotics

Siciliano, Khatib (Eds.) · ©Springer 2008 1

Neurorobotics: From Vision to Action 62.2 Neuroethological Inspiration 1461

the situation match the stored parameters, while a feed-
back component is employed to counteract disturbances
(current feedback) and to learn from mistakes (learning
from feedback). This is obtained by relying on a forward
model that predicts the outcome of the action as it un-
folds in real time. The accuracy of the forward model can
be evaluated by comparing the output generated by the
system with the signals derived from sensory feedback
(Miall et al. [62.54]). Also, delays must be accounted
for to address the different propagation times of the neu-
ral pathways carrying the predicted and actual outcome
of the action. Note that the forward model in this case
is relatively simple, predicting only the motor output
in advance: since motor commands are generated inter-
nally it is easy to imagine a predictor for these signals
(known as an efference copy). The inverse model, on the
other hand, is much more complicated since it maps sen-
sory feedback (e.g., vision) back into motor terms. These
concepts will prove important both in our study of the
cerebellum (Sect. 62.3) and mirror systems (Sect. 62.4).

62.2.5 Salience and Visual Attention

Discussions of how an animal (or robot) grasps an ob-
ject assume that the animal or robot is attending to the
relevant object. Thus, whatever the subtlety of process-
ing in the canonical and mirror systems for grasping, its
success rests on the availability of a visual system cou-
pled to an oculomotor control system that bring foveal
vision to bear on objects to set parameters needed for
successful interaction. Indeed, the general point is that
attention greatly reduces the processing load for animal
and robot. The catch, of course, is that reducing comput-
ing load is a Pyrrhic victory unless the moving focus of
attention captures those aspects of behavior relevant for
the current task – or supports necessary priority inter-
rupts. Indeed, directing attention appropriately is a topic
for which there is a great richness of both neurophys-
iological data and robotic application (see Deco and
Rolls [62.55] and Choi, et al. [62.41]).

In their neuromorphic model of the bottom-up guid-
ance of attention in primates, Itti and Koch [62.56]
decompose the input video stream into eight feature
channels at six spatial scales. After surround sup-
pression, only a sparse number of locations remain
active in each map, and all maps are combined into
a unique saliency map. This map is scanned by the fo-
cus of attention in order of decreasing saliency through
the interaction between a winner-takes-all mecha-
nism (which selects the most salient location) and an
inhibition-of-return mechanism (which transiently sup-

presses recently attended locations from the saliency
map). Because it includes a detailed low-level vision
front-end, the model has been applied not only to lab-
oratory stimuli, but also to a wide variety of natural
scenes, predicting a wealth of data from psychophysical
experiments.

When specific objects are searched for, low-level
visual processing can be biased both by the gist (e.g.,
outdoor suburban scene) and also for the features of that
object. This top-down modulation of bottom-up process-
ing results in an ability to guide search towards targets
of interest (Wolfe [62.57]). Task affects eye movements
(Yarbus [62.58]), as do training and general expertise.
Navalpakkam and Itti [62.59] propose a computational
model which emphasizes four aspects that are impor-
tant in biological vision: determining the task relevance
of an entity, biasing attention for the low-level visual
features of desired targets, recognizing these targets
using the same low-level features, and incrementally
building a visual map of task relevance at every scene
location. It attends to the most salient location in the
scene, and attempts to recognize the attended object
through hierarchical matching against object representa-
tions stored in long-term memory. It updates its working
memory with the task relevance of the recognized en-
tity and updates a topographic task-relevance map with
the location and relevance of the recognized entity, for
example, in one task the model forms a map of likely
locations of cars from a video clip filmed while driv-
ing on a highway. Such work illustrates the continuing
interaction between models based on visual neurophys-
iology and human psychophysics with the tackling of
practical robotic applications.

Orabona et al. [62.60] implemented an extension
of the Itti–Koch model on a humanoid robot with
moving eyes, using log-polar vision as in Sandini and
Tagliasco [62.61], and changing the feature construction
pyramid by considering proto-object elements (blob-like
structures rather than edges). The inhibition-of-return
mechanism has to take into account a moving frame
of reference, the resolution of the fovea is very different
from that at the periphery of the visual field, and head and
body movements need to be stabilized. The control of
movement might thus have a relationship with the struc-
ture and development of the attention system. Rizzolatti
et al. [62.62] proposed a role for the feedback projec-
tions from premotor cortex to the parietal lobe, assuming
that they form a tuning signal that dynamically changes
visual perception. In practice this can be seen as an im-
plicit attention system which selects sensory information
while the action is being prepared and subsequently ex-
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ecuted (see Flanagan and Johansson [62.63], Flanagan
et al. [62.64], and Mataric and Pomplun [62.65]). The
early responses, before action onset, of many premo-

tor and parietal neurons suggest a premotor mechanism
of attention that deserves exploration in further work in
neurorobotics.

62.3 The Role of the Cerebellum

Although cerebellar involvement in muscle control was
advocated long ago by the Greek gladiator surgeon
Galen of Pergamum (129–216/17 CE), it was the publi-
cation by Eccle et al. [62.66] of the first comprehensive
account of the detailed neurophysiology and anatomy
of the cerebellum (Ito [62.67]) that provided the inspi-
ration for the Marr–Albus model of cerebellar plasticity
(Marr [62.68]; Albus [62.69]) that is at the heart of
most current modeling of the role of the cerebellum
in control of motion and sensing. From a robotics
point of view, the most convincing results are based
on Albus’ [62.70] cerebellar model articulation con-
troller (CMAC) model and subsequent implementations
by Miller [62.71]. These models, however, are only
remotely based on the structure of the biological cerebel-
lum. More detailed models are usually only applied to
two-degree-of-freedom robotic structures, and have not
been generalized to real-world applications (see Peters
and van der Smagt [62.72]). The problem may lie with
viewing the cerebellum as a stand-alone dynamics con-
troller. An important observation about the brain is that
schemas are widely distributed, and different aspects of
the schemas are computed in different parts of the brain.
Thus, one view is that (1) the cerebral cortex has the
necessary models for choosing appropriate actions and
getting the general shape of the trajectory assembled
to fit the present context, whereas (2) the cerebellum
provides a side-path which (on the basis of extensive
learning of a forward motor model) provides the ap-
propriate corrections to compensate for control delays,
muscle nonlinearities, Coriolis and centrifugal forces
occasioned by joint interactions, and subtle adjustments
of motor neuron firing in simultaneously active motor
pattern generators to ensure their smooth coordination.
Thus, for example, a patient with cerebellar lesions may
be able to move his arm to successfully reach a target,
and to successfully adjust his hand to the size of an ob-
ject. However, he lacks the machinery to perform either
action both swiftly and accurately, and further lacks the
ability to coordinate the timing of the two subactions.
His behavior will thus exhibit decomposition of move-
ment – he may first move the hand till the thumb touches
the object, and only then shape the hand appropriately to

grasp the object. Thus analysis of how various compo-
nents of cerebral cortex interact to support forward and
inverse models which determine the overall shape of
the behavior must be complemented by analysis of how
the cerebellum handles control delays and nonlineari-
ties to transform a well-articulated plan into graceful
coordinated action. Within this perspective, cerebellar
structure and function will be very helpful in the control
of a new class of highly antagonistic robotic systems as
well as in adaptive control.

62.3.1 The Human Control Loop

Lesions and deficits of the cerebellum impair the co-
ordination and timing of movements while introducing
excessive, undesired motion: effects which cannot be
compensated by the cerebral cortex. According to main-
stream models, the cerebellum filters descending motor
cortex commands to cope with timing issues and com-
munication delays which go up to 50 ms one way for arm
control. Clearly, closed-loop control with such delays is
not viable in any reasonable setting, unless augmented
with an open-loop component, predicting the behavior of
the actuator system. This is where the cerebellum comes
into its own. The complexity of the vertebrate muscu-
loskeletal system, clearly demonstrated by the human
arm using a total of 19 muscle groups for planar mo-
tion of the elbow and shoulder alone (see Nijhof and
Kouwenhoven [62.73]) requires a control mechanism
coping with this complexity, especially in a setting with
long control delays. One cause for this complexity is
that animal muscles come in antagonistic pairs (e.g.,
flexing versus extending a joint). Antagonistic control
of muscle groups leads to energy-optimal (Damsgaard
et al. [62.74]) and intrinsically flexible systems. Contact
with stiff or fast-moving objects requires such flexibil-
ity to prevent breakage. In contrast, classical (industrial)
robots are stiff, with limb segments controlled by lin-
ear or rotary motors with gear boxes. Even so, most
laboratory robotic systems have passively stiff joints,
with active joint flexibility obtainable only by using fast
control loops and joint torque measurement. Although
it may be debatable whether such robotic systems re-
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quire cerebellar-based controllers, the steady move of
robotics towards complete anthropomorphism by mim-
icking human (hand and arm) kinematics as well as
dynamics as closely as possible, requires the search for
alternative, neuromorphic control solutions.

Vertebrate motor control involves the cerebral motor
cortex, basal ganglia, thalamus, cerebellum, brain stem,
and spinal cord. Motor programs, originating in the
cortex, are fed into the cerebellum. Combined with sen-
sory information through the spinal cord, it sends motor
commands out to the muscles via the brain stem and
spinal cord, which controls muscle length and joint stiff-
ness (see Bullock and Contreras-Vidal [62.75]). The full
control loop is depicted in Fig. 62.4 (see Schaal and
Schweighofer [62.76], for an overview of robotic ver-
sus brain control loops). The model in Fig. 62.4 clearly
resembles the well-known computed torque model and,
when the cerebellum is interpreted as a Smith model,
it serves to cope with long delays in the control
loop (see Miall et al. [62.54] and van der Smagt and
Hirzinger [62.77]). It is thus understood to incorpo-
rate a forward model of the skeletomuscular system.
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Fig. 62.5 (a) Major cells in the cerebellum. (b) Cells in the Marr–Albus model. The granule cells are state encoders,
feeding system state, and sensor data into the PC. PC/PF synapses are adjusted using the Widrow–Hoff rule. The output
of the PC are steering signals for the robotic system. (c) The APG model, using the same state encoder as in (b).
(d) The MPFIM model. A single module corresponds to a group of Purkinje cells: predictor, controller, and responsibility
estimator. The granule cells generate the necessary basis functions of the original information

Alternative approaches use the cerebellum as an inverse
model (see Ebadzadeh et al. [62.78]), which however
leads to increased complexity and control loop stability
problems.

62.3.2 Models of Cerebellar Control

The cerebellum can be divided into two parts: the cor-
tex and the deep nuclei. There are two systems of fibers
bringing input to the both the cortex and nuclei: the
mossy fibers and the climbing fibers. The only out-
put from the cerebellar nucleus comes from cells called
Purkinje cells, and they project only to the cerebellar
nuclei, where their effect is inhibitory. This inhibition
sculpts the output of the nuclei which (the effect varies
from nucleus to nucleus) may act by modulating ac-
tivity in the spinal cord, the mid-brain or the cerebral
cortex. We now turn to models which make explicit use
of the cellular structure of the cerebellar cortex (see Ec-
cles et al. [62.66] and Ito [62.79], and also Fig. 62.5a).
The human cerebellum has 7–14 million Purkinje cells
(PCs), each receiving about 200 000 synapses. Mossy
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fibers (MFs) arise from the spinal cord and brainstem.
They synapse onto granule cells and deep cerebellar nu-
clei. Granule cells have axons which each project up
to form a T, with the bars of the T forming the paral-
lel fibers (PFs). Each PF synapses on about 200 PCs.
The PCs, which are grouped into microzones, inhibit
the deep nuclei. PCs with their target cells in cerebel-
lar nuclei are grouped together in microcomplexes (see
Ito [62.79]). Microcomplexes are defined by a variety
of criteria to serve as the units of analysis of cerebellar
influence on specific types of motor activity. The climb-
ing fibers (CF) arise from the inferior olive. Each PC
receives synapses from only one CF, but a CF makes
about 300 excitatory synapses on each PC which it con-
tacts. This powerful input alone is enough to fire the PC,
though most PC firing depends on subtle patterns of PF
activity. The cerebellar cortex also contains a variety of
inhibitory interneurons. The basket cell is activated by
PF afferents and makes inhibitory synapses onto PCs.
Golgi cells receive input from PFs, MFs, and CFs and
inhibit granule cells.

The Marr–Albus Model
In the Marr–Albus model (see Marr [62.68] and Al-
bus [62.69]) the cerebellum functions as a classifier of
sensory and motor patterns received through the MFs.
Only a small fraction of the parallel fibers (PF) are ac-
tive when a Purkinje cell (PC) fires and thus influence
the motor neurons. Both Marr and Albus hypothesized
that the error signals for improving PC firing in re-
sponse to PF, and thus MF input, were provided by the
climbing fibers (CF), since only one CF affects a given
PC. However, Marr hypothesized that CF activity would
strengthen the active PF/PC synapses using a Widrow–
Hoff learning rule, whereas Albus hypothesized they
would weaken them. This is an important example of
a case where computational modeling inspired impor-
tant experimentation. Eventually, Masao Ito was able
to demonstrate that Albus was correct – the weakening
of active synapses is now known to involve a process
called long-term depression (Ito [62.79]). However, the
rule with weakening of synapses still known as the
Marr–Albus model, and remains the reference model
for studies of synaptic plasticity of cerebellar cortex.
However, both Marr and Albus viewed each PC as func-
tioning as a perceptron whose job it was to control an
elemental movement, contrasting with more plausible
models in which PCs serve to modulate the involvement
of microcomplexes (which include cells of the deep nu-
clei) in motor pattern generators (e.g., the APG model
described below).

Since the development of the Marr–Albus model sev-
eral cerebellar models have been introduced in which
cerebellar plasticity plays a key role. Limiting our
overview to computational models, we will describe
(1) the cerebellar model articulation controller (CMAC),
(2) the adjustable pattern generator (APG), (3) the
Schweighofer–Arbib model, and (4) the multiple paired
forward-inverse models (see van der Smagt [62.80,81]).

The Cerebellar Model Articulation Controller
(CMAC)

One of the first well-known computational models of the
cerebellum is the CMAC (Albus [62.70]; see Fig. 62.5b).
The algorithm was based on Albus’ understanding of
the cerebellum, but it was not proposed as a biologically
plausible model. The idea has its origins in the BOXES
approach, in which for n variables an n-dimensional hy-
percube stores function values in a lookup table. BOXES
suffers from the curse of dimensionality: if each variable
can be discretized into D different steps, the hyper-
cube has to store Dn function values in memory. Albus
assumed that the mossy fibers provided discretized func-
tion values. If the signal on a mossy fiber is in the
receptive field of a particular granule cell, it fires onto
a parallel fiber. This mapping of inputs onto binary out-
put variables is often considered to be the generalization
mechanism in CMAC. The learning signals are provided
by the climbing fibers.

Albus’ CMAC can be described in terms of a large set
of overlapping, multidimensional receptive fields with
finite boundaries. Every input vector falls within the
range of some local receptive fields. The response of
CMAC to a given input is determined by the average of
the responses of the receptive fields excited by that input.
Similarly, the training for a given input vector affects
only the parameters of the excited receptive fields.

The organization of the receptive fields of a typical
Albus CMAC with a two-dimensional input space can
be described as follows. The set of overlapping receptive
fields is divided into C subsets, commonly referred to as
layers. Any input vector excites one receptive field from
each layer, for a total of C excited receptive fields for any
input. The overlap of the receptive fields produces input
generalization, while the offset of the adjacent layers of
receptive fields produces input quantization. The ratio
of the width of each receptive field (input generaliza-
tion) to the offset between adjacent layers of receptive
fields (input quantization) must be equal to C for all di-
mensions of the input space. This organization of the
receptive fields guarantees that only a fixed number, C,
of receptive fields is excited by any input.
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If a receptive field is excited, its response equals
the magnitude of a single adjustable weight specific
to that receptive field. The CMAC output is the aver-
age of the weights of the excited receptive fields. If
nearby points in the input space excite the same re-
ceptive fields, they produce the same output value. The
output only changes when the input crosses one of the
receptive field boundaries. The Albus CMAC thus pro-
duces piecewise-constant outputs. Learning takes place
as described above.

CMAC neural networks have been applied in various
control situations Miller [62.71], starting from adapta-
tion of PID control parameters for an industrial robot
arm and hand–eye systems up to biped walking (see
Sabourin and Bruneau [62.82]).

The Adjustable Pattern Generator APG
The APG model (Houk et al. [62.83]) got its name be-
cause the model can generate a burst command with
adjustable intensity and duration. The APG is based on
the same understanding of the mossy fiber–granule cell–
parallel fiber structure as CMAC, using the same state
encoder, but has the crucial difference (Fig. 62.2c) that
the role of the nuclei is crucial. In the APG model, each
nucleus cell is connected to a motor cell in a feedback
circuit. Activity in the loop is then modulated by Purk-
inje cell inhibition, a modeling idea introduced by Arbib
et al. [62.84].

The learning algorithm determines which of the
PF–PC synapses will be updated in order to improve
movement generation performance. This is the tradi-
tional credit assignment problem: which synapse (the
structural credit assignment) must be updated based on
a response issued when (temporal credit assignment).
While the former is solved by the CFs, which are con-
sidered binary signals, for the latter eligibility traces on
the synapses are introduced, serving as memory for re-
cent activity to determine which synapses are eligible
for updates. The motivation for the eligibility signal is
this: each firing of a PC cell will take some time to af-
fect the animal’s movement, and a further delay will
occur before the CF can signal an error in the move-
ment in which the PC is involved. Thus the error signal
should not affect those PF–PC synapses which are cur-
rently active, but should instead act upon those synapses
which affected the activity whose error is now being
registered.

The APG has been applied in a few control situa-
tions, e.g., a single muscle–mass system and a simulated
two-link robot arm. Unfortunately these applications do
not allow us judge the performance of the APG scheme

itself due to the fact that the control task itself was hidden
within spinal cord and muscle models.

The Schweighofer–Arbib Model
The Schweighofer–Arbib model was introduced in
Schweighofer [62.85]. It does not use the CMAC state
encoder but tries to copy the anatomy of the cerebellum.
All the cells, fibers, and axons in Fig. 62.2a are included.
Several assumptions are made: (1) there are two types
of mossy fibers, one type reflecting the desired state of
the controlled plant and another which carries informa-
tion on the current state. A mossy fiber diverges into
approximately 16 branches; (2) granule cells have an
average of four dendrites, each of which receive input
from different mossy fibers through a synaptic structure
called the glomerulus; (3) three Golgi cells synapse on
a granule cell through the glomerulus and the strength of
their influence depends on the simulated geometric dis-
tance between the glomerulus and the Golgi cell; (4) the
climbing fiber connection on nuclear cells as well as
deep nuclei is neglected.

Learning in this model depends on directed error
information given by the climbing fibers from the infe-
rior olive (IO). Here, long-term depression is performed
when the IO firing rate provides an error signal for
an eligible synapse, while compensatory but slower in-
creases in synaptic strength can occur when no error
signal is present. Schweighofer applied the model to ex-
plain several acknowledged cerebellar system functions:
(1) saccadic eye movements, (2) two-link limb move-
ment control (see Schweighofer et al. [62.86, 87]), and
(3) prism adaptation (Arbib et al. [62.88]). Furthermore,
control of a simulated human arm was demonstrated.

Multiple Paired Forward-Inverse Models
(MPFIM)

Building on a long history of cerebellar modeling,
Wolpert and Kawato [62.89] proposed a novel functional
model of the cerebellum which uses multiple coupled
predictors and controllers which are trained for control,
each being responsible for a small state-space region.
The MPFIM model is based on the indirect/direct model
approach by Kawato, and is also based on the microcom-
plex theory. We noted earlier that a microzone is a group
of PCs, while a microcomplex combines the PCs of
a microzone with their target cells in cerebellar nuclei.
In MPFIM, a microzone consists of a set of modules con-
trolling the same degree of freedom and is learned by
only one particular climbing fiber. The modules in this
microzone compete to control this particular synergy.
Inside such a module there are three types of PC which
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perform the computations of a forward model, an inverse
model or a responsibility predictor, but all receiving the
same input. A single internal model i is considered to
be a controller which generates a motor command τ i
and a predictor which predicts the current acceleration.
Each predictor is a forward model of the controlled sys-
tem, while each controller contains an inverse model of
the system in a region of specialization. The responsibil-
ity signal weights the contribution that this model will
make to the overall output of the microzone. Indeed,
MPFIM further assumes that each microzone contains
n internal models of situations occurring in the control
task. Model i generates motor command τi , and esti-
mates its own responsibility ri . The feedforward motor
command τ ff consists only of the output of the single
models adjusted by the sum of responsibility signals:
τff = ∑

riτi/
∑

ri .
The PCs are considered to be roughly linear. The MF

inputs carry all necessary information including state in-
formation, efference copies of the last motor commands
as well as desired states. Granule cells, and eventually
the inhibitory interneurons as well, nonlinearly trans-
form the state information to provide a rich set of basis
functions through the PFs. A climbing fiber carries
a scalar error signal while each Purkinje cell encodes
a scalar output – responsibilities, predictions, and con-
troller outputs are all one-dimensional values. MPFIM
has been introduced with different learning methods: its
first implementations were done using gradient descent
methods; subsequently, expectation maximization (EM)
batch-learning and hidden Markov chain EM learning
have been applied.

Comparison of the Models
Summing up, we can categorize the cerebellar models
CMAC, APG, Schweighofer–Arbib, and MPFIM as
follows.

• State-encoder-driven models: This kind of model
assumes that the granule cells are on–off types of
entities which split up the state space. This kind of
model is best suited for, e.g., simple function ap-
proximation, and suffers strongly from the curse of
dimensionality.• Cellular-level models: Obviously, the most realistic
simulations would be at the cellular level. Unfortu-
nately, modeling only a few Purkinje cells at realistic
conditions is an immense computational challenge,
and other relevant neurons are even less well under-
stood. Still, from the biological point of view this
kind of model is the most important since it allows

obtaining insight into cerebellar function on cellular
level. The first steps in this direction were taken by
the Schweighofer–Arbib model.• Functional models: From the computer-science
point of view, the most interesting models are based
on functional understanding of the cells. In this case,
we obtain only a basic insight of the functions of the
parts and apply it as a crude approximation. This
kind of approach is very promising and MPFIM,
with its emphasis on the use of responsibility sig-
nals to combine models appropriately, provides an
interesting example of this approach.

62.3.3 Cerebellar Models and Robotics

From the previous discussions, it is clear that a popu-
lar view is that the function of the cerebellum within
the motor control loop is to represent a forward model
of the skeletomuscular system. As such it predicts the
movements of the body, or rather the perceptually coded
(e.g., through muscle spindles, skin-based positional in-
formation, and visual feedback) representation of the
movements of the body. With this prediction a fast con-
trol loop between motor cortex and cerebellum can be
realized, and motor programs are played before being
sent to the spinal cord (Fig. 62.4). Proprioceptive feed-
back is used for adaptation of the motor programs as
well as for updating the forward model stored in the
cerebellum. However, the Schweighofer–Arbib model
is based on the view that the cerebellum offers not so
much a total forward model of the skeletomuscular sys-
tem as a forward model of the difference between the
crude model of the skeletomuscular system available to
the motor planning circuits of the cerebral cortex, and
the more intricately parameterized forward model of the
skeletomuscular system needed to support fast, graceful
movements with minimal use of feedback. This hypoth-
esis is reinforced by the fact that cerebellar lesions do
not prohibit motion but substantially reduce its quality,
since the forward model of the skeletomuscular system
is of lesser quality.

As robotic systems move towards their biological
counterparts, the control approaches can or must do the
same. There are many lines of research investigating
the former part; cf. Chap. 13 Robots with Flexible Arms
and Chap. 60 Biologically Inspired Robots. It should be
noted that the drive principle that is used to move the
joints does not necessarily have a major impact on the
outer control loop. Whether McKibben muscles, which
are intrinsically flexible but bulky (see van der Smagt
et al. [62.90]), low-dynamics polymer linear actuators,
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or direct-current (DC) motors with spindles and added
elastic components are used does not affect the control
approach at the cerebellar level, but rather at the motor
control level (cf. the spinal cord level). Of key impor-
tance, however, are the resulting dynamical properties
of the system, which are of course influenced by its
actuators.

Passive flexibility at the joints, which is a key feature
of muscle systems, is essential for reasons of safety, sta-
bility during contact with the environment, and storage
of kinetic energy. As mentioned before, however, bio-
logical systems are immensely complex, requiring large
groups of muscles for comparatively simple movements.
A reason for this complexity is the resulting nearly lin-
ear behavior, which has been noted for, e.g., muscle
activation with respect to joint stiffness (see Osu and

Gomi [62.91]). By this regularization of the complexity
of the skeletomuscular system, the complexity of the for-
ward model stored in the cerebellum is correspondingly
reduced. The whole picture therefore seems to be that
the cerebellum, controlling a piecewise-linear skeleto-
muscular system, incorporates a forward model thereof
to cope with delays in the peripheral nervous system.
Consequently, although the applicability of cerebellar
systems to highly nonlinear dynamics control of tra-
ditional robots is questionable, the use of cerebellar
systems as forward models appears to be useful in the
control of more complex and flexible robotic systems.
The control challenge posed by the currently emerg-
ing generation of robots employing antagonistic motor
control therefore opens a new wealth of applications of
cerebellar systems.

62.4 The Role of Mirror Systems

Mirror neurons were first discovered in the brain of
the macaque monkey – neurons that fire both when
the monkey exhibits a particular grasping action, and
when the monkey observes another (monkey or human)
perform a similar grasp (see Rizzolatti et al. [62.92]
and Gallese et al. [62.93]). Since then, human stud-
ies have revealed a mirror system for grasping in the
human brain – a mirror system for a class X of ac-
tions being a set of regions that are active both when
the human performs some action from X and when
the human observes someone else performing an ac-
tion from X (see, e.g., Grafton et al. [62.94], Rizzolatti
et al. [62.95], and Fadiga et al. [62.96]). Until recently
we had no single-neuron studies of humans proving the
reasonable hypothesis that the human mirror system for
grasping contains mirror neurons for specific actions.
However, data from neurosurgery are now becoming
available (M. Iacoboni, personal communication). In
any case, most models of the human mirror system
for grasping assume that it contains circuitry analogous
to the mirror neuron circuitry of the macaque brain.
However, the current consensus is that monkeys have
little or no ability for imitation (but see Voelkl and
Huber [62.97] for a very simple form of imitation-like
behavior in marmoset monkeys); great apes have the
ability to master certain skills after extended bouts of
observation (Byrne [62.98]), whereas the human mir-
ror system plays a key role in our capability for much
richer forms of imitation (see Iacoboni et al. [62.99]),
pantomime, and even language (see Arbib and Rizzo-

latti [62.100] and Arbib [62.101]). Indeed, it has been
suggested that mirror neurons underlie the motor the-
ory of speech perception of Liberman et al. [62.102],
which holds that speech perception rests on the ability
to recognize the motor acts that produce speech sounds.

Section 62.4.1 reviews basic neurophysiological
data on mirror neurons in the macaque, and presents
both the Fagg–Arbib–Rizzolatti–Sakata (FARS) model
of canonical neurons (unlike mirror neurons, these are
active when the monkey executes an action but not when
he observes it) and the mirror neuron system (MNS)
model of mirror neurons and their supporting brain re-
gions. Section 62.4.2 then uses Bayes’s rule to offer
a new, probabilistic view of the mirror system’s role in
action recognition, and demonstrates the operation of the
new model in the context of studies with two robots. Fi-
nally, Sect. 62.4.3 briefly shifts the emphasis of our study
of mirror neurons to imitation, which in fact is the area
that has most captured the imagination of roboticists.

62.4.1 Mirror Neurons and the Recognition
of Hand Movements

Area F5 in the premotor cortex of the macaque contains,
among others, neurons which fire when the monkey ex-
ecutes a specific manual action, e.g., one neuron might
fire when the monkey performs a precision pinch, an-
other when it executes a power grasp. (In discussing
neurorobotics, it seems unnecessary to explain in any
detail the areas like F5, AIP, and STS described here
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– they will function as labels for components of func-
tional systems. To fill in the missing details see, e.g.,
Rizzolatti et al. [62.103, 104]) A subset of these neu-
rons, the so-called mirror neurons, also discharge when
the monkey observes meaningful hand movements made
by the experimenter which are similar to those whose
execution is associated with the firing of the neuron. In
contrast, the canonical neurons are those belonging to
the complementary, anatomically segregated subset of
grasp-related F5 neurons which fire when the monkey
performs a specific action and also when it sees an ob-
ject as a possible target of such an action – but do not
fire when the monkey sees another monkey or human
perform the action. Finally, F5 contains a large popula-
tion of motor neurons which are active when the monkey
grasps an object (either with the hand or mouth) but do
not possess any visual response. F5 is clearly a motor
area although the details of the muscular activation are
abstracted out – F5 neurons can be effector-independent.
In contrast, the primary motor cortex (F1) formulates
the neural instructions for lower motor areas and motor
neurons.

Moreover, macaque mirror neurons encode transitive
actions and do not fire when the monkey sees the hand
movement unless it can also see the object or, more sub-
tly, if the object is not visible but is appropriately located
in working memory because it has recently been placed
on a surface and has then been obscured by a screen be-
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Fig. 62.6 The original FARS diagram (see Fagg and Arbib [62.45])
is here modified to show PFC acting on AIP rather than F5. The idea
is that the prefrontal cortex uses the IT identification of the object,
in concert with task analysis and working memory, to help the AIP
select the appropriate affordance from its menu

hind which the experimenter is seen to be reaching (see
Umiltà et al. [62.105]). All mirror neurons show visual
generalization. They fire when the instrument of the ob-
served action (usually a hand) is large or small, far from
or close to the monkey. They may also fire even when
the action instrument has shapes as different as those of
a human or monkey hand. Some neurons respond even
when the object is grasped by the mouth. When naive
monkeys first see small objects grasped with a pair of
pliers, mirror neurons do not respond, but after exten-
sive training some precision pinch mirror neurons do
show activity also to this new grasp type (see Ferrari
et al. [62.106]).

Mirror neurons for grasping have also been found in
parietal areas of the macaque brain and, recently, it has
been shown that parietal mirror neurons are sensitive
to the context of the observed action being predictive
of the outcome as a function of contextual cues – e.g.,
some grasp-related parietal mirror neurons may fire for
a grasp that precedes eating the grasped object while
others fire for a grasp that precedes placing the object
in a container (see Fogassi et al. [62.107]). In practice
the parieto-frontal circuitry seems to encode action exe-
cution and simultaneously action recognition by taking
into account a large set of potential candidate actions
which are selected on the basis of a range of cues such
as vision of the relation of the effector to the object
and certain sounds (when relevant for the task). Further,
feedback connections (frontal to parietal) are thought to
be part of a stimulus selection process which refines the
sensory processing by attending to stimuli relevant for
the ongoing action (see Rizzolatti et al. [62.62] and re-
call the discussion in Sect. 62.2.5). Recognition is then
supported by the activation of the same circuitry in the
absence of overt movement.

We clarify these ideas by briefly presenting the FARS
model of the canonical F5 neurons and the MNS model
of the F5 mirror neurons. In each case, the F5 neu-
rons function effectively only because of the interaction
of F5 with a wide range of other regions. We have
stressed (Sect. 62.2.3) the distinction between recogni-
tion of the category of an object and recognition of its
affordances. The parietal area AIP processes visual in-
formation to extract affordances, in this case properties
of the object relevant to grasping it (Taira et al. [62.108]).
AIP and F5 are reciprocally connected, with AIP being
more visual and F5 more motoric.

The Fagg–Arbib–Rizzolatti–Sakata (FARS) model
(see Fagg and Arbib [62.109] and Fig. 62.6) embeds
F5 canonical neurons in a larger system. The dorsal
stream (which passes through AIP) can only analyze the
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object as a set of possible affordances, whereas the ven-
tral stream (via the inferotemporal cortex, IT) is able to
recognize what the object is. The latter information is
passed to th eprefrontal cortex (PFC) which can then, on
the basis of the current goals of the organism, bias the
choice of affordances appropriate to the task at hand.
Neuroanatomical data (as analyzed by Rizzolatti and
Luppino [62.110]) suggest that PFC and IT may mod-
ulate action selection at the level of the parietal cortex.
Figure 62.6 gives a partial view of the FARS model up-
dated to show this modified pathway. The affordance
selected by AIP activates F5 neurons to command the
appropriate grip once they receive a go signal from an-
other region, F6, of the prefrontal cortex. F5 also accepts
signals from other PFC areas to respond to working
memory and instruction stimuli in choosing among the
available affordances. Note that this same pathway could
be implicated in tool use, bringing in semantic knowl-
edge as well as perceptual attributes to guide the dorsal
system (see Johnson–Frey [62.111]).

With this, we turn to the mirror system. Since grasp-
ing a complex object requires careful attention to motion
of, e.g., fingertips relative to the object we hold that
the primary evolutionary impetus for the mirror system
was to facilitate feedback control of dexterous move-
ment. We now show how parameters relevant to such
feedback could be crucial in enabling the monkey to as-
sociate the visual appearance of what it is doing with
the task at hand. The key side-effect will be that this
feedback-serving self-recognition is so structured as to
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Fig. 62.7 The mirror neuron sys-
tem (MNS) model (see Oztop and
Arbib [62.92]). Note that this basic
mirror system for grasping crucially
links the visual process of the superior
temporal sulcus (STS) to the parietal
regions (b) and premotor regions (F5)
which have been shown to contain
mirror neurons for manual actions

also support recognition of the action when performed
by others – and it is this recognition of the actions of
others that has created the greatest interest in mirror
neurons and systems.

The MNS model of Oztop and Arbib [62.112] pro-
vides some insight into the anatomy while focusing on
the learning capacities of mirror neurons. Here, the task
is to determine whether the shape of the hand and its
trajectory are on track to grasp an observed affordance
of an object using a known action. The model is orga-
nized around the idea that the AIP → F5canonical pathway
emphasized in the FARS model (Fig. 62.6) is comple-
mented by another pathway 7b → F5mirror. As shown
in Fig. 62.7 (middle diagonal), object features are pro-
cessed by AIP to extract grasp affordances, these are sent
on to the canonical neurons of F5 that choose a particular
grasp. Recognizing the location of the object (top diago-
nal) provides parameters to the motor programming area
F4 which computes the reach. The information about
the reach and the grasp is taken by the motor cortex
M1 (=F1) to control the hand and the arm. The rest of
the figure provides components that can learn and apply
key criteria for activating a mirror neuron, recogniz-
ing that the preshape of the observed hand corresponds
to the grasp that the mirror neuron encodes and is ap-
propriate to the object, and that the hand is moving on
an appropriate trajectory. Making crucial use of input
from the superior temporal sulcus (STSa; see Perrett
et al. [62.113] and Carey et al. [62.114]), schemas at the
bottom left recognize the shape of the observed hand,
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and how that hand is moving. Other schemas implement
hand–object spatial relation analysis and check how ob-
ject affordances relate to hand state. Together with F5
canonical neurons, this last schema (in parietal area 7b)
provides the input to the F5 mirror neurons.

In the MNS model, the hand state was defined as
a vector whose components represented the movement
of the wrist relative to the location of the object and of
the hand shape relative to the affordances of the object.
Oztop and Arbib showed that an artificial neural net-
work corresponding to PF and F5mirror could be trained
to recognize the grasp type from the hand state tra-
jectory, with correct classification often being achieved
well before the hand reached the object, using activity
in the F5 canonical neurons that commands a grasp as
training signal for recognizing it visually. Crucially, this
training prepares the F5 mirror neurons to respond to
hand–object relational trajectories even when the hand
is of the other rather than the self because the hand state
is based on the view of movement of a hand relative to
the object, and thus only indirectly on the retinal input of
seeing hand and object, which can differ greatly between
observation of self and other. Bonaiuto et al. [62.115]
have developed MNS2, a new version of the MNS
model to address data on audiovisual mirror neurons
that respond to the sight and sound of actions with char-
acteristic sounds such as paper tearing and nut cracking
(see Kohler et al. [62.105]), and on the response of mir-
ror neurons when the target object was recently visible
but is currently hidden (see Umiltá et al. [62.105]). Such
learning models, and the data they address, make clear
that mirror neurons are not restricted to recognition of
an innate set of actions but can be recruited to recognize
and encode an expanding repertoire of novel actions.

The discussion of this section avoided any refer-
ence to imitation (Sect. 62.4.3). On the other hand, even
without considering imitation, mirror neurons provide
a new perspective for tackling the problem of robotic
perception by incorporating action (and motor informa-
tion) into a plausible recognition process. The role of
the fronto-parietal system in relating affordances, plans,
and actions shows the crucial role of motor information
and embodiment. We argue that this holds lessons for
neurorobotics: the richness of the motor system should
strongly influences what the robot can learn, proceeding
autonomously via a process of exploration of the envi-
ronment rather than overly relying on the intermediary
of logic-like formalisms. When recognition exploits the
ability to act, then the breadth of the action space be-
comes crucially related to the precision, quality, and
robustness of the robot’s perception.

62.4.2 A Bayesian View
of the Mirror System

We now show how to cast much that is known about
the mirror system into a controller–predictor model (see
Miall et al. [62.54] and Wolpert et al. [62.116]) and
analyze the system in Bayesian terms. As shown by
the FARS model, the decision to initiate a particular
grasping action is attained by the convergence in area
F5 of several factors including contextual and object-
related information; similarly many factors affect the
recognition of an action. All this depends on learn-
ing both direct (from decision to executed action) and
inverse models (from observation of an action to acti-
vation of a motor command that could yield it). Similar
procedures are well known in the computational motor
control literature (see Jordan and Rumelhart [62.117]
and Kawato et al. [62.118]). Learning of the affordances
of objects with respect to grasping can also be achieved
autonomously by learning from the consequences of
applying many different actions to different parts of
different objects.

But how is the decision made to classify an ob-
served behavior as an instance of one action or another?
Many comparisons could be performed in parallel with
the model for one action becoming predominantly ac-
tivated. There are plausible implementations of this
mechanism using a gating network (see Demiris and
Johnson [62.119] and Haruno et al. [62.120]). A gat-
ing network learns to partition an input space into
regions; for each region a different model can be ap-
plied or a set of models can be combined through an
appropriate weight function. The design of the gating
network can encourage collaboration between models
(e.g., linear combination of models) or competition
(choosing only one model rather than a combination).
Oztop et al. [62.121] offer a similar approach to the esti-
mation of the mental states of the observed actor, using
some additional circuitry involving the frontal cortex.

We now offer a Bayesian view of using the predictor–
controller formulation approach to the mirror system.
This Bayesian approach views affordances as priors in
the action recognition process where the evidence is con-
veyed by the visual information of the hand, providing
the data for finding the posterior probabilities as mir-
ror neurons-like responses which automatically activate
for the most probable observed action. Recalling that
the presence of a goal (at least in working memory) is
needed to elicit mirror neuron responses in the macaque.
We believe it is also particularly important during the
ontogenesis of the human mirror system, for example,
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Woodward [62.122] has shown that even at nine months
of age, infants recognized an action as being novel if it
was directed toward a novel object rather than just hav-
ing different kinematics, showing that the goal is more
fundamental than the enacted trajectory. Similarly, if one
sees someone drinking from a coffee mug then one can
hypothesize that a particular action (that one already
knows in motor terms) is used to obtain that particular
effect. The association between the canonical response
(object–action) and the mirror one (including vision)
is made when the observed consequences (or goal) are
recognized as similar in the two cases. Similarity can be
evaluated following criteria ranging from kinematic to
social consequences.

Many formulations of recognition tasks are available
in the literature (see Duda, Hart, and Stork [62.123])
besides those keyed to the study of mirror neurons.
Here, however, we focus on the Metta et al. [62.124]
Bayesian interpretation of the recognition of actions.
We equate the prior probabilities for actions with the
object affordances, that is:

p(Ai |Ok) , (62.1)

where Ai is the i-th action from a motor repertoire of
I actions and Ok is the target object of the grasping
action out of a set of K possible objects. The affor-
dances of an object identify the set of actions that are
most likely to be executed upon it, and consequently the
mirror activation of F5 can be thought as:

p(Ai |F, Ok) , (62.2)

where F are the features obtained by observation of
the trajectory of the temporal evolution of the observed
action. This probability can be computed from Bayes
rule as

p(Ai |F, Ok) = p(F|Ai , Ok)p(Ai |Ok) . (62.3)

(An irrelevant normalization factor has been neglected
so that, strictly speaking, the posterior in (62.3) is no
longer a probability.) With this, a classifier is constructed
by taking the maximum over the possible actions

Â = max
i

p(Ai |F, Ok) . (62.4)

Following Lopes and Santos-Victor [62.125], Metta
et al. [62.124] assumed that the features F along the
trajectories are independent. This is clearly not true for
a smooth trajectory linking the movement of the hand
and fingers to the observed action. However, this ap-
proximation simplified the estimation of the likelihoods

Table 62.1 Brain quantities and circuits

p(Ai |F, Ok) Mirror neuron responses,

obtained by a combination of the

information as in (62.3)

p(F|Ai , Ok) The activity of the F5 motor

neurons generating certain motor

patterns given the selected action

and the target object

p(Ai |Ok) Object affordances: the response

of the circuit linking AIP and the

F5 canonical neurons AIP→F5

Visuomotor map Transformation of the hand-

related visual information into

motor data: identified with the

response of STS → PF/PFG →
F5, which is represented in F5 by

p(F|Ai , Ok)

in (62.2), though later implementations should take into
account the dependence across time.

The object recognition stage (i. e., finding Ok) re-
quires as much vision as is needed to determine the
probability of the various grasp types being effective,
the hand features F correspond to the STS response,
and the response of the mirror neurons determines the
most probable observed action Ai . We can identify cer-
tain circuits in the brain with the quantities described
before.

However Table 62.1 does not exhaust the various
computations required in the model. In the learning

AIP

F5canonical p ( Ai | Ok)

F5mirror

Visuomotor map

STS → PF/PFG → F5motor

p (F | Ai, Ok)

p ( Ai | F, Ok)

Fig. 62.8 Block diagram of the recognition process.
Recognition (mirror neuron activation) is due to the con-
vergence in F5 of two main contributions: signals from the
AIP-F5 canonical connections and signals from the STS-
PF/PFG-F5 circuit. In this model, activations are thought
of as probabilities and are combined using Bayes’s rule
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phase, the visuomotor map is learned by a sigmoidal
feedforward neural network trained with the backprop-
agation algorithm (both visual and motor signals are
available); affordances are learned simply by counting
the number of occurrences of actions given the object
(visual processing of object features was assumed); and
the likelihood was approximated by a mixture of Gaus-
sians and the parameters learned by the expectation
maximization (EM) algorithm. During the recognition
phase, motor information is not available, but is re-
covered from the visuomotor map. Figure 62.8 shows
a block diagram of the operation of the classifier.

A comparison (see Lopes and Santos-Victor [62.125])
was made of system performance: (a) when using the
output of the inverse model and thus employing motor
features to aid classification during the training phase,
and (b) when only visual data were available for clas-
sification. Overall, their interpretation of the results is
that by mapping in motor space they allow the classi-
fier to choose features that are much better suited for
performing optimally, which in turn facilitates general-
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Fig. 62.9 (a) The affordances of two objects: a toy car and a bottle represented as the probability of moving along a given
direction measured with respect to the object principal axis (visual). It is evident that the toy car tends to move mostly
along the direction identified with the principal axis and the orange juice bottle at a right angle with respect to its principal
axis. (b) The probability of a given action generating a certain object movement. The reference frame is anchored to the
image plane in this case

ization. The same is not true in visual space, since a given
action may be viewed from different viewpoints. One
may compare this to the viewpoint invariance of hand
state adopted in the MNS model, which has the weak-
ness there of being built in rather than emerging from
training.

Another set of experiments was performed on a hu-
manoid robot upper torso called Cog (see Brooks
et al. [62.31]). Cog has a head, arms, and a moving waist
for a total of 22 degrees of freedom but does not have
hands. It has instead simple flippers that could be used
to push and prod objects. Fitzpatrick and Metta [62.126]
and Metta et al. [62.124] were interested in starting
from minimal initial hypotheses yet yielding units with
responses similar to mirror neurons. The robot was pro-
grammed to identify suitable cues to start the interaction
with the environment and direct its attention towards
potential objects, using an attention system similar to
that (see Itti and Koch [62.56]) described in Sect. 62.2.5.
Although the robot could not grasp objects, it could
generate useful cues from touch, push, and prod actions.
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The problem of defining objects reflects the problem
of segmenting the visual scene. Criteria such as contrast,
binocular disparity, and motion can be applied, but any of
them can fail in a given situation. In the present system,
optic flow was used to detect and segment an object after
impact with the arm end point, and from segmentation
based on shape, color, and behavior data. Depending on
the available motor repertoire, the robot could explore
a range of possible object behaviors (affordances) and
form an object model which combines both sensorial
and motor properties of the object that robot had the
chance to interact with.

In a typical experiment, the human operator waves
an object in front of the robot, which reacts by looking
at it. If the object is dropped on the table in front of the
robot, a reaching action is initiated, and the robot possi-
bly makes contact with the object. Vision is used during
the reaching and touching movement to guide the robot’s
flipper toward the object, to segment the hand from the
object upon contact, and to collect information about
the behavior of the object caused by the application
of a certain action (see Fitzpatrick [62.127]). Unfortu-
nately, interaction of the robot’s flipper with objects does
not result in a wide class of different affordances and so
this study focused on the rolling affordances of a toy car,
an orange juice bottle, a ball, and a colored toy cube. Be-
sides reaching, the robot’s motor repertoire consists of
four different stereotyped approach movements cover-
ing a range of directions of about 180◦ around the object.
For each successful trial, the robot stored the result of
the segmentation, the object’s principal axis which was
selected as representative shape parameter, the action
– initially selected randomly from the set of four ap-
proach directions – and the movement of the center of
mass of the object for some hundreds of milliseconds
after impact with the flipper was detected. This gives in-
formation about the rolling properties (affordances) of
the different objects, e.g., the car tends to roll along its
principal axis, the bottle at a right angle with respect to
the axis. Figure 62.9 shows the result of collecting about
700 samples of generic poking actions and estimating the
average direction of displacement of the object. Note, for
example, that the action labeled as backslap (moving the
object with the flipper outward from the robot) consis-
tently gives a visual object motion upward in the image
plane (corresponding to the peak at −100◦, 0◦ being the
direction parallel to the image x-axis; the y-axis pointing
downward). A similar consideration applies to the other
actions. Although crude, this implementation shows that
with little pre-existing structure the robot could acquire
the crucial elements for building knowledge of objects in

terms of their affordances. Given a sufficient level of ab-
straction, this implementation is close to the response of
canonical neurons in F5 and their interaction with neu-
rons observed in AIP that respond to object orientation
(see Sakata et al. [62.128]).

62.4.3 Mirror Neurons and Imitation

Fitzpatrick and Metta [62.126] also addressed the ques-
tion of what is further required for interpreting observed
actions. Where in the previous section, the robot identi-
fied the motion of the object because of a specific action
applied to it, here it could backtrack and derive the type
of action from the observed motion of the object. It can
further explore what is causing motion and learn about
the concept of manipulator in a more general setting. In
fact, the same segmentation procedure mentioned ear-
lier could visually interpret poking actions generated
by a human as well as those generated by the robot.
One might argue that observation could be exploited
for learning about object affordances. This is possibly
true to the extent passive vision is reliable and action
is not required. The advantage of the active approach,
at least for the robot, is that it allows controlling the
amount of information impinging on the visual sensors
by, for instance, controlling the speed and type of ac-
tion. This strategy might be especially useful given the
limitations of artificial perceptual systems. Thus, obser-
vations can be converted into interpreted actions. The
action whose effects are closest to the observed conse-
quences on the object (which we might translate into
the goal of the action) is selected as the most plausible
interpretation given the observation. Most importantly,
the interpretation reduces to the interpretation of the
simple kinematics of the goal and consequences of the
action rather than to understanding the complex kine-
matics of the human manipulator. The robot understands
only to the extent it has learned to act. One might note
that a more refined model should probably include vi-
sual cues from the appearance of the manipulator into
the interpretation process. Indeed, the hand state that
was central to the Oztop–Arbib model was based on an
object-centered view of the hand’s trajectory in a coor-
dinate frame based on the object’s affordances. The last
question to address is whether the robot can imitate the
goal of a poking action. The step is indeed small since
most of the work is actually in interpreting observations.
Imitation was generated in the following by replicating
the latest observed human movement with respect to the
object and irrespective of its orientation, for example,
in case the experimenter poked the toy car sideways,
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the robot imitated him/her by pushing the car sideways.
Starting from this simple experiment, we need to for-
malize what is required for a system that has to acquire
and deliver imitation.

Roboticists have been fascinated by the discovery
of mirror neurons and the purported link to imitation
that exists in the human nervous system. The litera-
ture on the topic extends from models of the monkey’s
(nonimitative) action recognition system (see Oztop
and Arbib [62.112]) to models of the putative role
of the mirror system in imitation (see Demiris and
Johnson [62.119] and Arbib et al. [62.129]), and in
real and virtual robots (see Schaal et al. [62.130]). Oz-
top et al. [62.131] propose a taxonomy of the models
of the mirror system for recognition and imitation,
and it is interesting to note how different the com-
putational approaches that have been now framed as
mirror system models are, including recurrent neural
networks with parametric bias (see Tani et al. [62.132]),
behavior-based modular networks (see Demiris and
Johnson [62.119]), associative memory-based methods
(see Kuniyoshi et al. [62.133]), and the use of multiple
direct-inverse models as in the MOSAIC architecture
(Wolpert et al. [62.134]; cf. the multiple paired forward-
inverse models of Sect. 62.3.2).

Following the work of Schaal et al. [62.130] and
Oztop et al. [62.131] we can propose a set of schemas
required to produce imitation:

• determine what to imitate, inferring the goal of the
demonstrator,• establish a metric for imitation (correspondence; see
Nehaniv [62.135]),• map between dissimilar bodies (mapping),• imitate behavior formation,

which are also discussed in greater detail by Nehaniv and
Dautenhahn [62.136]. In practice, computational and
robotic implementations have tackled these problems
with different approaches and emphasizing different
parts or specific subproblems of the whole, for exam-
ple, in the work of Demiris and Hayes [62.137], the

rehearsal of the various actions (akin to the aforemen-
tioned theory of motor perception) was used to generate
hypotheses to be compared with the actual sensory in-
put. It is then remarkable how more recently a modified
approach of this paradigm has been used in compari-
son with real human transcranial magnetic stimulation
(TMS) data.

Ito et al. [62.138] (not the Masao Ito of cerebellar
fame) took a dynamical systems approach using a re-
current neural network with parametric bias (RNNPB)
to teach a humanoid robot to manipulate certain objects.
In this approach the parametric bias (PB) encodes (tags)
certain sensorimotor trajectories. Once learning is com-
plete the neural network can be used either to recall
a given trajectory by setting the PB externally or pro-
vide input for the sensory data only and observe the PB
vector that would represent in that case the recognition
of the situation on the basis of the sensory input only (no
motor information available). It is relatively easy to in-
terpret these two situations as the motor generation and
the observation in a mirror neurons model.

The problem of building useful mappings be-
tween dissimilar bodies (consider a human imitating
a bird’s flapping wings) was tackled by Nehaniv and
Dautenhahn [62.136] where an algebraic framework for
imitation is described and the correspondence problem
formally addressed. Any system implementing imitation
should clearly provide a mapping between either dissim-
ilar bodies or even in the case of similar bodies when
either the kinematics or dynamics is different depending
on the context of the imitative action.

Sauser and Billard [62.139] modeled the ideomotor
principle, according to which observing the behavior of
others influences our own performances. The ideomotor
principle points directly to one of the core issues of the
mirror system, that is, the fact that watching somebody
else’s actions changes something in the activation of the
observer, thus facilitating certain neural pathways. The
work in question also gives a model implemented in
terms of neural fields (see Sauser and Billard [62.139]
for details) and tries to explain the imitative cortical
pathways and the behavior formation.

62.5 Extroduction

As the foregoing makes clear, robotics has much to
learn from neuroscience and much to teach neuro-
science. Neurorobotics can learn from the ways in
which the brains and bodies of different creatures
adapt to diverse ecological niches – as computa-

tional neuroethology helps us understand how the
brain of a creature has evolved to serve action-
oriented perception, and the attendant processes
of learning, memory, planning, and social inter-
action.
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We have sampled the design of just a few subsystems
(both functional and structural) in just a few animals
– optic flow in the bee, approach, escape, and barrier
avoidance in frogs and toads, and navigation in the rat,
as well as the control of eye movements in visual atten-
tion, the role of mammalian cerebellum in handling the
nonlinearities and time delays of flexible motor systems,
and the mirror systems of primates in action recognition
and of humans in imitation. There are many more crea-
tures with lessons to offer the roboticist than we can
sample here.

Moreover, if we just confine attention to the brains
of humans, this Chapter has mentioned at least 7a, 7b,
AIP, area 46, caudo-putamen, cerebellum, cIPS, F2, F4,
F5, hippocampus, hypothalamus, inferotemporal cortex,

LIP, MIP, motor cortex, nucleus accumbens, parietal cor-
tex, prefrontal cortex, premotor cortex, pre-SMA (F6),
spinal cord, STS, and VIP – and it is clear that there
are many more details to be understood for each region,
and many more regions whose interactions hold lessons
for roboticists. We say this not to depress the reader,
but rather to encourage further exploration of the lit-
erature of computational neuroscience and to note that
the exchange with neurorobotics proceeds both ways:
neuroscience can inspire novel robotic designs; con-
versely, robots can be used to test whether brain models
still work when they make the transition from disem-
bodied computer simulation to meeting the challenge of
guiding the interactions of a physically embodied system
with the complexities of its environment.

62.6 Further Reading

M.A. Arbib, (Ed.): From Action to Language via the
Mirror System (Cambridge Univ. Press, Cambridge
2006).

This volume provides 16 articles on the mirror sys-
tem, written by diverse experts. Of particular relevance
to this Chapter are articles on dynamical systems: brain,
body and imitation; attention and the minimal subscene;
the development of grasping and the mirror system; and
development of goal-directed imitation, object manipu-
lation and language in humans and robots.

C. Bell, P. Cordo, S. Harnad: Controviersies in
neuroscience IV: motor learning and plasticity in
the cerebellum. Behavioral and brain sciences 19(3),
(1996)

This somewhat older BBS special issue provides
what was, back then, a rather definitive number of arti-
cles on the cerebellum, including an overview of models
in a paper by Houk et al.

P. van der Smagt, D. Bullock: Applied intelligence,
Scalable Applications of Neural Networks to Robotics
17(1), (2002).

This special issue is focused on the application
of cerebellar and other models to robotics tasks, and

lists some successful and – between the lines – more
unsuccessful applications thereof.

V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti:
Action recognition in the premotor cortex. Brain 119,
593–609 (1996)

This paper provides a detailed account of the neu-
rophysiological evidence for mirror neurons. It is good
reading to get the real data unbiased from further inter-
pretation on the role of mirror neurons and it is complete
and accurate. Although it is a technical paper it is easy
to read also to a general audience.

L. Fadiga, L. Craighero, G. Buccino, G. Rizzolatti:
Speech listening specifically modulates the excitability
of tongue muscles: a TMS study. Eur. J. Neurosci. 15(2),
399–402 (2002)

This work extends the mirror system concept with
an interesting perspective on its role into into language.
This paper is interesting reading by providing evidence
in humans (the other references above are about mon-
key experiments). In this case, it has been shown that
speech listening facilitates the activation of tongue mus-
cles which match the specific phoneme being listened
to.
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