
FAST MOTION PLANNING IN DYNAMIC ENVIRONMENTS
WITH THE PARALLELIZED Z3–METHOD

BORIS BAGINSKI
Technische Universität München, Institut für Informatik,
Orleansstr. 34, 81667 Munich, Germany,
e-mail: baginski@informatik.tu-muenchen.deABSTRACTWe present a method to plan collision free paths for robots with any numberof degrees of freedom in dynamic environments. The method proved to bevery e�cient as it ommits a complete representation of the high dimensionalsearch space. Its complexity is linear in the number of degrees of freedom.A preprocessing of the geometry data of the robot or the environment is notrequired. With the time as an additional dimension of the search space it ispossible to use the method in known dynamic environments or for multiplerobots sharing a common work space. The method allows e�cient parallelplanning of independent sub-tasks to increase its performance.KEYWORDS: path planning, dynamic environments, randomized algo-rithms, parallelized atgorithmsINTRODUCTIONThe method presented in this paper is part of our research on intelligent and au-tonomous robot systems. An important component of such a system is a path plannerthat creates collision free and physically possible motions between positions that wereplanned on a higher, more abstract level. A path planner for practical use must beable to work fast in any kind of environment and with any load of the robot. Inaddition, there are often dynamic changes in the environment that make it necessaryto take time into consideration for the motion planning.The pose of a robot can be described by the vector of its joint positions. One pointin the space of possible joint values (con�guration space or c-space) is the precisedescription of a robot's position. The solution of the path planning task for an n-joint robot is to �nd a curve between start and goal in the n-dimensional c-space[8]. In a dynamic environment the c-space is extended by the dimension time. Thesolution has to be found in the n+ 1-dimensional c-space-time. This extension is nothomogenous, as the dimension time is bound to strictly monotonous increase, whilethe other dimensions allow any motions, only constrained by the robot's dynamics.In this paper we present the Z3-method for path planning as a sequential algorithmfor static environments. It is then extended to dynamic environments and the waywe parallelized it is introduced. The e�ciency is demonstrated in two scenarios.THE Z3{METHODThe only requirement for the Z3{method (ZZZ is a german abbreviation of goal{directed and randomized planning in temporally changing environments) is a geometric



and kinematic model of the robot and the environment. The method is a furtherdevelopment of the ZZ{method by B. Glavina [6]. It consists of two hierarchicallycoupled components. The lower level is an e�cient goal{directed planner that onlyuses local information to try to pass obstacles. The upper level is a randomizedplanner that uses the local planner and combines the results.Local Goal{Directed PlanningTo avoid exponential complexitywith respect to the number of dimensions no completerepresentation of the search space is constructed. In contrast, only one dimensionalsubspaces are explored. The goal directed search moves linear from start to goal. Themotion is calculated in discrete steps, collision tests are performed in short distances.The stepwidth is calculated from the tolerance that was added to the robot's geometrymodel and assures collision free continuous motion between two test points [6].If a collision with an obstacle occures, an avoiding movement (slide step) is tried.First a point that is very close to the obstacle's surface is calculated with a depth-limited bisection. Then directions that are orthogonal to the desired direction andorthogonal to each other are computed. These directions and the respective reversedirections are the possible avoiding directions. In the n-dimensional case this resultsin 2(n � 1) possible directions. Figure 1 (a) illustrates this calculation.
C-space obstacle

free C-space

1

2

0

3(a) C-space obstacle

free C-space

(b) free C-space

C
-space obstacles

goal

start (c)Figure 1. (a) The last collision free position of the linear movement is 0, the next stepwould be 1 but collides. With a bisection (points 2 and 3) a point very close tothe surface is calculated and orthogonal avoiding directions are computed. (b) Asequence of successful slide steps along a c-space obstacle. (c) An example for apath planned with the local planner.The stepwidth for the slide step is now calculated to not exceed the discretizingstepwidth. Then the avoiding points that lead closer to the goal are checked forcollision. If none of the allowed avoiding points is collision free the local plannerterminates without success (dead end). The restriction on steps that lead closer tothe goal is necessary to avoid 'uttering' that results in an in�nite loop.After a successful slide step the linear motion in the direction of the goal is triedagain, and again it may be necessary to calculate a slide step. Figure 1 (b) showsa sequence of slide steps along an obstacle's surface. In many cases the proposedcombination of goal directed steps and slide steps can �nd a solution for the pathplanning task by considering local information only, see Figure 1 (c). The complexityof the local planner is linear with respect to the number of degrees of freedom. Thisnumber determines the number of avoiding directions that have to be tested. In staticenvironments time is irrelevant and the local planner can retry a failed task in thereverse direction from goal to start.



Global Randomized PlanningFirst of all, it is tried to solve the task with the local planner. If this fails, randomcollision free subgoals are used to create partial tasks to solve the whole task throughcombination. There are two parameters to be chosen for the global planner, �rstthe maximum numberM of subgoals that are used to �nd solutions, and second themaximum number m of subgoals that are allowed on a path from start to goal. Testsshow that most of all path planning tasks can be solved with one or very few subgoalsalong the path. These tests proved that it is more e�cient to restart the planner withM new random subgoals instead of allowing any number (< M) of subgoals on thepath. It is better to check the possible paths with one subgoal �rst, then the pathswith two subgoals and so on. As far as possible unnecessary local planning shall beavoided. The following algorithm follows this conception:check the direct path from start to goal, if its possible then SUCCESScreate M random subgoals as the initial members of set U (set of unconnected points)initialize the set S (points that can be reached from the start) with the starting point.Loop from 1 to minitialize the set Snew as empty setLoop for all points si out of SLoop for all points uj out of Utry to connect si with uj with the local plannerif this is successful:try to connect uj with the goal with the local plannerif this is possible: SUCCESSif this is not possible:remove uj from Uadd uj to Snewend Loopremove si from Send Loopmake S equal with Snewif S is empty, then NO SOLUTION { RETRY WITH NEW SUBGOALSend LoopNO SOLUTION { RETRY WITH NEW SUBGOALSThis algorithm creates a tree, growing from the start into the set of subgoals. Forevery height level of the tree possible connections to the goal are tested before thegrowth continues. In static environments the global planning can start from the goalas well. This results in a faster reduction of the number of unconnected points andthus in faster planning. The presented algorithm evaluates all paths with up to msubgoals. This testing is complete, if a path exists for the given random subgoaldistribution it is found.Consideration of TimeTime can be included as an additional dimension in the local planning process if thestarting time is known and the status of the system can be calculated at any latertime, i.e. the dynamics of the environment and the robot are known. Starting thelocal planner from a known point in c-space-time allows to plan a path and an arrivaltime. For the application in reality the transition from linear steps to slide steps(sudden change of direction) must be considered with care. This can be achieved bycorrecting the time of some earlier steps to slow down the motion appropriately.



The time can be included in the global planning as well. The subgoals are not �xedin time when they are created. The time is �xed when the subgoal is reached by thelocal planner. Not being �xed in time, the subgoals are not guaranteed to be collisionfree, but the random generation can estimate the time heuristically and thus reducethe danger of colliding subgoals. The time is propagated forward in the growing tree,every subgoal is reached only once with the local planner yielding a subgoal arrivaltime. In the end, a goal arrival time can be returned. It is not possible to plan reversefrom goal to start in dynamic environments, neither local nor global.Parallelized PlanningThere are of course several possibilities to parallelize the Z3-method. The most ob-vious way is to run several instances of the local planner in parallel. The tasks ofthe local planer are almost independent of each other, only connected at start andend positions. The inner loop of the algorithm presented above is the key to e�cientparallelization of the local planning. All leaves of the tree that was constructed fromthe start can be tested with all unconnected subgoals simultaneously.The number of computing nodes is in general neither dynamic nor unlimited, buta �xed con�guration parameter, e.g. the number of workstations available in a localcluster. Thus we propose a scheduling algorithm to control the available computingnodes. The idea is to assure the highest possible load and to check the most promisingconnections in the subgoal graph �rst. The scheduling algorithm �lls up the computingnodes respectivly. If a computing node gets available (a previous run of the localplanner has terminated), the connection between the pair of positions in the subgoalgraph that leads closest to a global solution is tested next. This best pair is calculatedbased on all the knowledge of the subgoal graph that is available at that time. If, forexample, a point that was unconnected before, gets connected to the tree { and thusto the start { the connection to the goal is tested immediately.PRACTICAL RESULTSThe experiments shown in this chapter were performed on Hewlett Packard UnixWorkstations. The geometry simulation is based on an automatically created hierar-chy of hull bodies that allows very e�cient collision testing. Up to now, our system isonly capable to plan paths for robots in static environments. More results of sequentialplanning are shown in [2].
(a) (b)Figure 2. MOBROB scenario (a) and PYRAMID scenario (b). See text for details.



Sequential Planning in the Scenario MOBROBThis scenario (Figure 2 a) shows a manipulator on a mobile platform in an industrialenvironment. For the experiments only the six joints of the manipulator are used(the platform is static). The six dimensional c-space contains 57.6% free space. Thesimulation system needs an average time of 0.4 ms to check a position for collision.The experiments are performed withM = 25 total subgoals and a maximum of m = 4subgoals on one path. 5,000 tasks are created by combining random positions thatare very close to obstacle surfaces, so these tasks can be described as random pick-and-place{tasks. The following results are measured:� 100% of the tasks are solved� the average run time is 0.064 sec, max. is 2.56 sec� there is an average of 0.042 subgoals per planned path. This shows the e�ciencyof the local planner, that can solve almost all tasks� the local planner is used 1.16 times on an average.The results in this very realistically modelled scenario prove that the Z3-methodis a method of choice for path planning in real applications with hard constraints ontime. Even in the rare cases where the global planner becomes necessary the planningtimes are usually below one second.Parallel Planning in the Scenario PYRAMIDSThe way of parallelizing the Z3-method by scheduling the local planning requireslittle communication, compared with the high computational e�orts for the kinematicand geometric simulation. For this reason we chose a cluster of workstations as thedevelopment environment. In the shared �le system, all computing nodes have accessto the same data. The processes are controlled and interconnected through PVM(Parallel Virtual Machine [9]).The pyramid scenario is created as an example where local planning with slide stepsfails very often, due to the large number of obstacles very close to the robot. Thetask shown in Figure 2 (b) (start position: solid drown robot, goal: wire frame robot)requires a complete turn by 350 degrees in the workspace. The six dimensional c-spacecontains 37.5% free space. The simulation system needs an average time of 0.44 msto check a position for collision. The sequential implementation solves this task in anaverage time of 31.2 sec (100 runs).The parallel planner is started 100 times with M = 50 total subgoals and m = 5maximum number of subgoals on one path. We use 30 workstations running the localplanner in parallel, controlled by one master workstation, running the scheduling algo-rithm. The average planning time including all communication is 7.5 sec. Comparedto the sequential algorithm, this is a speedup by the factor 4.The results achieved with the parallel planner are preliminary. The schedulingstrategy implemented now su�ers one major drawback: the direct connection betweenstart and goal is tested �rst in one computing node, and only if this fails, multipleinstances of the local planner start working. It will increase the performance to startsearching connections via subgoals immediately when the planning begins, as thereare idle computing nodes available.DISCUSSION AND CONCLUSIONWe presented a method that is able to plan paths in dynamic environments. Itscomplexity is linear in the number of degrees of freedom, time being an additionaldegree of freedom. Some problems and objections, as well as ongoing and future work,are discussed in this chapter.



The path planned with the Z3-method is not optimal. The use of subgoals results insharp corners and detours in the path. For static environments we use a local polygonoptimizer that improves the quality of the pathes very e�ciently [4].One problem of the local planner is that the slide steps are very close to the obstacles,yielding 'dangerous paths' in uncertain environments. We try to integrate dynamicprotection shields to guarantee a safety distance whenever this is possible. This canbe done without increasing the planning complexity.Further investigations are done in developing a new local planer that is especiallye�cient for hyperredundant manipulators. By shrinking and expanding the model ofthe robot along its trajectory its possible to �nd solutions in much more cases thanwith the slidesteps, with the same linear computational complexity. First results arevery promising [1], and an integration into parallel planning is straightforward.In static environments the Z3-method does not use the 'experiences' of prior plan-ning. The 'subgoal{tree' is removed when a solution is found. Other path planningalgorithms that represent the free part of the c-space with a graph, e.g. [5, 7], showbetter results for repeated planning in the same environment. In our opinion, the dom-inating criterium is the constant e�ciency in unknown and dynamic environments thatis a property of the Z3-method. The only planner we know with comparable goodresults is the Randommized Path Planner [3], but the 'random walks' that escapelocal minima will not use the whole free space in a way the random subgoals do.To summarize, the Z3-method is a reliable and versatile concept. The global plannercan be used in other areas as well and is not bound with robotics. All planning tasksthat can not be solved in one step and where the decomposition is not obvious canbe adressed with this randomized and parallizable strategy.REFERENCES1. Boris Baginski. Local motion planning for manipulators based on shrinking and growinggeometry models. In Proceedings of IEEE Conference on Robotics and Automation,Minneapolis, April 1996.2. Boris Baginski. The Z3{method for fast path planning in dynamic environments. InProceedings of IASTED Conference Aplications of Control and Robotics, pages 47{52,Orlando, Florida, January 1996.3. J. Barraquand and J.-C Latombe. A monte-carlo algorithm for path planning with manydegrees of freedom. In Proceedings of IEEE Conference on Robotics and Automation,pages 1712{1717, Cincinnati, Ohio, May 1990.4. Stefan Berchtold and Bernhard Glavina. A scalable optimizer for automatically gener-ated manipulator motions. In Proccedings of IEEE/RSJ/GI International Conferenceon Intelligent Robots and Systems IROS'94, pages 1796{1802,Munich, September 1994.5. Martin Eldracher. Neural subgoal generation with subgoal graph: An approach. InProceedings of World Conference on Neural Networks WCNN '94, pages II{142 { II{146, 1994.6. Bernhard Glavina. Planung kollisionsfreier Bewegungen f�ur Manipulatoren durch Kom-bination von zielgerichteter Suche und zufallsgesteuerter Zwischenzielerzeugung. PhDthesis, Technische Universit�at M�unchen, February 1991.7. Lydia Kavraki and Jean-Claude Latombe. Randomized preprocessing of con�gurationspace for fast motion planning. In Proceedings of IEEE Conference on Robotics andAutomation, pages 2138{2145, San Diego, California, May 1994.8. Jean-Claude Latombe. Robot Motion Planning. Kluver Academic Publishers, 1991.9. V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:Practice and Expirience, 2(4), December 1990.


