Efficient Dynamic Collision Detection
using Expanded Geometry Models

Boris Baginski
Robotics and Real-Time Systems Group, Fakultit fiir Informatik
Technische Universitat Miinchen, Orleansstr. 34, 81667 Munich, Germany
e-mail: baginski@informatik.tu-muenchen.de

Abstract

Collision detection for articulated robots along pos-
sible trajectories is a basic requirement for path and
motion planning systems. We present an approach
using static collision tests at selected locations merely
to check complete trajectories. This is done by using
slightly expanded geometry models. We develop a sim-
ple formula for estimating the distance between two po-
sitions of a link within a kinematic chain. In the case
of straight lines in configuration space, an efficient ap-
proximation algorithm is introduced. It calculates the
next step in joint space to be close to the maximum
possible length. The presented scheme allows the ef-
fort required for model-based path planning with line
graphs in c—space to be reduced by at least a factor of
4 in the case of six degrees of freedom, compared to a
typically used ’classical’ method.

Keywords: Dynamic Collision Detection, Geometric
Modeling, Path Planning

1 Introduction

A major aspect of an intelligent, autonomous robot
system is its ability to plan its own motion without
colliding with the environment. There are several
paradigms to deal with motion planning in robotics.
A rough differentiation can be made between model—-
based and non—model-based approaches. If there is
no model (at least no model of the environment), the
robot reacts on sensor input and motion planning is
actually a controlled motion execution.

The model-based approaches can be sub-classified
again, and again it is a very rough differentiation. One
possibility is to develop a planning algorithm based on
a suitable model. A powerful model is the configura-
tion space (c—space), the parameter space of the robot.
Each possible state or pose of the robot is a point, and
a path is a curve in this space, connecting start and
goal. The problem with this kind of approach is ob-
taining a sufficient representation of the c—space that

has to be created from the information that is avail-
able. In general, this requires expensive precomputa-
tions to build up a cell decomposition (e.g. [9]) or a
connectivity graph (e.g. [6]).

Another possibility is to see what kind of geometric,
kinematic and dynamic information is available and
to develop a path planning approach based upon it.
This allows spontaneous planning when the data is
available and is our paradigm for path planning [2,
1]. We want to operate a known manipulator in a
changing environment, for example a manipulator on
a mobile platform for flexible production (see fig. 1).
Our environment model consists of two major parts:

Figure 1: An ezample of a mobile manipulator in our
simulation environment.

e The robot. Its geometry and its kinematic con-
straints are known prior to any planning. This
allows us to do precomputations of any kind that
simplify the planning process.

e The environment. It is not known a priori. Its ge-
ometry will be, at least partially, read by sensors,
resulting in an incomplete and uncertain model.

In an industrial environment most of the data will
be known from CAD, and will typically consist of
complex shaped surfaces without structure that
can be used to convert or group them.

In the following, we will focus on one aspect of
path planning, the aspect of dynamic collision detec-
tion. Most of the path planning efforts will be spent in
testing segments of candidate paths for possible colli-
sions with the environment. The model available is not
sufficiently structured to use a sophisticated distance
computation algorithm efficiently, as these require an
environment made up of convex polytopes [7] or other
complex data structures [8, 5].

The requirements for an efficient static collision test
are generally less demanding. A static collision test
ascertains if a particular configuration of the robot
collides or not. It is achieved efficiently with a hier-
archy of increasingly simplified hull bodies [8, 4]. The
output of this test is only binary, no minimal distance
is computed.

A static collision test can not directly be used for
dynamic collision detection. Theoretically, it requires
an infinite number of tests along a trajectory to test it
for collisions. It should be marked, that a lot of com-
mercial robot simulation packages use a static collision
test only. The discretization is often a parameter set
by the user, resulting in a more or less random result.
In the following, we expand the geometric model of
the robot to be able to correctly use a collision test,.

The rest of the paper is organized as follows: Sec-
tion 2 introduces a ’classic’ approach for the distance
calculation between multiple collision tests. This ap-
proach is analyzed and an improved concept is devel-
oped. Section 3 describes this new concept in detail.
Section 4 describes the dynamic collision scheme based
on step length approximation. The efficiency of this
scheme is improved in section 5, when multiple ex-
panded models are used. Section 6 gives some results
of our implementation. Section 7 ends the paper with
concluding remarks and some words on ongoing work.

2 The Weightened 1-Norm Method

To be able to use a static collision test for dynamic
collision detection, the robot geometry model is ex-
panded. A ’protective shield’ is constructed, covering
the robot with a particular thickness d. This allows
static collision detections in distances of 2d each. More
precisely, a condition for correct collision detection can
be put into words: If the robot is expanded by d, no
point of the robot is allowed to move further then 2d
between two collision tests. This idea is illustrated in
fig. 2.

robot
obstacle

Figure 2: An ezpansion of d allows steps of 2d.

Discretizing Algorithm

To calculate steps, the condition has to be formal-
ized. Configurations are given as vectors of joint an-
gles in the n—dimensional c-space, ® = (¢ ...¢,)7.
The relevant motion of the links takes place in the
workspace. It has to be estimated how far a certain
step A® = &; — ®(in c—space moves a point on the
robot.

Figure 3: An ezample of the mazimum possible radii for
a two link manipulator in 2 dimensional space. r2 is the
length of the outer link, r1 is the length of the inner link
plus the length of the outer link in its mazimum extension
with respect to the first joint.

A worst—case estimation for rotational joints can be
done by using the largest possible radius r; for each
joint (see fig. 3). Multiplying it with the current ro-
tation angle ¢; results in the maximum arc length. In
the worst case, all these rotations add up and the con-
dition for collision test distances can be formulated as

follows:
dof

S r | Ay | < 2d (1)
i=1
For arbitrary shaped robot links with arbitrary ori-
ented axes the radii are difficult to calculate analyti-
cally. But they can be estimated by iteratively con-
structing swept volumes of the links. The outermost
radius r, is just the maximum of the distances of all
points of the outermost link to the rotation axis. Then
the swept volume (or, easier, the convex hull of the
swept volume) for this link is constructed and fixed at
the previous link. Now the radius r,_; can be found,
and the procedure is repeated for all joints.
Translational joints can be handled with this ap-
proach as well. If the joint parameter equals the dis-
tance moved by the joint, its 'radius’ equals 1. This

just means, that its motion contributes linear to the
worst—case maximum motion.

All radii are positive, so (1) can be seen as a weight-
ened 1-norm in c—space. For collision detection along
straight lines in c—space, the weightened 1-norm of the
line can be calculated and maximum steps between
tests can be done with respect to this condition.
Analysis

If we base our dynamic collision detection on (1),
the collision tests executed much more frequently than
necessary. This has two main reasons:

e The condition is based on a worst—case assump-
tion. It is assumed, that the robot is stretched to
its full length and that all rotational motions add
up in the same direction.

e At each step, the whole robot is tested for col-
lision. But the worst case can only occur for
the outermost link, the inner links are generally
tested too often. Figure 4 illustrates this problem.

goal

Figure 4: Dynamic collision detection with a condition for
the whole kinematic chain. The innermost link is checked
much more often than necessary.

New Approach

Based on this results, a new condition is put into
words for collision detection: No point of the robot is
allowed to move further then 2d between two collision
tests. But all links should be moved as close to 2d
as possible for mazimum efficiency. To do this, we
will look at the motion of all the links in a kinematic
chain individually and test them independently at the
maximum possible distance.

3 Motion of Bodies in a Kinematic
Chain

A link in the kinematic chain moves within the six
dimensional cartesian space along a trajectory that is
defined by the motions of all previous joints. It is
not obvious which ’distance’ is traveled by a particu-
lar link. The motion is not straight, thus the cartesian

distance is not sufficient. The maximum arc length of
a point is expensive to calculate. Thus we will overes-
timate the distance between two link positions with a
small error, but with little computational effort.

Estimation of Translational Distance

The translational distance is overestimated by the
maximum distance of bounding boxes covering the
link at each position. As the bounding box is convex,
no point within the box can have a larger translational
distance than the box. The maximum distance of all
points of the bounding box is the maximum distance
moved by one of its extreme points (see fig. 5).

Figure 5: Overestimating the translational distance by the
distance of bounding bozes.

To estimate the distance, eight precomputed points
p; have to be transformed in each configuration and
the maximum distance between the pairs of points is
chosen:

eSt(‘I’O,(I)l) = i:HllaX

)

g [IPi(®1) = pi(Ro)ll2 (2)

Estimation of Rotational Divergence

The motion of a link is not straight, if there are
rotational joints in the kinematic chain before the link.
The maximum divergence from the straight line can
be easily calculated for one rotational joint if the angle
and the maximum radius are known, see fig. 6.

r(1-cos—)

Figure 6: The mazimum divergence from the straight line
for rotations is very small for small angles.

We can overestimate the maximum divergence of
link j if we sum up all divergences from the previous
joints:

div(A®) = Ej:rm- (1—cos<A2¢">> (3)

i=1

The radii r;; in this equation are the maximum
radii similar to the radii described in section 2, but
the links 7 +1,...,n are not taken into account. This
requires the precomputation of a triangular n x n ma-
trix of weights. The divergence calculated with (3)
is a worst—case estimation, as it is assumed that all
divergences sum up. But the divergence is small for
small angles, as the cosine stays very close to 1. The
calculation is only valid for A¢; € [—m,], but we will
generally use much smaller steps.

The distance between positions can now be care-
fully estimated by adding the translational estimation
and the maximum rotational divergence. This is again
a worst—case assumption: the rotational divergence
resulted in maximum disturbance of the translational
estimation.

Maximum Distance between Tests

For the collision test distance, equation (4) has to
hold. No point of the robot can pass free space without
being covered by a collision test.

le(A(I)) + eSt(‘I’O,q)l) S 2d (4)

There are several possibilities to use the above de-
fined estimation for the distance to assure large dis-
tance between collision tests. If the trajectory is of
arbitrary shape, it can be discretized and the distance
is estimated between all steps. Whenever the distance
to the last test is above the allowed threshold 2d, a col-
lision test is performed for the previous discretization
point. This will require a lot of distance estimation.
Even if this is much cheaper than a collision test, a
forward computation is better.

4 Straight Motions in C—Space

For the case of straight lines, forward computa-
tion is possible, if we have already made one step
AP = &y — ;. If there were only translational joints,
the new step Aéopt of maximum length 2d would be
directly proportional to the cartesian distance dist of
the previous step:

Ad
—2d (5)
dist(A®)

But there are rotations that complicate the calcu-
lation. If we assume maximum divergence for the dis-
tance estimation and maximum divergence within the

A(i)opt

new step A®qpt, the following equation is a careful
estimation:

Ad

Adoy =
P T ost(Bo, @1) + div(AD)

(2d — div(A®op))
(6)

This is difficult to calculate, because A®qpt is the
parameter of the non-linear function div on the right
side. But div is super-linear, and a two-step approxi-
mation to this optimal value can be derived:

A
Ad = 2d
new est(®g, @) + div(A®) 0

2d

ABpew = Adpew S
new "V 9d + div(A®new)

(8)

This approximation results in a step A®Ppew <
Adypt, and Adpey was based on worst—case assump-
tions and overestimated divergences. Thus A®qpt is
a safe step, i.e. equation (4) holds. But for relatively
small angles it will be very close to the optimal step.
The results obtained were in the range of 90% to 99%
of 2d.

Collision Detection Algorithm

An efficient collision detection algorithm can be de-
veloped with this approximation, as the current and
the previous test positions can be used to estimate the
next one. The algorithm requires ®gpart and <I>g0a1 as
input and runs as follows (see fig. 7):

e Test the configuration Pgiqart.

e Calculate a small linear step towards ®gg,). The
position is not tested, but used to approximate
the first step for each link using (7), (8).

e Test the link with its next untested position clos-
est to Pgtart and calculate its next step. Repeat
until terminated.

e Terminate, if a collision occurs, or if the distance
between the last tested position and g, falls
below d for all links.

5 Using Multiple Expanded Models
The only parameter required for this algorithm is
the expansion d. This is difficult to select, if the robot
shall efficiently move through free space (large expan-
sion, large steps) but as well shall move close to ob-
stacles (small expansion). If we use multiple layers
of models with different thicknesses, it is possible to
adapt dynamically to different situations. We suggest
to use a small expansion dy as minimal tolerance and,
covering this, increasingly larger models, each with a
doubled expansion, d;;+1 = 2 x d;. This leads to an
effective reduction of steps if a larger model can be

Figure 7: By estimating individual steps for each link, the
distances between all collision tests are mazimized.

used, each increase will almost half the number of re-
quired tests. The collision detection algorithm treats
all links separately, so the ’protective shields’ for the
links can be different. Figure 8 illustrates the possible
different thicknesses in one pose.

Figure 8: An ezxample for different model levels. The tool
and the load are close to the table and can only be covered
by a thin ’protective shield’. The other links have more
free space, thus less collision tests are required when they
move.

Advanced Possibilities

Larger models will in general yield more collisions
than smaller models, and the collision test will be more
expensive. But this can possibly be compensated by
the use of simplified models at higher levels. The ’pro-
tective shield’ has to have a thickness of at least d;, but
a slightly larger model with a lot of details removed
will be much more convenient to test. All this can be
done in a preprocessing phase for the robot, without
any knowledge of the environment.

Switching between the Models

We modified our algorithm to be able to handle a
fixed number of layers with the thicknesses d; = 2% dy.
The factors can easily be integrated in the approxi-
mation formulae. We start at ®giart with the smallest
model (if the possible size is not known from previous
computations) and try to switch to the next larger
model in each step. If a collision occurs for a particu-
lar level, the model is shrunken and the test position
is moved backwards until the obstacle can be passed
or the smallest model collides (see fig. 9).

obstacle

Figure 9: The robot is illustrated as one point in this fig-
ure. If it gets too close to an obstacle, the thickness of the
protective shield 1s halved and the test position is adjusted
to ensure a collision free line segment.

For each level, a delay value is stored that counts
how many steps have to be done with the level be-
low before the algorithm attempts to switch to that
level. The delay is one at the beginning for all levels,
and is doubled for the respective level if a collision oc-
curs. This assures, that the number of unsuccessful
attempts decreases if, for example, the robot passes
an obstacle with constant distance (see fig. 10).

obstacle

Figure 10: If there were collisions, the attempt to switch
to thicker protective layers is delayed.

6 Results

We implemented the dynamic collision detection
based on expanded models as part of our path plan-
ning and simulation system. We were not able to com-
pare the achieved efficiency with other dynamic colli-
sion detection systems, but we were able to efficiently
increase the performance with respect to the ’global’
discretization described in section 2. Table 1 shows a
comparison of the number of collision tests executed

robot, work- approx. | multiple

type space | l-norm | Steps models
6 DOF | 6 dim. | 100 % | 24,5 % 2,0 %
8 DOF | 3 dim. | 100 % 78 % 49 %
16 DOF | 6 dim. | 100 % 7,4 % 0,6 %

Table 1: The relative number of collision tests performed
with the different collision detection algorithms.

to check 1,000 random straight lines. We use sev-
eral manipulators from 2 to 16 DOF in environments
with several obstacles. The smallest models used are
expanded by dy = 2.5mm. The multiple model algo-
rithm works with 8 models of equal complexity result-
ing in a maximum expansion of 32cm. The radii of
the robots’ workspaces were about 100cm to 200cm.

All algorithms returned the same results, i.e. the
same percentage of paths were classified as colliding.
The computational overhead for the step approxima-
tion is quite low, especially if the geometry is complex
and the collision test gets more expensive. The re-
duction of necessary collision tests is enormous, espe-
cially if multiple models are used. Robots with more
degrees of freedom will in general show much better
performance as the discretization formula (1) results
in worse steps compared to robots with few DOF.

7 Future Work and Conclusion

We have presented an efficient approach to collision
detection along straight lines in c—space. Our method
only requires a static collision test and does not rely on
any special data structure or preprocessing of the en-
vironment representation required by other dynamic
collision detection algorithms. This is achieved by us-
ing several expanded geometry models of the robot
instead of calculating distances to the obstacles. The
number of collision tests is close to the possible mini-
mum.

In our opinion, any kind of geometric preprocess-
ing on the robot can be done, as its geometry and
kinematics are known well before planning. The ge-
ometry of the environment does not allow such opera-
tions, as it may be incomplete or sensor-read and of-
ten only becomes available when immediate planning
is already required. Our dynamic collision detection
scheme was developed under these assumptions and
handles them efficiently. In its current form it can
be easily integrated in all path planning systems that
explore straight lines in c—space (e.g. [6, 3]).

We will continue our work to minimize the number
of collision tests within our local planning algorithms

[2]. Especially in combination with the local planning
based on shrinking and growing geometry models [1],
the use of several sets of grown models is very promis-
ing. Another important step is the development of a
simple approximation scheme for arbitrary trajecto-
ries.

The simulated (’virtual’) environment can supply
other information besides that of the real world and it
provides the opportunity to change size and shape of
the ’virtual’ objects to gain information. It is not nec-
essary to limit oneself in the ’virtuality’ to the features
of reality. We think our work efficiently gains max-
imum information out of the simulated model with
minimum costs.

References

[1] Boris Baginski. Local motion planning for manipula-
tors based on shrinking and growing geometry mod-
els. In Proceedings of IEEE Conference on Robotics
and Automation, pages 3303—-3308, Minneapolis, April
1996.

[2] Boris Baginski. The Z*-method for fast path planning
in dynamic environments. In Proceedings of IASTED
Conference Aplications of Control and Robotics, pages
47-52, Orlando, Florida, January 1996.

[3] Martin Eldracher. Neural subgoal generation with sub-
goal graph: An approach. In Proceedings of World
Conference on Neural Networks WCNN ’9/, pages 11—
142 — 11-146, 1994.

[4] S. Gottschalk, M.C. Lin, and D. Manocha. OBBTree:
A hierarchical structure for rapid interference detec-
tion. In Proceedings of ACM Siggraph ’96, August
1996.

[6] P. Jiminez and C. Torras. Speeding up interference
detection between polyhedra. In Proceedings of IEEE
Conference on Robotics and Automation, pages 1485—
1492, Minneapolis, April 1996.

[6] Lydia Kavraki and Jean-Claude Latombe. Random-
ized preprocessing of configuration space for fast mo-
tion planning. In Proceedings of IEEE Conference on
Robotics and Automation, pages 2138-2145, San Diego,
California, May 1994.

[7] Ming C. Lin and John F. Canny. A fast algorithm
for incremental distance calculation. In Proceedings of
IEEE Conference on Robotics and Automation, pages
1008-1014, Sacramento, April 1991.

[8] Sean Quinlan. Efficient distance computation between
non-convex objects. In Proceedings of IEEE Confer-
ence on Robotics and Automation, pages 3324-3329,
San Diego, California, May 1994.

[9] E. Ralli and G. Hirzinger. A global and resolution
complete path planner for up to 6DOF robot manipu-
lators. In Proceedings of IEEE Conference on Robotics
and Automation, pages 3295-3302, Minneapolis, April
1996.

