
ROBCL � An Distributed Object�Oriented Robot Programming

Language

A� Baumann� B� Baginski and S� Riesner
Chair of Real�Time Systems and Robotics� Department of Computer Science

Technische Universit�at M�unchen
Arcisstr� ��� D��	

 M�unchen

email�fbaumannajbaginskijriesnerg�in�tum�de

Abstract� In this paper we present a client�server based architecture for programming
several actors and sensors in a heterogeneous system architecture� To integrate all the
di
erent computer systems an object�oriented library builds the communication base�
This general communication system �GECOS� provides secure communication via RPC�
Shared Memory� CAN or Ethernet� The ROBCL � robot control language is a library
providing prototypes for actors and sensors in a robotic laboratory� Using the ROBCL
library it is possible to run several programs simultaneously in the same environment�
using di
erent or the same devices� Because of a security concept it is not possible that
two programs control an actor at the same time by mistake�

Keywords� robot programming� object�
oriented robot language� communication
layer� control

I� Introduction

At the beginning of robot programming�
it was extremely di�cult to couple several
sensors and actors� Programs for all actors
had to be written� which are synchronised
over signals� The sensor values had to be
evaluated on separate computers and then
send to the robotic control� The program�
ming languages� for example V�� contain
only very simple data and control struc�
tures �St�a����
Some robot languages� for example

RCCL�RCI� permit a substantially more
comfortable programming �HL���� This
C�based language makes it possible to link
positions or orientations in the world to
procedures and to sensor values�
Most robotic laboratorys have a lot

of di
erent systems� There are manip�
ulators� cameras� distance measurement
sensors� force�torque�sensors� etc� All
these sensors have di
erent communica�
tion channels and protocols� To control
that environment� real�time computers�
personal computers or workstations are
used� Our goal is to develop a system�

which can be programmed using C�� and
which is easy to expand by other sensors�
actors and computer systems�
Thinking of these requirements it seems

to be useful to specify this system in
CORBA �OMG���� However� there is no
possibility to itemise the quality of the line
between applications within the interface
description language IDL �SGHP���� For
closed loop control application it is impor�
tant to assure that you have a real�time
connection between sensor and actor�

II� GECOS

A� Requirements

The goal of the GEneral COmmunica�
tion System is to provide a media in�
dependent communication between
di�erent computer systems� In a
robotic laboratory you can classify a com�
munication connection in either a�
� time independent connection or a
� time dependent connection
In the time independent case� e�g� the
command to open a gripper� the type of
the connection media is less important�
It should even be possible to control a
robot via satellite� But you need a very
fast connection for sensor controlled ac�
tions� In this case you have to choose a

real time computer system and communi�
cate via shared memory or CAN Bus�
A further aspect is the best choice of

the communication media� The sys�
tem has to select �if you do not specify
a communication media� the best possible
quality of service� If there is no possi�
bility to choose a required communication
medium the connection fails�
The status of a message� which is sent

over the communication medium� must
be requestable for the user� One must
know for example whether the robot al�
ready processed a movement instruction
or whether a sensor value request is al�
ready answered�
Another important point is the net se�

curity� No unallowed user must move the
robot and it must not be possible to move
any actor in the robotic laboratory� if no�
body is present in the laboratory�
Since there are actor commands� e�g�

move the robot� and sensor commands�
e�g� query the position of the robot� a
command security is necessary� It
should be possible that two programs run
within the same environment and use the
same sensors� but the programs must not
attempt to move the same robot at the
same time�

B� Realisation

The main modules are the GecosObject
object and the GECOS�Request�Broker�
which is based on a GecosObject ob�
ject� The basic GecosObject object com�
ponents and attributes are shown in �g�
��

Commands

A

B

C

Clones

FIFO-Queue

Commands:
 Send
 Reply

Communication Channels

GecosObject

Fig� �� One module with several communication
channels

AGecosObject object can create clones�

so it can create communication channels
with several partners� All incoming com�
mands of the clones are entered into a
First�In�First�Out�Queue� A command
object consists of a function code and the
function parameters� If the GecosObject
knows the function code the appropriated
command is executed and the result is re�
turned�
The GECOS�Request�Broker han�

dles all the location independent com�
munication between several GecosObject
objects �see �g� ��� The GECOS�Request�
Broker and the GecosObject objects can
be executed on di
erent computers� The
only requirement is that the GecosOb�
ject �objects know where the GECOS�
Request�Broker runs�

GecosObject GecosObject A

4

2

GECOS-Request-Broker

1

Register(A)
3

Create(A)
Create(A,in,out)

Fig� �� Communication with an object

In phase ��� the GecosObject object A
is registered� Now the GECOS�Request�
Broker knows the location of object A�
In the create phase of an instance of
object A the GECOS�Request�Broker is
asked ��� about the location of object
A� As soon as another object knows �
�
the place of module A it can establish
a communication ���� If communication
channels are added in the creation com�
mand Create�A�in�out�� the connection
is only established if the connection via
these channels is possible� To get a se�
cure system� object A can set host� and
user�limits� Before the communication
layer ��� is created� the user and host in�
clusion of the other object is checked�
The GecosObject object can support

methods �see �g�
�� which are executed
remotely within the connected module�
The left GecosObject uses the method

m a� of module A�

m_a1(par)
m_a2

A a;
command c;

c = a.m_a2();
c.State();

a.Create(’A’);

GecosObject GecosObject A

Fig� �� Using methods of remote modules

After the method or command of an ob�
ject is called� it is important to know the
status of this method� As a command is
an object� you can get the status of a com�
mand via the method State� The sta�
tus of a command could be returned ar�
bitrarily exactly� A subdivision into four
states is useful for a robot programming
language� in which an instruction can be�

� RUNNING� The command is processed
at this moment or is in the queue�
� FINISHED� The command was pro�
cessed successfully�
� CONNECTION FAILED� The connec�
tion or the server is down�
� COMMAND FAILED� The command
was not executed� due to bad parameters
or crash of the server�

Another important part of the method
call of distributed objects is the param�
eter transfer� An object �GeneralCon�
tents� is developed that forms the base of
all communicable data structures� Thus
a safe data transfer between processes on
di
erent operating systems can be guar�
anteed� to solve problems such as big and
little endian� A parameter of a GecosOb�
ject method has to be derived from a Gen�
eralContents� so it has the possibility to
encode and decode itself�
There is a large di
erence between sen�

sor and actor commands� Sensor com�
mands do not change the representation
of the devices or move the real device� On
the other hand� actor commands move a
device or e�g� change the resolution of a
frame�grabber �camera� device� It should
not be excluded that two programs try to
execute actor commands on the same de�
vice at the same time� But several pro�

grams can test the sensor values of any
sensor at the same time without a prob�
lem� Neverless one needs a possibility
to limit even testing the sensor values
for time critical functions like sensor con�
trolled movements� Therefore the com�
mand security concept di
erentiates be�
tween a sensor� actor� and master sta�

tus� In the sensor status sensor values
can be read� In the actor status actors
can be moved� In the master status all
inquiries of other processes are rejected�
When a connection to a device is estab�
lished the process enters the sensor status
by default� The actor or master status
can be achieved if nobody else is in this
status� The actor and master status can
be protected with a password� so that all
processes knowing this password can en�
ter the same status and move the actors
simultaneously� In this case all processes
know that there are other processes mov�
ing the same device� This feature is very
useful� because you could write one pro�
gram watching the laser distance sensor
and taking over the control of the robot
if it gets to close to an object� The other
program controls the robot if the distance
is alright�

C� Example

In this section we want to show that it is
very simple to write a server for a laser dis�
tance sensor �LDS�� The class which rep�
resents the LDS looks like this�

class LDS � public GecosObject
� public�

LDS���GecosObject�����
�	 constructor 	�
command Get �cont
double 	d� ��
�	 read the distance of the LDS 	�
return Rexec�Get
fc�d��
�	 command init 	�

�
��

The method Get just sends the re�
quest for the distance to the laser dis�
tance server� This is realised by the Rexec
function� which generates an object com�
mand� The command is sent with the
function code Get fc� the parameters and
a handler for this command to the server�
Because of the function code the server

knows what to do� The handler is nec�
essary� so that the server knows where to
send the answer�
The next step is to write a server pro�

gram which handles the connection to the
GECOS�Request�Broker� to the real de�
vice and the requests of the clients�

�include
LDS�h�
�	 distance variable 	�
static double distance�
LDS prototype�

static void m
Get
�GecosObject 	this� command �c�
int fc� contents �cs
in� �
�	 implementation of function Get 	�
distance �
read value��
c��Reply��distance�FINISHED��

�

int main �� �
�	 the server 	�

�	 contact the
GECOS�Request�Broker 	�

prototype�Register��LASER���
�	 provide the method Get

via the function code Get
fc	�
prototype�Handle�Get
fc�m
Get�SENSOR��
�	 start the server 	�
GecosObject��RUN���

�

For a client it is now very easy to read
the sensor values�

int main �� �
LDS lds�
cont
double d�
lds � lds�Create��LASER���
�	 establish connection 	�

command c � lds�Get��d��
�	 get the distance 	�

while �c�State����FINISHED� ���
�	 wait for value 	�

cout

 d

 endl�
�

As you can see in this small exam�
ple all the methods are evaluated asyn�
chronously� To make sure that you really
have the right value in your variable you
have to wait for the termination of the
command� Here the waiting is realised
with polling another way is to suspend the
process�

III� ROBCL

A� Requirements

According to �SB��� a robot program�
ming language should contain two sub�

stantial features� On the one hand spe�
cial data types must be designated� as
for example transformation matrices� And
on the other hand device speci�c func�
tionality for movement and for the
sensor data acquisition have to be pro�
vided�
To control all devices in a laboratory

environment as easy as possible it is use�
ful to have a common absolute carte�
sian coordinates system� All moving
instructions refer to this frame of refer�
ence� The transfer of a block �see �g� ��
becomes very simple�

T

Y

Z

X

Y
Z

X

Y

Z

World

d

X

D = EulerZYZ(0,0,d,180,180,0)

Fig� �� The transfer positions of a block with

two gripper frames� In EulerZYZ represen�
tation the �rst three parameters indicate the
shift in x �	 y �	 and z�direction� The fourth

value indicates the rotation around the z�axis	
the �fth around the new y�axis and the sixth
around the new z�axis�

The start situation is the robot A hold�
ing the block in its gripper a� Now the
robot hast to move its gripper to frame T�
The next step is to move robot B with an
open gripper b to position T �D �matrix
multiplication�� Now close the gripper b
and open the gripper a� Move the robots
back to their start position�
An important aspect in the develop�

ment of a programming language for
robots is the simple expandability
with additional actors and sensors�
It should also be possible to let several de�
vices appear like one� If one thinks of sen�
sor controlled accessing� then the robot�
the force�torque�sensor� and the gripper
should conjoin to one virtual device� As
we have shown in the last section it is very
easy to write new servers with the GECOS
library� In this section we focus on the

analysis of typical devices in a robotic lab�
oratory and what kind of servers have to
be written�

B� Realisation

TheROBot Class Library is an object�
oriented language� based on GecosObject
and the frames of �FTB����� For a client�
server architecture in a robotic laboratory
it is useful to represent each device by one
server� As we remarked� it is possible to
write one server for several devices to pro�
vide methods like grip the block at posi�
tion A� But to write a server with several
devices is only useful if you have hard real
time requirements� Otherwise you would
provide this in a function or method�
The basic class for all devices is the De�

vice class which adds the position and
orientation of a device in the world
to the GecosObject object�
In �g� � typical devices of our robot

laboratory are represented� Altogether
there are two industrial robots� two force
torque sensors �FTS�� four laser distance
sensors �LDS�� two grippers and a frame
grabber device�

CameraLDSFTSGripperRobot

n-axis Sixaxis

Device

RX90 Puma560 MeteorSIRIUSJR3 DLRSGR 201 SGR-1000

GecosObject

Fig�
� Devices in a robot laboratory

The most interesting devices in a
robotic laboratory are the robots� In our
case there are only manipulators� The
manipulators have a �xed position in the
world� The abstract manipulator has an
unknown number of joints� The sensor

values of the robots are the position and
the orientation of the tool frame in the
world� and the con�guration of the robot
�e�g� the con�guration of the robot RX�	
is a triple out of �leftyjrighty� abovejbelow�
�ipjno�ip��� The actor commands can
set the con�guration and move the robot�
The move command consists of two parts�

The �rst parameter is the goal position
of the tool frame� The second parameter
de�nes the kind of the trajectory between
the current and the goal position� The ba�
sic trajectory types are straight and joint

movement� You can expand both types
by the value break or nobreak� The break

parameter moves the tool frame exactly
to the goal frame� unlike the nobreak com�
mand which interpolates between the goal
frame and the following frame �if there is
one�� For sensor controlled movement an
alter�move is provided� The parameter of
this command is a relative frame which is
multiplied to the current position of the
robot within one system�clock interval of
the control unit�
On next speci�cation level there are

the n�axis manipulators� For our labora�
tory we only need the six�axis manipulator
class� Additional sensor and actor com�
mands permit the request of the joint val�
ues and the movement speci�ed by joint
values�
The �nal level presents the exact robot�

e�g� RX�	� Puma��	� or simulation� For
these real devices server have to be im�
plemented� so all methods of the parent
classes can be used�
For a user who wants to move the robot

only with frame movements this hierar�
chic structure is very useful� because you
can use the same program for all robots�
You do not have to make the decision
which real robot has to do the moves un�
til the Create��robot�� command� Now
you could ask for the RX�	� but if the
RX�	 robot is not online and the connec�
tion fails you could ask for another robot
within the same program� The other de�
vices are quite simple so we do not spec�
ify the server structures more exactly for
these sensors�
The next important parts of a robot

programming language are the data
structures� In �g� � the most important
data structures which occur in a robot lab�
oratory are represented�
A central data structure is the homoge�

neous matrix which can be used to store
the position and orientation of a frame
in the world� Moreover you can per�

DeviceContens

ForceDistanceAngelHomogeneous Matrix

EulerZYZ XYZ Degree Radian NewtonMillimeter

DeviceDependend

GeneralContents

Fig� �� Data structures for actors and sensors

form the basic math operations like mul�
tiplication and inverse on these matri�
ces� Furthermore the matrices can be con�
verted between the di
erent representa�
tions �CEulZYZ� CXYZ� ����� Now it is
very easy to calculate a position in the
world and then move the robot to this po�
sition�

C� Example

In this example we want to show how
easy it is to program the devices in our
robot laboratory� The scenario is a robot
gripping a block� The block�s grip point is
at the position BLOCK in the world�

�include
sixaxis�h�
�include
gripper�h�

int main �� �
CRobot myR�
CGripper myG�
command c�

�	 establish the connection 	�
myG�Create��ROBOT���
myR�Create��GRIPPER���
�	 set the robot position	�
myR�Mount�ROBOT
BASE��
�	 get actor status 	�
myG�actor���
myR�actor���
�	 move the robot to a point

�� cm over the block 	�
c�myR�Move�TransMat����������	BLOCK��
�	 open the gripper to �� cm 	�
while �myG�Open������State��

��RUNNING� ���
�	 wait for the robot 	�
while �c�State����RUNNING� ���
�	 move down 	�
while �myR�Move�BLOCK���RUNNING� ���
�	 close gripper with force ��� 	�
while �myG�Close�����State��

��RUNNING� ���
�	 move up 	�
myR�Move�TransMat����������	BLOCK��

�

There is no trouble shooting done in this
short program� Normally you would have
to check whether the connection was es�
tablished and whether you got the actor
commands right�

IV� Conclusions

We presented a powerful robot control
language which makes it very easy to write
programs with several devices� Because
of the communication library GECOS it
does not matter on which operating sys�
tems the server or client processes run� We
showed that it is very simple to expand
our system by more servers and devices�
The practical experiences with our im�

plementation are very promising� The sys�
tem is used in the practical robotics lab�
oratory course successfully� as well as in
further projects where real time trajectory
generation and control is integrated�

Acknowledgement

The �rst and second author would like
to particularly thank the third author�
who carried out the entire base imple�
mentation� Furthermore we would like to
thank our students� who used the system
and put it through its paces�

References

�FTB���� Raphael A� Finkel� Russell H� Taylor�
Robert C� Bolles� Richard P� Paul� and
Jerome A� Feldman� AL� a programming
system for automation� Technical Report
CS�TR�����	
� Stanford University� De�
partment of Computer Science� �����

�HL��� V� Hayward and J� Lloyd� RCCL User�s
Guide� McGill University� Montre
al�
Qu
ebec� Canada� �����

�OMG��� Object Management Group� Inc�� ���
Old Connecticut Path� Framingham� MA
������ The Common Object Request Bro�

ker� Architecture and Speci�cation� ���
edition� feb �����

�SB�
� H��J� Siegert and S� Bocionek� Robotik�
Programmierung intelligenter Roboter�
Springer�Verlag Berlin Heidelberg New
York� ���
�

�SGHP��� D� Schmidt� A� Gokhale� T� Harrison�
and G� Parukar� A high performance
end system architecture for real�time
CORBA� IEEE Communications Maga�
zine� �	���������� �����

�St�a��� St�aubli� V� Language Version� Adept
Technology� Faverges� France� version ����
edition� �����

