ROBCL - An Distributed Object-Oriented Robot Programming
Language

A. Baumann, B. Baginski and S. Riesner
Chair of Real-Time Systems and Robotics, Department of Computer Science
Technische Universitat Miunchen
Arcisstr. 21, D-80333 Minchen

email:{baumanna|baginski|riesner } @in.tum.de

Abstract: In this paper we present a client-server based architecture for programming
several actors and sensors in a heterogeneous system architecture. To integrate all the
different computer systems an object-oriented library builds the communication base.
This general communication system (GECOS) provides secure communication via RPC,
Shared Memory, CAN or Ethernet. The ROBCL - robot control language is a library
providing prototypes for actors and sensors in a robotic laboratory. Using the ROBCL
library it is possible to run several programs simultaneously in the same environment,
using different or the same devices. Because of a security concept it is not possible that
two programs control an actor at the same time by mistake.

Keywords: robot programming, object-
oriented robot language, communication
layer, control

I. INTRODUCTION

At the beginning of robot programming,
it was extremely difficult to couple several
sensors and actors. Programs for all actors
had to be written, which are synchronised
over signals. The sensor values had to be
evaluated on separate computers and then
send to the robotic control. The program-
ming languages, for example V4, contain
only very simple data and control struc-
tures [Sta94].

Some robot languages, for example
RCCL/RCI, permit a substantially more
comfortable programming [HL84]. This
(C-based language makes it possible to link
positions or orientations in the world to
procedures and to sensor values.

Most robotic laboratorys have a lot
of different systems. There are manip-
ulators, cameras, distance measurement
sensors, force-torque-sensors, etc. All
these sensors have different communica-
tion channels and protocols. To control
that environment, real-time computers,
personal computers or workstations are
used. Our goal is to develop a system,

which can be programmed using C++ and
which is easy to expand by other sensors,
actors and computer systems.

Thinking of these requirements it seems
to be useful to specify this system in
CORBA [OMGY8]. However, there is no
possibility to itemise the quality of the line
between applications within the interface
description language IDL [SGHP97]. For
closed loop control application it is impor-
tant to assure that you have a real-time
connection between sensor and actor.

II. GECOS
A. Requirements

The goal of the GEneral COmmunica-
tion System is to provide a media in-
dependent communication between
different computer systems. In a
robotic laboratory you can classify a com-
munication connection in either a:

« time independent connection or a

e time dependent connection

In the time independent case, e.g. the
command to open a gripper, the type of
the connection media is less important.
It should even be possible to control a
robot via satellite. But you need a very
fast connection for sensor controlled ac-
tions. In this case you have to choose a

real time computer system and communi-
cate via shared memory or CAN Bus.

A further aspect is the best choice of
the communication media. The sys-
tem has to select (if you do not specify
a communication media) the best possible
quality of service. If there is no possi-
bility to choose a required communication
medium the connection fails.

The status of a message, which is sent
over the communication medium, must
be requestable for the user. One must
know for example whether the robot al-
ready processed a movement instruction
or whether a sensor value request is al-
ready answered.

Another important point is the net se-
curity. No unallowed user must move the
robot and it must not be possible to move
any actor in the robotic laboratory, if no-
body is present in the laboratory.

Since there are actor commands, e.g.
move the robot, and sensor commands,
e.g. query the position of the robot, a
command security is necessary. It
should be possible that two programs run
within the same environment and use the
same sensors, but the programs must not
attempt to move the same robot at the
same time.

B. Realisation

The main modules are the GecosObject
object and the GECOS-Request-Broker,
which is based on a GecosObject ob-
ject. The basic GecosObject object com-
ponents and attributes are shown in fig.

Clones GecosObject

LA boooe- 7 | [l .
coemmesssn 00 FIFO-Queue

. . ,I/— ______ ‘é/ c

- ' B LA Commands:
i mm =l S Send
DDI,—______\/, Reply

e ;

[] Commands
__ Communication Channels

Fig. 1. One module with several communication
channels

A GecosObject object can create clones,

so it can create communication channels
with several partners. All incoming com-
mands of the clones are entered into a
First-In-First-Out-Queue.
object consists of a function code and the
function parameters. If the GecosObject
knows the function code the appropriated
command is executed and the result is re-

A command

turned.

The GECOS-Request-Broker han-
dles all the location independent com-
munication between several GecosObject
objects (see fig. 2). The GECOS-Request-
Broker and the GecosObject objects can
be executed on different computers. The
only requirement is that the GecosOb-
ject -objects know where the GECOS-

Request-Broker runs.

GecosObject A

Register(A)

Create(A)
Create(A,in,out) 1
2

‘ GECOS-Request-Broker ‘

Fig. 2. Communication with an object

In phase (1) the GecosObject object A
is registered. Now the GECOS-Request-
Broker knows the location of object A.
In the create phase of an instance of
object A the GECOS-Request-Broker is
asked (2) about the location of object
A. As soon as another object knows (3)
the place of module A it can establish
a communication (4). If communication
channels are added in the creation com-
mand Create(A,in,out), the connection
is only established if the connection via
these channels is possible. To get a se-
cure system, object A can set host- and
user-limits. Before the communication
layer (4) is created, the user and host in-
clusion of the other object is checked.

The GecosObject object can support
methods (see fig. 3), which are executed
remotely within the connected module.
The left GecosObject uses the method

m_a2 of module A.

GecosObject

GecosObject A
Ag

command c; m_al(par)
aCreate('A’); m_a2
c=am_a2(); -

c.State();

Fig. 3. Using methods of remote modules

After the method or command of an ob-
ject is called, it is important to know the
status of this method. As a command is
an object, you can get the status of a com-
mand via the method State. The sta-
tus of a command could be returned ar-
bitrarily exactly. A subdivision into four
states is useful for a robot programming
language, in which an instruction can be:
o« RUNNING: The command is processed
at this moment or is in the queue.

o FINISHED: The command was pro-
cessed successfully.

o« CONNECTION_FAILED: The connec-
tion or the server is down.

« COMMAND_FAILED: The command
was not executed, due to bad parameters
or crash of the server.

Another important part of the method
call of distributed objects is the param-
eter transfer. An object (GeneralCon-
tents) is developed that forms the base of
all communicable data structures. Thus
a safe data transfer between processes on
different operating systems can be guar-
anteed, to solve problems such as big and
little endian. A parameter of a GecosOb-
ject method has to be derived from a Gen-
eralContents, so it has the possibility to
encode and decode itself.

There is a large difference between sen-
sor and actor commands. Sensor com-
mands do not change the representation
of the devices or move the real device. On
the other hand, actor commands move a
device or e.g. change the resolution of a
frame-grabber (camera) device. It should
not be excluded that two programs try to
execute actor commands on the same de-
vice at the same time. But several pro-

grams can test the sensor values of any
sensor at the same time without a prob-
lem. Neverless one needs a possibility
to limit even testing the sensor values
for time critical functions like sensor con-
trolled movements. Therefore the com-
mand security concept differentiates be-
tween a sensor, actor, and master sta-
tus. In the sensor status sensor values
can be read. In the actor status actors
can be moved. In the master status all
inquiries of other processes are rejected.
When a connection to a device is estab-
lished the process enters the sensor status
by default. The actor or master status
can be achieved if nobody else is in this
status. The actor and master status can
be protected with a password, so that all
processes knowing this password can en-
ter the same status and move the actors
simultaneously. In this case all processes
know that there are other processes mov-
ing the same device. This feature is very
useful, because you could write one pro-
gram watching the laser distance sensor
and taking over the control of the robot
if it gets to close to an object. The other
program controls the robot if the distance
is alright.

C. Frample

In this section we want to show that it is
very simple to write a server for a laser dis-
tance sensor (LDS). The class which rep-
resents the LDS looks like this:

class LDS
{ public:
LDS() :GecosObject () {Z};
/* constructor */
command Get (cont_double *d) {;
/* read the distance of the LDS */
return Rexec(Get_fc,d);
/* command init */

: public GecosObject

};

The method Get just sends the re-
quest for the distance to the laser dis-
tance server. This is realised by the Rexec
function, which generates an object com-
mand. The command is sent with the
function code Get _fc, the parameters and
a handler for this command to the server.
Because of the function code the server

knows what to do. The handler is nec-
essary, so that the server knows where to
send the answer.

The next step is to write a server pro-
gram which handles the connection to the

GECOS-Request-Broker, to the real de-

vice and the requests of the clients:

#include <LDS.h>

/% distance variable */
static double distance;
LDS prototype;

static void m_Get

(GecosObject *this, command &c,
int fc, contents &cs_in) {

/* implementation of function Get */
distance = <read value>;
c->Reply(&distance,FINISHED);

}

int main () {
/* the server */
/* contact the
GECOS-Request-Broker */
prototype.Register(’LASER’);
/* provide the method Get
via the function code Get_fc*/
prototype.Handle(Get_fc,m_Get,SENSOR);
/* start the server */
GecosObject: :RUN();
}

For a client it is now very easy to read
the sensor values:
int main () {
LDS 1ds;
cont_double d;
1ds = 1lds.Create(’LASER’);
/* establish connection */
command ¢ = 1lds.Get(&d);
/* get the distance */
while (c.State()!'=FINISHED) {Z};
/* wait for value */
cout << d << endl;

As you can see in this small exam-
ple all the methods are evaluated asyn-
chronously. To make sure that you really
have the right value in your variable you
have to wait for the termination of the
command. Here the waiting is realised
with polling another way is to suspend the
process.

ITI. ROBCL
A. Requirements

According to [SB96] a robot program-
ming language should contain two sub-

stantial features. On the one hand spe-
cial data types must be designated, as
for example transformation matrices. And
on the other hand device specific func-
tionality for movement and for the
sensor data acquisition have to be pro-
vided.

To control all devices in a laboratory
environment as easy as possible it is use-
ful to have a common absolute carte-
sian coordinates system. All moving
instructions refer to this frame of refer-
ence. The transfer of a block (see fig. 4)
becomes very simple.

D = EulerzYZ(0,0,d,180,180,0)

World

Fig. 4. The transfer positions of a block with
two gripper frames. In EulerZYZ represen-
tation the first three parameters indicate the
shift in x -, y -, and z-direction. The fourth
value indicates the rotation around the z-axis,
the fifth around the new y-axis and the sixth
around the new z-axis.

The start situation is the robot A hold-
ing the block in its gripper a. Now the
robot hast to move its gripper to frame T.
The next step is to move robot B with an
open gripper b to position T % D (matrix
multiplication). Now close the gripper b
and open the gripper a. Move the robots
back to their start position.

An important aspect in the develop-
ment of a programming language for
robots is the simple expandability
with additional actors and sensors.
It should also be possible to let several de-
vices appear like one. If one thinks of sen-
sor controlled accessing, then the robot,
the force-torque-sensor, and the gripper
should conjoin to one virtual device. As
we have shown in the last section it is very
easy to write new servers with the GECOS
library. In this section we focus on the

analysis of typical devices in a robotic lab-
oratory and what kind of servers have to
be written.

B. Realisation
The ROBot Class Library is an object-

oriented language, based on GecosObject
and the frames of [FTB%94]. For a client-
server architecture in a robotic laboratory
it is useful to represent each device by one
server. As we remarked, it is possible to
write one server for several devices to pro-
vide methods like grip the block at posi-
tion A. But to write a server with several
devices is only useful if you have hard real
time requirements. Otherwise you would
provide this in a function or method.

The basic class for all devices is the De-
vice class which adds the position and
orientation of a device in the world
to the GecosObject object.

In fig. 5 typical devices of our robot
laboratory are represented. Altogether
there are two industrial robots, two force
torque sensors (FTS), four laser distance
sensors (LDS), two grippers and a frame
grabber device.

FT Camera

LD

S
R

s
(Pumas6q) (SGR 201 (SGR-1000)

Fig. 5. Devices in a robot laboratory

The most interesting devices in a
robotic laboratory are the robots. In our
case there are only manipulators. The
manipulators have a fixed position in the
world. The abstract manipulator has an
unknown number of joints. The sensor
values of the robots are the position and
the orientation of the tool frame in the
world, and the configuration of the robot
(e.g. the configuration of the robot RX90
is a triple out of (lefty|righty, above|below,
flip|noflip)). The actor commands can
set the configuration and move the robot.
The move command consists of two parts.

The first parameter is the goal position
of the tool frame. The second parameter
defines the kind of the trajectory between
the current and the goal position. The ba-
sic trajectory types are straight and joint
movement. You can expand both types
by the value break or nobreak. The break
parameter moves the tool frame exactly
to the goal frame, unlike the nobreak com-
mand which interpolates between the goal
frame and the following frame (if there is
one). For sensor controlled movement an
alter-move is provided. The parameter of
this command is a relative frame which is
multiplied to the current position of the
robot within one system-clock interval of
the control unit.

On next specification level there are
the n-axis manipulators. For our labora-
tory we only need the six-axis manipulator
class. Additional sensor and actor com-
mands permit the request of the joint val-
ues and the movement specified by joint
values.

The final level presents the exact robot,
e.g. RX90, Puma560, or simulation. For
these real devices server have to be im-
plemented, so all methods of the parent
classes can be used.

For a user who wants to move the robot
only with frame movements this hierar-
chic structure is very useful, because you
can use the same program for all robots.
You do not have to make the decision
which real robot has to do the moves un-
til the Create(’robot’) command. Now
you could ask for the RX90, but if the
RX90 robot is not online and the connec-
tion fails you could ask for another robot
within the same program. The other de-
vices are quite simple so we do not spec-
ify the server structures more exactly for
these sensors.

The next important parts of a robot
programming language are the data
structures. In fig. 6 the most important
data structures which occur in a robot lab-
oratory are represented.

A central data structure is the homoge-
neous matrix which can be used to store
the position and orientation of a frame
in the world. Moreover you can per-

DeviceContens

5. G)
[Homogeneous Matri x] [}ngd\]\ Distance F(I)rce
(Degree] [Radianj\‘ (

Fig. 6. Data structures for actors and sensors

form the basic math operations like mul-
tiplication and inverse on these matri-
ces. Furthermore the matrices can be con-
verted between the different representa-
tions (CEulZYZ, CXYZ, ...). Now it is
very easy to calculate a position in the
world and then move the robot to this po-
sition.

C. Frample

In this example we want to show how
easy it is to program the devices in our
robot laboratory. The scenario is a robot
gripping a block. The block’s grip point is
at the position BLOCK in the world.

#include <sixaxis.h>
#include <gripper.h>

int main () {
CRobot myR;
CGripper myG;
command c;

/* establish the connection */

myG.Create(’ROBOT’);

myR.Create(’GRIPPER’);

/* set the robot position*/

myR . Mount (ROBOT_BASE) ;

/* get actor status */

myG.actor();

myR.actor();

/* move the robot to a point

20 cm over the block */

c=myR.Move(TransMat(0,0,-200)*BLOCK) ;

/* open the gripper to 10 cm */

while (myG.Open(100).State()
==RUNNING) {};

/* wait for the robot */

while (c.State()==RUNNING) {};

/* move down */

while (myR.Move(BLOCK)==RUNNING) {%};

/* close gripper with force 30% */

while (myG.Close(30).State()
==RUNNING) {};

/* move up */

myR . Move(TransMat (0,0,-200)*BLOCK) ;

There is no trouble shooting done in this
short program. Normally you would have
to check whether the connection was es-
tablished and whether you got the actor
commands right.

IV. CONCLUSIONS

We presented a powerful robot control
language which makes it very easy to write
programs with several devices. Because
of the communication library GECOS it
does not matter on which operating sys-
tems the server or client processes run. We
showed that it is very simple to expand
our system by more servers and devices.

The practical experiences with our im-
plementation are very promising. The sys-
tem is used in the practical robotics lab-
oratory course successfully, as well as in
further projects where real time trajectory
generation and control is integrated.

ACKNOWLEDGEMENT

The first and second author would like
to particularly thank the third author,
who carried out the entire base imple-
mentation. Furthermore we would like to
thank our students, who used the system
and put it through its paces.

REFERENCES

[FTB'94] Raphael A. Finkel, Russell H. Taylor,
Robert C. Bolles, Richard P. Paul, and
Jerome A. Feldman. Al, a programming
system for automation. Technical Report
CS-TR-74-456, Stanford University, De-
partment of Computer Science, 1994.

[H1.84] V. Hayward and J. Lloyd. RCCL User’s
Guide. McGill University, Montreal,
Québec, Canada, 1984.

[OMG98] Object Management Group, Inc., 492
Old Connecticut Path, Framingham, MA
01701. The Common Object Request Bro-
ker: Architecture and Specification, 2.2
edition, feb 1998.

[SB96] H.-J. Siegert and S. Bocionek. Robotik:
Programmierung intelligenter Roboter.
Springer-Verlag Berlin Heidelberg New
York, 1996.

[SGHP97] D. Schmidt, A. Gokhale, T. Harrison,
and G. Parukar. A high performance
end system architecture for real-time
CORBA. [EFE Communications Maga-
zine, 35(2):72-78, 1997.

[Sta94] Staubli. V+ Language Version. Adept
Technology, Faverges, France, version 11.0
edition, 1994.

